1
|
Worku G, Gumi B, Mohammedbirhan B, Girma M, Sileshi H, Hailu M, Wondimu A, Ashagre W, Tschopp R, Carruth L, Ameni G. Molecular epidemiology of tuberculosis in the Somali region, eastern Ethiopia. Front Med (Lausanne) 2022; 9:960590. [PMID: 36313999 PMCID: PMC9614095 DOI: 10.3389/fmed.2022.960590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tuberculosis (TB) is one of the leading causes of morbidity and mortality in low-income countries like Ethiopia. However, because of the limited laboratory infrastructure there is a shortage of comprehensive data on the genotypes of clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) complex (MTBC) in peripheral regions of Ethiopia. The objective of this study was to characterize MTBC isolates in the Somali region of eastern Ethiopia. Methods A cross-sectional study was conducted in three health institutions between October 2018 and December 2019 in the capital of Somali region. A total of 323 MTBC isolates (249 from pulmonary TB and 74 from extrapulmonary TB) were analyzed using regions of difference 9 (RD 9)-based polymerase chain reaction (PCR) and spoligotyping. Results Of the 323 MTBC isolates, 99.7% (95% CI: 99.1–100%) were M. tuberculosis while the remaining one isolate was M. bovis based on RD 9-based PCR. Spoligotyping identified 71 spoligotype patterns; 61 shared types and 10 orphans. A majority of the isolates were grouped in shared types while the remaining grouped in orphans. The M. tuberculosis lineages identified in this study were lineage 1, 2, 3, 4, and 7 with the percentages of 7.4, 2.2, 28.2, 60.4, and 0.6%, respectively. Most (87.9%) of the isolates were classified in clustered spoligotypes while the remaining 12.1% isolates were singletons. The predominant clustered spoligotypes identified were SIT 149, SIT 21, SIT 26, SIT 53, and SIT 52, each consisting of 17.6, 13.3, 8.4, 7.4, and 5%, respectively. Lineage 3 and lineage 4, as well as the age group (15–24), were associated significantly with clustering. Conclusion The MTBC isolated from TB patients in Somali region were highly diverse, with considerable spoligotype clustering which suggests active TB transmission. In addition, the Beijing spoligotype was isolated in relatively higher frequency than the frequencies of its isolation from the other regions of Ethiopia warranting the attention of the TB Control Program of the Somali region.
Collapse
Affiliation(s)
- Getnet Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Binyam Mohammedbirhan
- Department of Pathology, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Musse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Sileshi
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Michael Hailu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amanuel Wondimu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondimu Ashagre
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rea Tschopp
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Lauren Carruth
- School of International Studies, American University, Washington, DC, United States
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Gobena Ameni
| |
Collapse
|
2
|
Maya TG, Komba EV, Mensah GI, Mbelele PM, Mpagama SG, Mfinanga SG, Addo KK, Kazwala RR. Drug susceptibility profiles and factors associated with non-tuberculous mycobacteria species circulating among patients diagnosed with pulmonary tuberculosis in Tanzania. PLoS One 2022; 17:e0265358. [PMID: 35324922 PMCID: PMC8947393 DOI: 10.1371/journal.pone.0265358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND While most Non-tuberculous mycobacteria (NTM) are saprophytic, several species have been associated with human diseases, from localized infection to disseminated diseases. Pulmonary NTM infections lead to TB-like disease called NTM pulmonary disease (NTM-PD). Due to variation in treatment options among NTM species, it is necessary to identify the species and determine drug susceptibility profiles to inform the choice of appropriate regimen for the disease. DESIGN A total of 188 culture-positive isolates from patients diagnosed with TB were screened for NTM at the Central Tuberculosis Reference Laboratory. All NTM were further speciated using GenoType® Mycobacterium-Common Mycobacterium and Additional species (GenoType® CM/AS) kit. Mycobacteria avium complex (MAC) and Mycobacteria abscessus complex (MABC) which could not be identified with the test to species were subjected to GenoType® Mycobacteria NTM-DR for further speciation. Using the same test, identified MAC and MABC were genotyped to determine the drug susceptibility profile for each isolate to macrolide and aminoglycosides. RESULTS Of all isolates identified as mycobacteria, 24 (13%) were NTM. Fifteen isolates could be identified to species level of which prevalent species was M. avium sub. intracellulare 4 (27%). A total of 10 isolates were MAC (n = 6) and MABC (n = 4) were subjected to GenoType® Mycobacteria NTM-DR for determination of macrolide and aminoglycoside susceptibility. Three of the four MABC had a mutation at the T28 position of the erm (41). All MAC were susceptible to both drugs. CONCLUSION In this study, MAC was the most frequently isolated NTM species followed by MABC. While all MAC and MABC identified, were susceptible to aminoglycosides, three MABC were resistant to the macrolides due to mutation at position 28 of the erm (41) gene. For this, it is important for clinicians need to rule out NTM, understand species and their drug susceptibility for optimal case management.
