1
|
Alvarez-Londoño J, Martínez-Sánchez ET, Aristizábal-Mier M, Orozco-Piedrahita LM, Faccini-Martínez ÁA, Serpa MCA, Labruna MB, Ramírez-Chaves HE, Castaño-Villa GJ, Rivera-Páez FA. Serologic and molecular survey for Rickettsia in small mammals in the Andes of Colombia. Acta Trop 2025; 264:107589. [PMID: 40101885 DOI: 10.1016/j.actatropica.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
Zoonotic vector-borne infectious diseases represent a significant global challenge. Ticks are one of the most important vectors globally, transmitting a wide range of pathogens. Among these pathogens, bacteria of the genus Rickettsia cause zoonotic diseases, knows as rickettsioses, that primarily affect tropical and subtropical regions. Rickettsiae are transmitted between vertebrate hosts and vectors, with some wild mammals serving as key amplifying hosts. In Colombia, the limited information on wild reservoirs contrasts with their high diversity, which includes 553 native mammal species, and 51 species of ticks associated with wild mammal hosts. To detect Rickettsia exposure and infections in wild mammals from the Colombian Andean region, serum, blood, and organ samples were collected from wild mammals in the Departments of Caldas and Risaralda, Colombia, between July 2021 and November 2022. A total of 147 mammals belonging to 58 species and three orders (Didelphimorphia, Chiroptera, and Rodentia) were captured. The indirect immunofluorescence assays analysis detected antibodies for Rickettsia in 100 % of didelphids, 65.2 % of rodents, and 45.9 % of bats. Rickettsia DNA was detected in 4.1 % of the mammals analyzed, with 'Candidatus Rickettsia andeanae', Rickettsia felis, Rickettsia rickettsii, and Rickettsia parkeri identified in rodents and bats. The detection of Rickettsia in wild mammals reinforces their role as reservoirs and highlights the need to investigate their ecology to improve surveillance and control of rickettsiosis in Colombia.
Collapse
Affiliation(s)
- Johnathan Alvarez-Londoño
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia; Maestría en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia; Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Mariana Aristizábal-Mier
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Luisa M Orozco-Piedrahita
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Álvaro A Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Transversal 3C No. 49-02, Bogotá D.C, Cundinamarca, Colombia; Facultad de Medicina, Universidad Militar Nueva Granada, Transversal 3 No. 49-00, Bogotá D.C, Cundinamarca, Colombia
| | - Maria Carolina A Serpa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia; Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Gabriel J Castaño-Villa
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Carrera 35 No. 65-160 A.A 275, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia.
| |
Collapse
|
2
|
Páez-Triana L, Martinez D, Patiño LH, Muñoz M, Sandoval-Ramírez CM, Pinilla León JC, Ramirez JD. Exploring endosymbionts and pathogens in Rhipicephalus sanguineus and Ctenocephalides felis felis with Oxford Nanopore Technology. Res Vet Sci 2025; 185:105562. [PMID: 39914231 DOI: 10.1016/j.rvsc.2025.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Fleas and ticks play a crucial role in public health as vectors of multiple diseases affecting humans and animals. Several rickettsial pathogens and endosymbionts are transmitted by fleas and ticks. Therefore, understanding this group of microorganisms is essential for fully grasping the spectrum of pathogens transmitted by vectors and the interactions between endosymbiotic microorganisms and their hosts. This study evaluated the presence and diversity of Rickettsiales species in fleas and ticks collected from the Santander department in Colombia. For the methodology a 16S gene amplification approach through Oxford Nanopore sequencing technologies in Rhipicephalus sanguineus and Ctenocephalides felis felis was used. Our findings revealed the presence of multiple pathogenic and endosymbiotic microorganisms, particularly from the Rickettsia and Wolbachia groups. We observed a clear association between Rickettsia species and ticks, while Wolbachia was predominantly found in fleas. Additionally, other important microorganisms were identified, including Anaplasma phagocytophilum, Rickettsia conorii, and different strains of Wolbachia that serve as endosymbionts in various arthropods. These results underscore the importance of fleas and ticks in the transmission of both pathogenic and endosymbiotic microorganisms. The distinct patterns of association between specific pathogens and vectors provide insight into their transmission dynamics. Identifying pathogens such as Anaplasma phagocytophilum and Rickettsia conorii further highlights the need for continued research into vector-borne diseases in Colombia. Understanding the interactions between endosymbionts and pathogenic microorganisms in these vectors could lead to the development of more effective strategies for controlling diseases transmitted by fleas and ticks.