Collapse
Affiliation(s)
- Togolani Godfrey Maya
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Erick Vitus Komba
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Gloria Ivy Mensah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | | | | - Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rudovick Reuben Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
3
|
Molecular Epidemiology of Mycobacterium tuberculosis Complex Strains in Urban and Slum Settings of Nairobi, Kenya. Genes (Basel) 2022; 13:genes13030475. [PMID: 35328028 PMCID: PMC8953814 DOI: 10.3390/genes13030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Kenya is a country with a high tuberculosis (TB) burden. However, knowledge on the genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains and their transmission dynamics is sparsely available. Hence, we used whole-genome sequencing (WGS) to depict the genetic diversity, molecular markers of drug resistance, and possible transmission clusters among MTBC strains in urban and slum settings of Nairobi. We analyzed 385 clinical MTBC isolates collected between 2010 and 2015 in combination with patients’ demographics. We showed that the MTBC population mainly comprises strains of four lineages (L1–L4). The two dominating lineages were L4 with 55.8% (n = 215) and L3 with 25.7% (n = 99) of all strains, respectively. Genome-based cluster analysis showed that 30.4% (117/385) of the strains were clustered using a ≤5 single-nucleotide polymorphism (SNP) threshold as a surrogate marker for direct patient-to-patient MTBC transmission. Moreover, 5.2% (20/385) of the strains were multidrug-resistant (MDR), and 50.0% (n = 10) were part of a genome-based cluster (i.e., direct MDR MTBC transmission). Notably, 30.0% (6/20) of the MDR strains were resistant to all first-line drugs and are part of one molecular cluster. Moreover, TB patients in urban living setting had 3.8 times the odds of being infected with a drug-resistant strain as compared to patients from slums (p-value = 0.002). Our results show that L4 strains are the main causative agent of TB in Nairobi and MDR strain transmission is an emerging concern in urban settings. This emphasizes the need for more focused infection control measures and contact tracing of patients with MDR TB to break the transmission chains.
Collapse
|
4
|
Genetic Diversity and Transmission of Multidrug Resistant Mycobacterium tuberculosis strains in Lusaka, Zambia. Int J Infect Dis 2021; 114:142-150. [PMID: 34718155 DOI: 10.1016/j.ijid.2021.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Zambia is among the 30 high tuberculosis burden countries in the world. Despite increasing reports of multidrug resistant tuberculosis (MDR-TB) in routine surveillance, information on the transmission of MDR Mycobacterium tuberculosis strains is largely unknown. This study elucidated genetic diversity and transmission of MDR M. tuberculosis strains in Lusaka, Zambia. METHODS Eighty-five MDR M. tuberculosis samples collected from the year 2013 to 2017 at the University Teaching Hospital were used. Drug-resistance associated gene sequencing, spoligotyping, 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats, and multiplex PCR for RD-Rio sub-lineage identification were applied. RESULTS Clades identified were LAM (48%), CAS (29%), T (14%), X (6%) and Harlem (2%). Strains belonging to SITs 21/CAS1-Kili and 20/LAM1 formed the largest clonal complexes. Combined spoligotyping and 24 loci-MIRU-VNTR revealed 47 genotypic patterns with clustering rate of 63%. Ninety five percent of LAM strains belonged to RD-Rio sub-lineage. CONCLUSION The high clustering rate suggested that a large proportion of MDR-TB was due to recent transmission rather than independent acquisition of MDR. This spread was attributed to clonal expansion of SIT21/CAS1-Kili and SIT20/LAM1 strains. Therefore, TB control programs recommending genotyping coupled with conventional epidemiological methods can guide measures for stopping the spread of MDR-TB.
Collapse
|
5
|
Netikul T, Palittapongarnpim P, Thawornwattana Y, Plitphonganphim S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. INFECTION GENETICS AND EVOLUTION 2021; 91:104802. [PMID: 33684570 DOI: 10.1016/j.meegid.2021.104802] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is still problematic as it affects large numbers of people globally. Mycobacterium tuberculosis Lineage 1 (L1) or Indo Oceanic Lineage, one of widespread major lineages, has a specific geographic distribution and high mortality. It is highly diverse and endemic in several high burden countries. However, studies on the global burden of L1 and its sublineages remain limited. This may lead to the underestimation of the importance of its variance in developing and applying tuberculosis control measures. This study aimed to estimate the number of patients infected with M. tuberculosis L1 and its sublineages worldwide. The proportion of L1 among tuberculosis patients was searched in published reports from countries around the world and the number of patients was calculated based on a WHO report on country incidences and populations. The numbers of patients infected with the five major sublineages, namely L1.1.1, L1.1.2, L1.1.3, L1.2.1, and L1.2.2 were estimated where information was available. It was found that L1 accounted for 28% of global tuberculosis cases in 2012 and 2018. Over 80% of the L1 global burden was in India, the Philippines, Indonesia and Bangladesh, which are also among the countries with highest absolute numbers of tuberculosis patients in the world. Globally, the estimated number of patients infected with M. tuberculosis L1.2.1 and L1.1.2 was over 1.1 million and of patients infected with L1.1.1 was about 200,000. This study demonstrated that L1 contributes significantly to the global burden of tuberculosis. To achieve the End TB Strategy, more attention needs to be paid to the responses of M. tuberculosis L1 to various control measures.