Collapse
Affiliation(s)
- Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Instituto de Biotecnología- UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia M Sandoval-Ramírez
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Grupo de Investigación en Ciencias Básicas y aplicadas para la Sostenibilidad (CIBAS), Universidad de Santander, Bucaramanga, Santander, Colombia
| | - Juan Carlos Pinilla León
- Facultad de Ciencias Exactas, Naturales y Agropecuarias, Grupo de Investigación en Ciencias Agropecuarias (GICA), Universidad de Santander, Bucaramanga, Santander, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Alvarez-Londoño J, Giraldo-Noreña DF, Martínez-Sánchez ET, Rivera-Páez FA, Matta NE. Molecular survey of Rickettsia spp. in ticks infesting wild animals in six departments in Colombia. Ticks Tick Borne Dis 2024; 15:102381. [PMID: 38981408 DOI: 10.1016/j.ttbdis.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Ticks are a globally distributed group of hematophagous ectoparasites that parasitize terrestrial vertebrates such as amphibians, reptiles, birds, and mammals. Ticks are vectors and reservoirs of pathogens that play an important role in wildlife and human health. Rickettsia is one of the bacteria transmitted by ticks, which some pathogenic species can cause rickettsiosis, a zoonotic disease that can cause serious harm to humans and animals. More information is necessary on the interactions between ticks and wildlife despite the fifty-seven ticks species already identified in Colombia. The objective of the present study was to determine the associations between ticks parasitizing wildlife and bacteria of the genus Rickettsia in six departments of Colombia. One hundred eighty-five ticks (80 larvae, 78 nymphs, and 27 adults) were collected from 55 wildlife species (amphibians, birds, mammals, and reptiles). Nine tick species were identified, and Rickettsia bellii, Rickettsia felis, 'Candidatus Rickettsia colombianensi' and Rickettsia parkeri were detected. Our results contribute to the current knowledge of tick-associated rickettsiae and the role of wildlife in their transmission dynamics.
Collapse
Affiliation(s)
- Johnathan Alvarez-Londoño
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia; Maestría en Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Daniel Felipe Giraldo-Noreña
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia; Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 A.A 275, Manizales, Caldas, Colombia
| | - Nubia E Matta
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Ciencias, Departamento de Biología, Grupo Caracterización genética e inmunología. Carrera 30 No. 45-03, Bogotá 111321, Colombia.
| |
Collapse
|
4
|
Oviedo Á, Rodríguez MM, Flores FS, Castro LR. New hard tick (Acari: Ixodidae) reports and detection of Rickettsia in ticks from Sierra Nevada de Santa Marta, Colombia. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:507-528. [PMID: 38485886 PMCID: PMC11035439 DOI: 10.1007/s10493-023-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/29/2023] [Indexed: 04/23/2024]
Abstract
The Sierra Nevada de Santa Marta (SNSM), located in northern Colombia, is considered a geographical island with high levels of biodiversity and endemism. However, little is known about tick species and their associated microorganisms at the SNSM. In this study we sampled host-seeking ticks in areas of the town of Minca within the SNSM. We collected 47 ticks identified as Amblyomma pacae, Amblyomma longirostre, Amblyomma ovale, Amblyomma mixtum, Haemaphysalis juxtakochi, Ixodes sp. cf. Ixodes affinis and Ixodes sp. Of these ticks, we tested for Rickettsia spp. by amplifying the gltA, SCA1, and 16S rRNA genes via PCR. Rickettsia amblyommatis was detected in one pool of 3 larvae and in a female of A. pacae. Additonally, we isolated Rickettsia sp. belonging to the group of spotted fevers in larvae of A. longirostre. This study reports new findings of six species of ticks and two species of Rickettsia within the SNSM.