Collapse
Affiliation(s)
- Thidarat Netikul
- Faculty of Medicine, Siam University, Phet Kasem Road, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand; National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 road, Bangkok, Thailand
| | - Supada Plitphonganphim
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 road, Bangkok, Thailand.
| |
Collapse
|
6
|
Molecular epidemiology of clinical Mycobacterium tuberculosis complex isolates in South Omo, Southern Ethiopia. BMC Infect Dis 2020; 20:750. [PMID: 33050903 PMCID: PMC7557052 DOI: 10.1186/s12879-020-05394-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC). Mapping the genetic diversity of MTBC in high TB burden country like Ethiopia is important to understand principles of the disease transmission and to strengthen the regional TB control program. The aim of this study was to investigate the genetic diversity of Mycobacterium tuberculosis complex (MTBC) isolates circulating in the South Omo, southern Ethiopia. METHODS MTBC isolates (N = 156) were genetically analyzed using spacer oligotyping (spoligotyping) and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing. Major lineages and lineages were identified using MTBC databases. Logistic regression was used to correlate patient characteristics with strain clustering. RESULTS The study identified Euro-American (EA), East-African-Indian (EAI), Indo-Oceanic (IO), Lineage_7/Aethiops vertus, Mycobacterium bovis and Mycobacterium africanum major lineages in proportions of 67.3% (105/156), 22.4% (35/156), 6.4% (10/156), 1.9% (3/156), 1.3% (2/156) and 0.6% (1/156), respectively. Lineages identified were Delhi/CAS 23.9% (37/155), Ethiopia_2 20.6% (32/155), Haarlem 14.2% (22/155), URAL 14.2%(22/155), Ethiopia_3 8.4% (13/155), TUR 6.5% (10/155), Lineage_7/Aethiops vertus 1.9% (3/155), Bovis 1.3% (2/155), LAM 1.3% (2/155), EAI 0.6% (1/155), X 0.6% (1/155) and Ethiopia H37Rv-like strain 0.6% (1/155). Of the genotyped isolates 5.8% (9/155) remained unassigned. The recent transmission index (RTI) was 3.9%. Orphan strains compared to shared types (AOR: 0.09, 95% CI: 0.04-0.25) were associated with reduced odds of clustering. The dominant TB lineage in pastoral areas was EAI and in non-pastoral areas was EA. CONCLUSION The epidemiological data, highly diverse MTBC strains and a low RTI in South Omo, provide information contributing to the TB Control Program of the country.
Collapse
|
7
|
Katale BZ, Mbugi EV, Keyyu JD, Fyumagwa RD, Rweyemamu MM, van Helden PD, Dockrell HM, Matee MI. One Health approach in the prevention and control of mycobacterial infections in Tanzania: lessons learnt and future perspectives. ONE HEALTH OUTLOOK 2019; 1:2. [PMID: 33829123 PMCID: PMC7990093 DOI: 10.1186/s42522-019-0002-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/24/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND One Health (OH) is an integrated approach, formed inclusive of using multiple disciplines to attain optimal health for humans, animals, and the environment. The increasing proximity between humans, livestock, and wildlife, and its role in the transmission dynamics of mycobacterial infections, necessitates an OH approach in the surveillance of zoonotic diseases. The challenge remains as humans, livestock, and wildlife share resources and interact at various interfaces. Therefore, this review explores the potential of the OH approach to understand the impact of mycobacterial infections in Tanzania in terms of lessons learnt and future perspectives. MATERIALS AND METHODS Available literature on OH and mycobacterial infections in Tanzania was searched in PubMed, Google Scholar, and Web of Science. Articles on mycobacterial infections in Tanzania, published between 1997 to 2017, were retrieved to explore the information on OH and mycobacterial infections. MAIN BODY The studies conducted in Tanzania had have reported a wide diversity of mycobacterial species in humans and animals, which necessitates an OH approach in surveillance of diseases for better control of infectious agents and to safeguard the health of humans and animals. The close proximity between humans and animals increases the chances of inter-specific transmission of infectious pathogens, including drug-resistant mycobacteria. In an era where HIV co-infection is also the case, opportunistic infection by environmental non-tuberculous mycobacteria (NTM), commonly known as mycobacteria other than tuberculosis (MOTT) may further exacerbate the impact of drug resistance. NTM from various sources have greatest potential for diverse strains among which are resistant strains due to continued evolutional changes. CONCLUSION A collaborative interdisciplinary approach among professionals could help in solving the threats posed by mycobacterial infections to public health, particularly by the spread of drug-resistant strains.
Collapse
Affiliation(s)
- Bugwesa Z. Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| | - Erasto V. Mbugi
- Department of Biochemistry, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | | | - Mark M. Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Hazel M. Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Mecky I. Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
8
|
Sichewo PR, Michel AL, Musoke J, Etter EMC. Risk Factors for Zoonotic Tuberculosis at the Wildlife-Livestock-Human Interface in South Africa. Pathogens 2019; 8:pathogens8030101. [PMID: 31337117 PMCID: PMC6789844 DOI: 10.3390/pathogens8030101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
A cross-sectional study was conducted to investigate the risk factors associated with zoonotic tuberculosis in humans and its transmission to people living at the wildlife–livestock–human interface. A questionnaire was administered to collect information on food consumption habits, food handling practices, and knowledge of zoonotic TB. Sputum samples were also collected from 150 individuals that belonged to households of cattle farmers with or without a bTB infected herd. In addition, 30 milk samples and 99 nasal swabs were randomly collected from cattle in bTB infected herds for isolation of Mycobacterium bovis (M. bovis). The sputum samples were screened for TB using the GeneXpert test and this was followed by mycobacterial culture and speciation using molecular techniques. No M. bovis was isolated from TB positive sputum samples and only one sample was confirmed as Mycobacterium tuberculosis (M. tuberculosis). M. bovis was isolated from 6.6% (n = 2/30) milk samples and 9% (n = 9/99) of nasal swabs. Ownership of a bTB infected herd and consumption of milk were recognized as highly significant risk factors associated with a history of TB in the household using multiple correspondence analysis (MCA) and logistic regression. The findings from this study have confirmed the potential for zoonotic TB transmission via both unpasteurized milk and aerosol thus, the role of M. bovis in human TB remains a concern for vulnerable communities.
Collapse
Affiliation(s)
- Petronillah R Sichewo
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa.
- Department of Animal and Wildlife Sciences, Faculty of Natural Resources Management and Agriculture, Midlands State University, P. Bag 9055, Gweru, Midlands 00263, Zimbabwe.
| | - Anita L Michel
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, Pretoria, South Africa
- Research Associate at the National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Jolly Musoke
- National Health Laboratory Services, Department of Medical Microbiology, Universitas, Bloemfontein 9301, South Africa
- Department of Medical Microbiology, Faculty of Health Science, University of the Free State, Bloemfontein 9301, South Africa
| | - Eric M C Etter
- Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), 34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, 34398 Montpellier, France
| |
Collapse
|
9
|
Mogashoa T, Melamu P, Ley SD, Streicher EM, Iketleng T, Kelentse N, Mupfumi L, Mokomane M, Kgwaadira B, Novitsky V, Kasvosve I, Moyo S, Warren RM, Gaseitsiwe S. Genetic diversity of Mycobacterium tuberculosis strains circulating in Botswana. PLoS One 2019; 14:e0216306. [PMID: 31063472 PMCID: PMC6504092 DOI: 10.1371/journal.pone.0216306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Molecular typing of Mycobacterium tuberculosis (M.tb) isolates can inform Tuberculosis (TB) control programs on the relative proportion of transmission driving the TB epidemic. There is limited data on the M. tb genotypes that are circulating in Botswana. The aim of this study was to generate baseline data on the genetic diversity of M.tb isolates circulating in the country. METHODS A total of 461 M.tb isolates received at the Botswana National Tuberculosis Reference Laboratory between March 2012 and October 2013 were included in this study. Drug susceptibility testing was conducted using the BD BACTEC MGIT 960 System. M.tb strains were genotyped using spoligotyping and spoligotype patterns were compared with existing patterns in the SITVIT Web database. A subset of drug resistant isolates which formed spoligo clusters (n = 65) was additionally genotyped with 12-loci MIRU. Factors associated with drug resistance and clustering were evaluated using logistic regression. RESULTS Of the 461 isolates genotyped, 458 showed 108 distinct spoligotype patterns. The predominant M.tb lineages were Lineage 4 (81.9%), Lineage 2 (9%) and Lineage 1 (7.2%). The predominant spoligotype families within Lineage 4 were LAM (33%), S (14%), T (16%), X (16%). Three hundred and ninety-two (86%) isolates could be grouped into 44 clusters (2-46 isolates per cluster); giving a clustering rate of 76%. We identified 173 (37.8%) drug resistant isolates, 48 (10.5%) of these were multi-drug resistant. MIRU typing of the drug resistant isolates allowed grouping of 46 isolates into 14 clusters, giving a clustering rate of 49.2%. There was no association between age, sex, treatment category, region and clustering. CONCLUSIONS This study highlights the complexity of the TB epidemic in Botswana with multiple strains contributing to disease and provides baseline data on the population structure of M.tb strains in Botswana.
Collapse
Affiliation(s)
- Tuelo Mogashoa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Pinkie Melamu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Serej D. Ley
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Elizabeth M. Streicher
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thato Iketleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- College of Health Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Lucy Mupfumi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Margaret Mokomane
- National Tuberculosis Reference Laboratory, Ministry of Health and Wellness, Gaborone, Botswana
| | - Botshelo Kgwaadira
- National Tuberculosis Reference Laboratory, Ministry of Health and Wellness, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ishmael Kasvosve
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Robin M. Warren
- DST-NRF Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: ,
| |
Collapse
|
10
|
Rutaihwa LK, Sasamalo M, Jaleco A, Hella J, Kingazi A, Kamwela L, Kingalu A, Malewo B, Shirima R, Doetsch A, Feldmann J, Reinhard M, Borrell S, Brites D, Reither K, Doulla B, Fenner L, Gagneux S. Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania. PLoS One 2019; 14:e0206334. [PMID: 30978186 PMCID: PMC6461268 DOI: 10.1371/journal.pone.0206334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden. METHODS AND FINDINGS Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases. CONCLUSIONS This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania.