Collapse
Affiliation(s)
- Ángel Oviedo
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia
| | - Miguel M Rodríguez
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia
| | - Fernando S Flores
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| |
Collapse
|
5
|
Farias IF, de Oliveira GMB, Lima EVM, Labruna MB, Horta MC. Parasitism on domestic cats by Amblyomma auricularium and serological evidence of exposure to Rickettsia amblyommatis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e018123. [PMID: 38511817 PMCID: PMC10954250 DOI: 10.1590/s1984-29612024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024]
Abstract
The domestic cat is not considered a primary host for any specific tick species; however, it can be affected by some Ixodidae species, such as Rhipicephalus sanguineus sensu lato and Amblyomma spp. The study reports parasitism by Amblyomma auricularium and the detection of anti-Rickettsia spp. antibodies in domestic cats from a rural property in the Afrânio municipality, Pernambuco, Brazil. Amblyomma auricularium (24 nymphs, six females, and four males) and Amblyomma sp. (42 larvae) parasitized three cats, and 73 free-living ticks were captured in armadillo burrows: A. auricularium (36 nymphs, six females, five males) and Amblyomma sp. (26 larvae). Blood samples from cats were collected and the obtained plasma were subjected to indirect immunofluorescence assay (IFA) to detect antibodies against Rickettsia antigens. Thus, anti-Rickettsia spp. antibodies were determined (titers ranging from 128 to 512) and showed a predominant antibody response to Rickettsia amblyommatis or a very closely related genotype. This study reports the first infestation of nymphs and adults of A. auricularium on cats in a new area of occurrence in the semi-arid region of Northeastern Brazil and reports for the first time the presence of anti-Ricketsia antibodies in cats in the region, with R. amblyommatis as the probable infectious agent.
Collapse
Affiliation(s)
- Ila Ferreira Farias
- Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
- Pós-graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
| | - Glauber Meneses Barboza de Oliveira
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Erisson Victor Macedo Lima
- Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
| | - Marcelo Bahia Labruna
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
| | - Mauricio Claudio Horta
- Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
- Pós-graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco - UNIVASF, Petrolina, PE, Brasil
| |
Collapse
|
6
|
Rodríguez-Vivas RI, Ojeda-Chi MM, Thompson AT, Yabsley MJ, Colunga-Salas P, Montes SS. Population genetics of the Ixodes affinis (Ixodida: Ixodidae) complex in America: new findings and a host-parasite review. Parasitol Res 2023; 123:78. [PMID: 38158425 DOI: 10.1007/s00436-023-08091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Ticks are hematophagous ectoparasites associated with a wide range of vertebrate hosts. Within this group, the Ixodidae family stands out, in which the Ixodes genus contains at least 245 species worldwide, from which 55 species are present in the Neotropical region. Ixodes affinis, a tick described in 1899, has a wide distribution from the Southern Cone of America to the United States. However, since its description, morphological variability has been reported among its populations. Furthermore, attempts have been made to clarify its status as a species complex using mitochondrial markers, but mainly in restricted populations of South and Central America. Thus, information related to populations of the transition region between the Neotropical and Nearctic zones is lacking. For these reasons, the objectives of the study were to evaluate the genetic diversity and structure of I. affinis across the Americas and to compile all the published records of I. affinis in America, to elucidate the host-parasite relationships and to identify their geographical distribution. For this, a phylogeny, and AMOVA analyses were performed to assess the genetic structure of samples obtained by field work in South Carolina, USA and Yucatán, Mexico. A total of 86 sequences were retrieved from a fragment of the 16S region. Phylogeny and genetic structure analysis showed four groups that were geographically and genetically related with high branch support and Fst values, all of them statistically significant. The results obtained support the hypothesis that I. affinis it corresponds to a complex of four species, which must be validated through future morphological comparisons.