Collapse
Affiliation(s)
- Liliana K. Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Aladino Jaleco
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Amri Kingalu
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Bryceson Malewo
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Raymond Shirima
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Anna Doetsch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Basra Doulla
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Adesokan HK, Streicher EM, van Helden PD, Warren RM, Cadmus SIB. Genetic diversity of Mycobacterium tuberculosis complex strains isolated from livestock workers and cattle in Nigeria. PLoS One 2019; 14:e0211637. [PMID: 30785899 PMCID: PMC6382159 DOI: 10.1371/journal.pone.0211637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022] Open
Abstract
Molecular typing techniques are useful in understanding tuberculosis epidemiology; yet, they have been under-utilised at the human-animal interface in Nigeria. Sixty-four Mycobacterium tuberculosis complex (MTBC) isolates including 42 M. tuberculosis, 13 M. bovis and nine M. africanum obtained from livestock workers (LW, n = 47) and their cattle (n = 17) in three geographical zones of Nigeria were genotyped to identify and evaluate the genetic diversity of the circulating MTBC using spoligotyping. Distribution into clades of M. tuberculosis revealed; 45.3% Uganda I- [SIT46- cattle: 1; LW: 28], 14.1% Latin American Mediterranean- [SIT61, cattle: 1; LW: 8], and 1.6% T- [SIT53—LW: 1]. The M. bovis strains were 6.3% SB0944 [cattle: 4] and 1.6% each of SB0300, SB1026, SB1027 and SB1439 [cattle: 4]. Seventeen MTBC isolates [cattle: 7; LW: 10] yielded 14 new spoligotype patterns including three M. tuberculosis strains (three isolates), five M. bovis strains (five isolates) and six M. africanum strains (nine isolates), two of which belonged to MAF1. Only few families namely, the not previously described Uganda I-, LAM and SB0944 are predominant among the LW and cattle, with other types in lower prevalences. The strain population structure indicates an intriguing diversity and possible zoonotic linkage with consequences for TB control in the country. The need to employ newer molecular techniques such as Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats and whole genome sequence to decipher circulating MTBC strains in Nigeria is advocated.
Collapse
Affiliation(s)
- Hezekiah K. Adesokan
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- * E-mail: (HKA); (SIBC)
| | - Elizabeth M. Streicher
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Rob M. Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Simeon I. B. Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Centre for Control and Prevention of Zoonoses, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- * E-mail: (HKA); (SIBC)
| |
Collapse
|
12
|
Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole Mycobacterium tuberculosis Coding Genome from Different Area. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3574976. [PMID: 29854746 PMCID: PMC5964552 DOI: 10.1155/2018/3574976] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
Phenomenon of unequal use of synonymous codons in Mycobacterium tuberculosis is common. Codon usage bias not only plays an important regulatory role at the level of gene expression, but also helps in improving the accuracy and efficiency of translation. Meanwhile, codon usage pattern of Mycobacterium tuberculosis genome is important for interpreting evolutionary characteristics in species. In order to investigate the codon usage pattern of the Mycobacterium tuberculosis genome, 12 Mycobacterium tuberculosis genomes from different area are downloaded from the GeneBank. The correlations between G3, GC12, whole GC content, codon adaptation index, codon bias index, and so on of Mycobacterium tuberculosis genomes are calculated. The ENC-plot, relationship between A3/(A3 + T3) and G3/(G3 + C3), GC12 versus GC3 plot, and the RSCU of overall/separated genomes all show that the codon usage bias exists in all 12 Mycobacterium tuberculosis genomes. Lastly, relationship between CBI and the equalization of ENC shows a strong negative correlation between them. The relationship between protein length and GC content (GC3 and GC12) shows that more obvious differences in the GC content may be in shorter protein. These results show that codon usage bias existing in the Mycobacterium tuberculosis genomes could be used for further study on their evolutionary phenomenon.
Collapse
|
13
|
Kidenya BR, Mshana SE, Fitzgerald DW, Ocheretina O. Genotypic drug resistance using whole-genome sequencing of Mycobacterium tuberculosis clinical isolates from North-western Tanzania. Tuberculosis (Edinb) 2018; 109:97-101. [PMID: 29559127 PMCID: PMC5912878 DOI: 10.1016/j.tube.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/02/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Drug resistant Tuberculosis (TB) is considered a global public health threat. Whole-genome sequencing (WGS) is a new technology for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles and genotypes for epidemiologic surveillance. Therefore, we used WGS to determine genotypic drug resistance profiles and genetic diversity of drug resistant Mycobacterium tuberculosis isolates from Mwanza, North-western Tanzania. METHODS A cross-sectional study was conducted at the Bugando Medical Center (BMC) from September 2014 to June 2015. Consecutively, smear-positive newly diagnosed TB patients aged ≥18 years were enrolled. Sputum samples were cultured on Löwenstein-Jensen (LJ) slants. Mycobacterial genomic DNA was extracted for WGS to determine drug resistant mutations for first and second line drugs as well as the spoligotypes. RESULTS A total of 78 newly diagnosed patients with pulmonary TB with a median age of 37 [IQR: 30-46] years were enrolled. Of these, 57.8% (45/74) were males and 34.6% (27/78) were HIV positive. Mycobacterium tuberculosis genomic DNA for WGS was obtained from isolates in 74 (94.9%) patients. Of the 74 isolates, six (8.1%) isolates harbored mutations for resistance to at least one drug. The resistance to the drugs was isoniazid 3/74 (4.1%), rifampicin mono-resistant 2/74 (2.7%), ethambutol 2/74 (2.7%) and streptomycin 1/74 (1.4%). None was isoniazid mono-resistant. Of the 74 only one (1.4%) patient had MDR-TB. The resistance to ethionamide, the second line drug, was detected in one patient (1.4%). None was resistant to pyrazinamide, fluoroquinolones, kanamycin, amikacin, or capreomycin. The mutations detected were mabA-inhA promoter region C(-15)T and katG Ser513Thr for isoniazid; rpoB His526Leu and rpoB Ser531Leu for rifampicin; embB Met306Val and embB Met306Ile for ethambutol; rpsL Lys43Arg for streptomycin; and mabA-inhA promoter region C(-15)T for ethionamide. The spoligotypes of the drug resistant Mycobacterium tuberculosis were distinct to all six isolates and belonged to T1, T2, T3-ETH, CAS1-DELHI, EAI5 and LAM11-ZWE lineages. CONCLUSION The genetic drug resistance profile of Mycobacterium tuberculosis isolates from North-western Tanzania comprises of the common previously reported mutations. The prevalence of resistance to first and second line drugs including MDR-TB is low. Six drug resistant strains exhibited different spoligotypes, suggesting limited transmission of drug resistant strains in the region.
Collapse
MESH Headings
- Adult
- Antitubercular Agents/therapeutic use
- Bacteriological Techniques
- Cross-Sectional Studies
- DNA Mutational Analysis
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Female
- Genotype
- Humans
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Molecular Epidemiology
- Mutation
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Phenotype
- Tanzania/epidemiology
- Tuberculosis, Multidrug-Resistant/diagnosis
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/epidemiology
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/epidemiology
- Tuberculosis, Pulmonary/microbiology
- Exome Sequencing
- Young Adult
Collapse
Affiliation(s)
- Benson R Kidenya
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| | - Stephen E Mshana
- Department of Medical Microbiology/Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Daniel W Fitzgerald
- Center for Global Health, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| | - Oksana Ocheretina
- Center for Global Health, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Molecular epidemiology and drug sensitivity pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in and around Ambo Town, Central Ethiopia. PLoS One 2018; 13:e0193083. [PMID: 29447273 PMCID: PMC5814086 DOI: 10.1371/journal.pone.0193083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) is caused by M. tuberculosis complex and remains a major global public health problem. The epidemic remains a threat to sub-Saharan Africa, including Ethiopia, with further emergence of drug resistant TB. We investigated the drug sensitivity pattern and molecular epidemiology of mycobacterial strains isolated from pulmonary TB patients in and around Ambo town in Oromia Region, Central Ethiopia. METHODS A cross-sectional study was conducted involving 105 consecutive new smear positive pulmonary TB patients diagnosed at Ambo Hospital and surrounding Health Centers between May 2014 and March 2015 upon informed consent. Sputum samples were cultured on Löwenstein-Jensen (LJ) media using standard techniques to isolate mycobacteria. Region of difference 9 (RD9)-based polymerase chain reaction (PCR) and spoligotyping was employed for the identification of the isolates at species and strain levels. The spoligotype patterns were entered into the SITVIT database to determine Octal and SIT (Spoligotyping International Typing) numbers for each strain. The sensitivity of the isolates to isoniazid (INH), rifampicin (RIF), ethambutol (ETB) and streptomycin (STM) was evaluated on LJ-medium with the indirect proportion method. RESULTS Cultures were positive in 86/105 (82%) of newly diagnosed smear positive pulmonary TB cases. All of the 86 isolates were confirmed as M. tuberculosis. The majority (76.7%) of them were clustered into seven groups while the rest (23.3%) appeared unique. The most predominant Spoligotypes were SIT53 and SIT149, consisting of 24.4% and 20.9% of the isolates, respectively. Assigning of the isolates to family using SPOTCLUST software revealed that 45.3% of the isolates belonged to T1, 23.3% to T3 and 13% to CAS family. The majority (76.7%) of the M. tuberculosis isolates were susceptible to all the four drugs. Any resistance to any one of the four drugs was detected in 23.3% of the isolates. The highest proportion of any resistance was observed against isoniazid (9.3%) and ethambutol (7%). There was only a single case (1.2%) of multidrug resistant/rifampicin resistant (MDR/RR) TB. CONCLUSION The majority of the isolates were clustered suggesting on-going active transmission in the study area. Mono resistance is relatively prevalent while the magnitude of MDR/RR-TB was found to be lower than in previous studies.