Collapse
Affiliation(s)
- Roger I Rodríguez-Vivas
- Campus de Ciencias Biológicas y Agropecuarias. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Melina M Ojeda-Chi
- Campus de Ciencias Biológicas y Agropecuarias. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Carretera Tuxpan Tampico Kilómetro 7.5, Universitaria, Tuxpan de Rodríguez Cano, Veracruz, C.P. 92870, México
| | - Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study (SCWDS), College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study (SCWDS), College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Pablo Colunga-Salas
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa de Enríquez, Veracruz, 91090, México.
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, México.
| | - Sokani Sánchez Montes
- Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, México.
- Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Carretera Tuxpan Tampico Kilómetro 7.5, Universitaria, Tuxpan de Rodríguez Cano, Veracruz, C.P. 92870, México.
| |
Collapse
|
7
|
Majid A, Almutairi MM, Alouffi A, Tanaka T, Yen TY, Tsai KH, Ali A. First report of spotted fever group Rickettsia aeschlimannii in Hyalomma turanicum, Haemaphysalis bispinosa, and Haemaphysalis montgomeryi infesting domestic animals: updates on the epidemiology of tick-borne Rickettsia aeschlimannii. Front Microbiol 2023; 14:1283814. [PMID: 38163073 PMCID: PMC10756324 DOI: 10.3389/fmicb.2023.1283814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Tick-borne Rickettsia spp. have long been known as causative agents for zoonotic diseases. We have previously characterized Rickettsia spp. in different ticks infesting a broad range of hosts in Pakistan; however, knowledge regarding Rickettsia aeschlimannii in Haemaphysalis and Hyalomma ticks is missing. This study aimed to obtain a better understanding about R. aeschlimannii in Pakistan and update the knowledge about its worldwide epidemiology. Among 369 examined domestic animals, 247 (66%) were infested by 872 ticks. Collected ticks were morphologically delineated into three genera, namely, Rhipicephalus, Hyalomma, and Haemaphysalis. Adult females were the most prevalent (number ₌ 376, 43.1%), followed by nymphs (303, 34.74%) and males (193, 22.13%). Overall, genomic DNA samples of 223 tick were isolated and screened for Rickettsia spp. by the amplification of rickettsial gltA, ompA, and ompB partial genes using conventional PCR. Rickettsial DNA was detected in 8 of 223 (3.58%) ticks including nymphs (5 of 122, 4.0%) and adult females (3 of 86, 3.48%). The rickettsial gltA, ompA, and ompB sequences were detected in Hyalomma turanicum (2 nymphs and 1 adult female), Haemaphysalis bispinosa (1 nymph and 1 adult female), and Haemaphysalis montgomeryi (2 nymphs and 1 adult female). These rickettsial sequences showed 99.71-100% identity with R. aeschlimannii and phylogenetically clustered with the same species. None of the tested Rhipicephalus microplus, Hyalomma isaaci, Hyalomma scupense, Rhipicephalus turanicus, Hyalomma anatolicum, Rhipicephalus haemaphysaloides, Rhipicephalus sanguineus, Haemaphysalis cornupunctata, and Haemaphysalis sulcata ticks were found positive for rickettsial DNA. Comprehensive surveillance studies should be adopted to update the knowledge regarding tick-borne zoonotic Rickettsia species, evaluate their risks to humans and livestock, and investigate the unexamined cases of illness after tick bite among livestock holders in the country.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tsai-Ying Yen
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Department of Public Health, Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
8
|
Detection of Rickettsia spp. in ticks of wildlife fauna from Costa Rica: First report of Rickettsia rhipicephali in Central America. Ticks Tick Borne Dis 2023; 14:102071. [PMID: 36327901 DOI: 10.1016/j.ttbdis.2022.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In the past two decades, new species of Rickettsia have been detected and described worldwide, some of them considered pathogenic for humans. Although Costa Rica is considered a biodiversity hotspot, the knowledge about rickettsiae in sylvatic ecosystems and wild animals is scarce. The aim of this preliminary study was to detect and identify species of Rickettsia in ticks collected from wild animals in Costa Rica. A total 119 ticks were collected from 16 animal host species belonging to diverse vertebrate families (Didelphidae, Procyonidae, Felidae, Choloepodidae, Bradypodidae, Myrmecophagidae, Tayassuidae, Tapiridae, Phyllostomidae, Bufonidae, Geoemydidae, Boidae, Colubridae), and they were grouped into 43 pools to detect the presence of Rickettsia spp. DNA by PCR targeting the gltA gene. In positive pools, amplicons of the ompA, sca5 (ompB), and/or htrA genes were also amplified to identify the species present. The identification of some ticks was also confirmed by molecular methods. Four species of Rickettsia were detected in eight (19%) tick pools: Rickettsia amblyommatis in four pools of Amblyomma geayi (host: Caluromys derbianus) and one pool of Amblyomma cf. parvum (host: Nasua narica), Rickettsia rhipicephali in one pool of Dermacentor latus (host: Tayassu pecari), 'Candidatus Rickettsia colombianensi' in one pool of Amblyomma sp. nymphs (host: Boa constrictor), and Rickettsia sp. genotype IbR/CRC in one pool of Ixodes cf. boliviensis (host: Puma concolor). This is the first molecular detection of R. rhipicephali in Central America, and of 'Candidatus R. colombianensi' in Costa Rica. Results show that diverse wild animals and their ticks are associated with several species of rickettsiae in Costa Rica, which may come in contact with humans and other domestic animals in sylvatic environments.
Collapse
|
9
|
Molecular characterization of Rickettsia spp., Bartonella spp., and Anaplasma phagocytophilum in hard ticks collected from wild animals in Benin, West Africa. Trop Anim Health Prod 2022; 54:306. [DOI: 10.1007/s11250-022-03286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
10
|
Gui Z, Cai H, Qi DD, Zhang S, Fu SY, Yu JF, Si XY, Cai T, Mao R. Identification and genetic diversity analysis of Rickettsia in Dermacentor nuttalli within inner Mongolia, China. Parasit Vectors 2022; 15:286. [PMID: 35934699 PMCID: PMC9358909 DOI: 10.1186/s13071-022-05387-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The genus Rickettsia contains the lineages spotted fever group (SFG), typhus group (TG), and transitional group (TRG). The spotted fever group Rickettsia (SFGR) is transmitted by ticks. The tick species Dermacentor nuttalli is considered the main vector carrying SFGR in Inner Mongolia. Studying the genetic diversity and population structure of Rickettsia is essential for developing effective control strategies and predicting evolutionary trends of Rickettsia.
Methods
In 2019 we collected 408 D. nuttalli in the Inner Mongolia Autonomous Region, detected the percentage of Rickettsia-positive specimens, and characterized the haplotypes. From the Rickettsia-positive ticks, the gltA and ompA genes were extracted, amplified, and sequenced.
Results
Ten haplotypes of the gltA gene and 22 haplotypes of the ompA gene were obtained. The phylogenetic analysis showed that the haplotypes G1–G7 and G9 of the gltA gene cluster with Rickettsia raoultii, while G8 and G10 cluster with Rickettsia sibirica. Haplotypes O1–O15, O18 and O20–O22 of the ompA gene cluster with R. raoultii, while O16 and O19 cluster with R. sibirica. The average haplotype diversity was 0.3 for gltA and 0.7 for ompA. The average nucleotide diversity was greater than 0.05. Neutrality tests were nonsignificant for Tajima’s D results and Fu’s Fs results. The fixation index values (FST) showed that the degree of genetic differentiation between most sampled populations was small (FST < 0.05), whereas some populations showed a medium (FST > 0.05) or large (FST > 0.15) degree of differentiation. Analysis of molecular variance (AMOVA) revealed that the variation within populations was greater than that between populations. The mismatch analysis of Rickettsia showed double peaks.