Collapse
|
15
|
Katale BZ, Mbugi EV, Siame KK, Keyyu JD, Kendall S, Kazwala RR, Dockrell HM, Fyumagwa RD, Michel AL, Rweyemamu M, Streicher EM, Warren RM, van Helden P, Matee MI. Isolation and Potential for Transmission of Mycobacterium bovis at Human-livestock-wildlife Interface of the Serengeti Ecosystem, Northern Tanzania. Transbound Emerg Dis 2017; 64:815-825. [PMID: 26563417 PMCID: PMC5434928 DOI: 10.1111/tbed.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), is a multihost pathogen of public health and veterinary importance. We characterized the M. bovis isolated at the human-livestock-wildlife interface of the Serengeti ecosystem to determine the epidemiology and risk of cross-species transmission between interacting hosts species. DNA was extracted from mycobacterial cultures obtained from sputum samples of 472 tuberculosis (TB) suspected patients and tissue samples from 606 livestock and wild animal species. M. bovis isolates were characterized using spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Tandem Repeats (MIRU-VNTR) on 24 loci. Only 5 M. bovis were isolated from the cultured samples. Spoligotyping results revealed that three M. bovis isolates from two buffaloes (Syncerus caffer) and 1 African civet (Civettictis civetta) belonged to SB0133 spoligotype. The two novel strains (AR1 and AR2) assigned as spoligotype SB2290 and SB2289, respectively, were identified from indigenous cattle (Bos indicus). No M. bovis was detected from patients with clinical signs consistent with TB. Of the 606 animal tissue specimens and sputa of 472 TB-suspected patients 43 (7.09%) and 12 (2.9%), respectively, yielded non-tuberculous mycobacteria (NTM), of which 20 isolates were M. intracellulare. No M. avium was identified. M. bovis isolates from wildlife had 45.2% and 96.8% spoligotype pattern agreement with AR1 and AR2 strains, respectively. This finding indicates that bTB infections in wild animals and cattle were epidemiologically related. Of the 24 MIRU-VNTR loci, QUB 11b showed the highest discrimination among the M. bovis strains. The novel strains obtained in this study have not been previously reported in the area, but no clear evidence for recent cross-species transmission of M. bovis was found between human, livestock and wild animals.
Collapse
Affiliation(s)
- B. Z. Katale
- Department of Microbiology and ImmunologySchool of MedicineMuhimbili University of Health and Allied Sciences (MUHAS)Dar es SalaamTanzania
- Tanzania Wildlife Research Institute (TAWIRI)ArushaTanzania
| | - E. V. Mbugi
- Department of Microbiology and ImmunologySchool of MedicineMuhimbili University of Health and Allied Sciences (MUHAS)Dar es SalaamTanzania
| | - K. K. Siame
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis ResearchDivision of Molecular Biology and Human GeneticsFaculty of Medicine and Health SciencesStellenbosch UniversityTygerbergCape TownSouth Africa
| | - J. D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI)ArushaTanzania
| | - S. Kendall
- Centre for Emerging, Endemic and Exotic diseasesRoyal Veterinary College (RVC)Hawkshead LaneNorth MymmsHatfieldHertfordshireUK
| | - R. R. Kazwala
- Department of Veterinary Medicine and Public HealthFaculty of Veterinary MedicineSokoine University of Agriculture (SUA)MorogoroTanzania
| | - H. M. Dockrell
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine (LSHTM)LondonUK
| | - R. D. Fyumagwa
- Tanzania Wildlife Research Institute (TAWIRI)ArushaTanzania
| | - A. L. Michel
- Department Veterinary Tropical DiseasesFaculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
| | - M. Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS)Sokoine University of Agriculture (SUA)Chuo KikuuMorogoroTanzania
| | - E. M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis ResearchDivision of Molecular Biology and Human GeneticsFaculty of Medicine and Health SciencesStellenbosch UniversityTygerbergCape TownSouth Africa
| | - R. M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis ResearchDivision of Molecular Biology and Human GeneticsFaculty of Medicine and Health SciencesStellenbosch UniversityTygerbergCape TownSouth Africa
| | - P. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis ResearchDivision of Molecular Biology and Human GeneticsFaculty of Medicine and Health SciencesStellenbosch UniversityTygerbergCape TownSouth Africa
| | - M. I. Matee
- Department of Microbiology and ImmunologySchool of MedicineMuhimbili University of Health and Allied Sciences (MUHAS)Dar es SalaamTanzania
| |
Collapse
|
16
|
Mbugi EV, Katale BZ, Lupindu AM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Matee MI, van Helden PD. Tuberculosis Infection: Occurrence and Risk Factors in Presumptive Tuberculosis Patients of the Serengeti Ecosystem in Tanzania. East Afr Health Res J 2017; 1:19-30. [PMID: 34308155 PMCID: PMC8279301 DOI: 10.24248/eahrj-d-16-00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background Cross-species tuberculosis (TB) transmission between humans and animals has been reported for quite a long time in sub-Saharan Africa. Because humans and animals coexist in the same ecosystem, exploring their potential for cross-species transmission and the impact the disease may have on the health of humans, animals, and their products is critical. Objectives This study aimed to identify risk factors for transmission of TB (Mycobacterium tuberculosis) and to assess the potential for zoonotic TB (Mycobacterium bovis) transmission in the Serengeti ecosystem where humans and animals are in intense contact. Our aim is to create a base for future implementation of appropriate control strategies to limit infection in both humans and animals. Methodology We administered a semi-structured questionnaire to 421 self-reporting patients to gather information on risk factors and TB occurrence. In a