Conclusions
We found two Rickettsia spp. (R. raoultii and R. sibirica). The high genetic disparity of Rickettsia allows for easy adaption to different environments. Genetic differentiation between populations is small, and Rickettsia populations do not show a geographically differentiated structure. The high rates of retention and infection of Rickettsia in D. nuttalli together with the animal husbandry exchange in Inner Mongolia gradually led to the harmonization of genetic characteristics of Rickettsia across various regions. Overall, the significant genetic diversity and geographical structure of Rickettsia in D. nuttalli are critical for SFGR control.
Graphical Abstract
Collapse
|
11
|
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. INSECTS 2021; 13:20. [PMID: 35055864 PMCID: PMC8781098 DOI: 10.3390/insects13010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Central America is a unique geographical region that connects North and South America, enclosed by the Caribbean Sea to the East, and the Pacific Ocean to the West. This region, encompassing Belize, Costa Rica, Guatemala, El Salvador, Honduras, Panama, and Nicaragua, is highly vulnerable to the emergence or resurgence of mosquito-borne and tick-borne diseases due to a combination of key ecological and socioeconomic determinants acting together, often in a synergistic fashion. Of particular interest are the effects of land use changes, such as deforestation-driven urbanization and forest degradation, on the incidence and prevalence of these diseases, which are not well understood. In recent years, parts of Central America have experienced social and economic improvements; however, the region still faces major challenges in developing effective strategies and significant investments in public health infrastructure to prevent and control these diseases. In this article, we review the current knowledge and potential impacts of deforestation, urbanization, and other land use changes on mosquito-borne and tick-borne disease transmission in Central America and how these anthropogenic drivers could affect the risk for disease emergence and resurgence in the region. These issues are addressed in the context of other interconnected environmental and social challenges.
Collapse
Affiliation(s)
- Diana I. Ortiz
- Biology Program, Westminster College, New Wilmington, PA 16172, USA
| | - Marta Piche-Ovares
- Laboratorio de Virología, Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Virología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica
| | - Luis M. Romero-Vega
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, Center for Malaria Control and Elimination, PATH, Washington, DC 20001, USA;
| | - Adriana Troyo
- Laboratorio de Investigación en Vectores (LIVe), Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica;
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
12
|
Ticks infesting humans in Central America: A review of their relevance in public health. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 2:100065. [PMID: 36589874 PMCID: PMC9795346 DOI: 10.1016/j.crpvbd.2021.100065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 01/04/2023]
Abstract
Ticks are blood-sucking arthropods that parasitize most groups of terrestrial or semiaquatic vertebrates. Humans are accidental hosts to the ticks; however, in humans the ticks can cause damages varying from simple irritation to severe allergies, toxicosis, paralysis, and the transmission of pathogens, some of which can be fatal. Central America represents a narrow isthmus between North and South America and is considered a biodiversity hotspot. The importance of tick-borne diseases in this region is manifested by fatal outbreaks caused by Rickettsia rickettsii, severe and mild cases of other rickettsioses, ehrlichiosis, and tick-borne relapsing fevers, in addition to cases paralysis and strong allergic reactions. Even so, this information is scarce in most countries of this region, and there are no epidemiological data. In this article we present a review of the ticks that parasitize humans in Central America, covering data from the 19th Century to the present day. Of nearly 80 tick species reported in Central America, 28 species are reported on humans. This list includes species that thrive within homes, grazing areas and, to a lesser extent, in wild environments, both in lowland and high mountain forests. The most important genus in this region is Amblyomma, followed by Rhipicephalus and Ornithodoros, and to a lesser extent Haemaphysalis, Ixodes and Dermacentor. These data provide information on the tick species most commonly associated with humans in Central America, and highlight the potential for tick-borne diseases in wild, rural and urban regions.
Collapse
|
13
|
Charles RA, Bermúdez S, Banović P, Alvarez DO, Díaz-Sánchez AA, Corona-González B, Etter EMC, Rodríguez González I, Ghafar A, Jabbar A, Moutailler S, Cabezas-Cruz A. Ticks and Tick-Borne Diseases in Central America and the Caribbean: A One Health Perspective. Pathogens 2021; 10:1273. [PMID: 34684222 PMCID: PMC8538257 DOI: 10.3390/pathogens10101273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Ticks have complex life cycles which involve blood-feeding stages found on wild and domestic animals, with humans as accidental hosts. At each blood-feeding stage, ticks can transmit and/or acquire pathogens from their hosts. Therefore, the circulation of tick-borne pathogens (TBPs), especially the zoonotic ones, should be studied in a multi-layered manner, including all components of the chain of infections, following the 'One Health' tenets. The implementation of such an approach requires coordination among major stakeholders (such as veterinarians, physicians, acarologists, and researchers) for the identification of exposure and infection risks and application of effective prevention measures. In this review, we summarize our current knowledge on the epidemiology of tick-borne diseases in Central America and the Caribbean and the challenges associated with the implementation of 'One Health' surveillance and control programs in the region.
Collapse
Affiliation(s)
- Roxanne A Charles
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sergio Bermúdez
- Department of Medical Entomology, Gorgas Memorial Institute for Health Research, Panama 0816-02593, Panama
| | - Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Belkis Corona-González
- Department of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Eric Marcel Charles Etter
- CIRAD, UMR ASTRE, Petit-Bourg, 97170 Guadeloupe, France
- ASTRE, University de Montpellier, CIRAD, INRAE, 34398 Montpellier, France
| | - Islay Rodríguez González
- Department of Mycology-Bacteriology, Institute of Tropical Medicine Pedro Kourí, Marianao 13, Havana 10400, Cuba
| | - Abdul Ghafar
- Department of Veterinary Biosciences, Melbourne Veterinary School, the University of Melbourne, Werribee, VIC 3030, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, the University of Melbourne, Werribee, VIC 3030, Australia
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
14
|
Molecular screening for tick-borne bacteria and hematozoa in Ixodes cf. boliviensis and Ixodes tapirus (Ixodida: Ixodidae) from western highlands of Panama. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100034. [PMID: 35284894 PMCID: PMC8906142 DOI: 10.1016/j.crpvbd.2021.100034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
The first molecular screening for Rickettsia, Anaplasma, Ehrlichia, Borrelia, Babesia and Hepatozoon was carried out in questing Ixodes cf. boliviensis and Ixodes tapirus from Talamanca Mountains, Panama, using specific primers, sequencing and phylogeny. Phylogenetic analyses for the microorganisms in Ixodes cf. boliviensis confirmed the presence of Rickettsia sp. strain IbR/CRC endosymbiont (26/27 ticks), three genotypes of the Borrelia burgdorferi (sensu lato) complex (4/27 ticks), Babesia odocoilei (1/27 ticks), and Hepatozoon sp. (2/27 ticks), tentatively designated Hepatozoon sp. strain Chiriquensis. Phylogenetic analyses for the microorganisms in I. tapirus revealed an undescribed Rickettsia sp., tentatively designated Rickettsia sp. strain Itapirus LQ (6/6 ticks), and Anaplasma phagocytophilum (2/6 ticks). To the best of our knowledge, this is the first report of B. burgdorferi (s.l.) complex, A. phagocytophilum, B. odocoilei, and Hepatozoon sp. in Ixodes ticks from Central America, and also the first detection of Rickettsia spp. in Ixodes species in Panama. In light of the importance of these findings, further studies are needed focusing on the role of I. tapirus and I. cf. boliviensis as vectors, and the vertebrates acting as reservoirs. Free-living adult Ixodes ticks collected in Talamanca Mountains, Panama, were PCR-screened for tick-borne pathogens. Ixodes tapirus and Ixodes cf. boliviensis identified morphologically and molecularly. Genetic differences between Ixodes boliviensis from South America and I. cf. boliviensis from Panama. First molecular data for B. burgdorferi (s.l.), Hepatozoon and Babesia odocoilei in I. cf. boliviensis from Central America. First molecular data for Anaplasma phagocytophilum and spotted fever group Rickettsia in I. tapirus from Central America.
Collapse
|