parallel study, researchers screened sputum smears using Ziehl-Neelsen staining and confirmed by mycobacterial culture. We then performed descriptive statistics (Pearson's chi-square test) and logistic regression analysis to establish frequencies, association, and quantification of the risk factors associated with TB cases. Results Our findings showed 44% (95% confidence interval [CI], 0.40-0.49) of the results were positive from sputum samples collected over a 1-year duration in areas with a high TB burden, particularly the Bunda district, followed by the Serengeti and Ngorongoro districts. Of the culture-positive patients who also had infections other than TB (43/187 patients), 21 (49%) were HIV positive. Contact with livestock products (odds ratio [OR] 6.0; 95% CI, 1.81-19.9), infrequent milk consumption (OR 2.5; 95% CI, 1.42-4.23), cigarette smoking (OR 2.9; 95% CI, 1.19-7.1.2), and alcohol consumption (OR 2.3; 95% CI, 1.22-4.23) were associated with a higher likelihood of TB infection. Conclusion There was no evidence of direct cross-species transmission of either M tuberculosis or M bovis between humans and animals using the study methods. The absence of cross-species TB transmission could be due to limited chances of contact rather than an inability of cross-species disease transmission. In addition, not all people with presumptive TB are infected with TB, and therefore control strategies should emphasise confirming TB status before administering anti-TB drugs.
Collapse
Affiliation(s)
- Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Bugwesa Z Katale
- Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Athumani M Lupindu
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | | | - Hazel M Dockrell
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anita L Michel
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Mecky I Matee
- Departments of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/Medical Research Council, Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
17
|
Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 2016; 11:e0154571. [PMID: 27149626 PMCID: PMC4858144 DOI: 10.1371/journal.pone.0154571] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P. O. Box 65001, Dar es Salaam, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Bugwesa Z. Katale
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Sharon L. Kendall
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Hazel M. Dockrell
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anita L. Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mark M. Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Mecky I. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| |
Collapse
|
18
|
Biadglegne F, Merker M, Sack U, Rodloff AC, Niemann S. Tuberculous Lymphadenitis in Ethiopia Predominantly Caused by Strains Belonging to the Delhi/CAS Lineage and Newly Identified Ethiopian Clades of the Mycobacterium tuberculosis Complex. PLoS One 2015; 10:e0137865. [PMID: 26376441 PMCID: PMC4573740 DOI: 10.1371/journal.pone.0137865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background Recently, newly defined clades of Mycobacterium tuberculosis complex (MTBC) strains, namely Ethiopia 1–3 and Ethiopia H37Rv-like strains, and other clades associated with pulmonary TB (PTB) were identified in Ethiopia. In this study, we investigated whether these new strain types exhibit an increased ability to cause TB lymphadenitis (TBLN) and raised the question, if particular MTBC strains derived from TBLN patients in northern Ethiopia are genetically adapted to their local hosts and/or to the TBLN. Methods Genotyping of 196 MTBC strains isolated from TBLN patients was performed by spoligotyping and 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing. A statistical analysis was carried out to see possible associations between patient characteristics and phylogenetic MTBC strain classification. Results Among 196 isolates, the majority of strains belonged to the Delhi/CAS (38.8%) lineage, followed by Ethiopia 1 (9.7%), Ethiopia 3 (8.7%), Ethiopia H37RV-like (8.2%), Ethiopia 2 and Haarlem (7.7% each), URAL (3.6%), Uganda l and LAM (2% each), S-type (1.5%), X-type (1%), and 0.5% isolates of TUR, EAI, and Beijing genotype, respectively. Overall, 15 strains (7.7%) could not be allocated to a previously described phylogenetic lineage. The distribution of MTBC lineages is similar to that found in studies of PTB samples. The cluster rate (35%) in this study is significantly lower (P = 0.035) compared to 45% in the study of PTB in northwestern Ethiopia. Conclusion In the studied area, lymph node samples are dominated by Dehli/CAS genotype strains and strains of largely not yet defined clades based on MIRU-VNTR 24-loci nomenclature. We found no indication that strains of particular genotypes are specifically associated with TBLN. However, a detailed analysis of specific genetic variants of the locally contained Ethiopian clades by whole genome sequencing may reveal new insights into the host-pathogen co-evolution and specific features that are related to the local host immune system.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital, University of Leipzig, Leipzig, Germany; Institute of Clinical Immunology, University Hospital, University of Leipzig, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM)-Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias Merker
- Molecular Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, University Hospital, University of Leipzig, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM)-Leipzig, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital, University of Leipzig, Leipzig, Germany
| | - Stefan Niemann
- Molecular Mycobacteriology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Borstel, Borstel, Germany
| |
Collapse
|