1
|
Epling BP, Manion M, Laidlaw E, Holman M, Patel M, Sereti I. When Location and Timing Are at the Heart of the Diagnosis. Clin Infect Dis 2024; 79:775-777. [PMID: 39325646 PMCID: PMC11426259 DOI: 10.1093/cid/ciae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Affiliation(s)
- Brian P Epling
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael Holman
- School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - Mayank Patel
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Dong Y, Ou X, Zhao B, Wang Y, Liu Y, Liu Z, Wang H, Ge X, Nan Y, Zhao Y, Zhou X. Phylogenetically Informative Mutations in Drug Resistance Genes of Human-Infecting Mycobacterium bovis. Transbound Emerg Dis 2024; 2024:5578214. [PMID: 40303120 PMCID: PMC12017247 DOI: 10.1155/2024/5578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 05/02/2025]
Abstract
The diagnosis of drug-resistant tuberculosis (TB) by molecular testing of Mycobacterium tuberculosis drug resistance genes is becoming increasingly common clinically. However, M. bovis, as an uncommon pathogen of human TB, may interfere with the test results. A comprehensive understanding of phylogenetically informative mutations in the drug resistance genes of M. bovis is required to distinguish true resistance-conferring mutations. We analyzed 53 drug resistance genes in 165 M. bovis isolated from humans using whole-genome sequencing data and found that 98.2% (162/165) of isolates have pyrazinamide intrinsic genotypic resistance, owing to the H57D mutation in the pncA gene. 12.1% (20/165) of M. bovis isolates were resistant to drugs other than pyrazinamide. Furthermore, we discovered 18 phylogenetically informative mutations that differed between M. bovis and the major lineages 1-4 of M. tuberculosis. Additionally, we reported false-positive ethambutol resistance caused by M. bovis infection due to the phylogenetically informative mutation embB E378A. This study is crucial for gaining insights into the genetic characterization and drug resistance of M. bovis prevalent in humans, as well as contributing to the development of more accurate molecular diagnostic methods and detection tools for drug resistance.
Collapse
Affiliation(s)
- Yuhui Dong
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Xichao Ou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious DiseasesNational Center for Tuberculosis Control and PreventionChinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bing Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious DiseasesNational Center for Tuberculosis Control and PreventionChinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Ziyi Liu
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Haoran Wang
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Xin Ge
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Yue Nan
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| | - Yanlin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious DiseasesNational Center for Tuberculosis Control and PreventionChinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and SafetyCollege of Veterinary MedicineChina Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
4
|
Dong Y, Feng Y, Ou X, Liu C, Fan W, Zhao Y, Hu Y, Zhou X. Genomic analysis of diversity, biogeography, and drug resistance in Mycobacterium bovis. Transbound Emerg Dis 2022; 69:e2769-e2778. [PMID: 35695307 DOI: 10.1111/tbed.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Mycobacterium bovis is the cause of bovine tuberculosis, and it can also cause disease in humans, with symptoms similar to those caused by Mycobacterium tuberculosis. However, our understanding of its genomic diversity, biogeography, and drug resistance remains incomplete. We performed a comparative and phylogenetic analysis of 3,228 M. bovis genomes from 24 countries. Following drug susceptibility testing, we applied a bacterial genome-wide association study to capture associations between genomic variation and drug resistance in 74 newly isolated strains from China. The data show that the cattle-adapted M. bovis were divided into six lineages with a strong phylogeographical population structure. Lineage 1 and Lineage 6 are the most widespread globally, while others show a strong geographical restriction. 17.39% of M. bovis isolates were resistant to at least one drug in China. Furthermore, we identify genomic variations associated with an increased risk of resistance acquisition. This study furthers our knowledge of M. bovis diversity, biogeography, and drug resistance and will facilitate more deeply informed genomic tracking and surveillance to minimize its threat to human health, as a cause of zoonotic tuberculosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuhui Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Weixing Fan
- National Reference Laboroatory for Animal Tuberculosis, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Dong Y, Ou X, Liu C, Fan W, Zhao Y, Zhou X. Diversity of glpK Gene and Its Effect on Drug Sensitivity in Mycobacterium bovis. Infect Drug Resist 2022; 15:1467-1475. [PMID: 35401008 PMCID: PMC8986483 DOI: 10.2147/idr.s346724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuhui Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Weixing Fan
- National Reference Laboratory for Animal Tuberculosis, China Animal Health and Epidemiology Center, Qingdao, 266032, People’s Republic of China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China
- Correspondence: Xiangmei Zhou, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People’s Republic of China, Email
| |
Collapse
|
6
|
Couvin D, Cervera-Marzal I, David A, Reynaud Y, Rastogi N. SITVITBovis—a publicly available database and mapping tool to get an improved overview of animal and human cases caused by Mycobacterium bovis. Database (Oxford) 2022; 2022:6506437. [PMID: 35028657 PMCID: PMC8962452 DOI: 10.1093/database/baab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Limited data are available for bovine tuberculosis and the infections it can cause in humans and other mammals. We therefore constructed a publicly accessible SITVITBovis database that incorporates genotyping and epidemiological data on Mycobacterium bovis. It also includes limited data on Mycobacterium caprae (previously synonymous with the name M. bovis subsp. Caprae) that can infect both animals and humans. SITVITBovis incorporates data on 25,741 isolates corresponding to 60 countries of origin (75 countries of isolation). It reports a total of 1000 spoligotype patterns: 537 spoligotype international types (SITs, containing 25 278 clinical isolates) and 463 orphan patterns, allowing a wide overview of the geographic distribution of various phylogenetical sublineages (BOV_1, BOV_2, BOV_3 and BOV_4-CAPRAE). The SIT identifiers of the SITVITBovis were compared to the SB numbers of the Mbovis.org database to facilitate crosscheck among databases. Note that SITVITBovis also contains limited information on mycobacterial interspersed repetitive units-variable number of tandem repeats when available. Significant differences were observed when comparing age/gender of human isolates as well as various hosts. The database includes information on the regions where a strain was isolated as well as hosts involved, making it possible to see geographic trends. SITVITBovis is publicly accessible at: http://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis. Finally, a future second version is currently in progress to allow query of associated whole-genome sequencing data. Database URLhttp://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis
Collapse
Affiliation(s)
- David Couvin
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Iñaki Cervera-Marzal
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Audrey David
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory–TB and Mycobacteria Unit, Institut Pasteur de Guadeloupe , Abymes 97183, Guadeloupe, France
| |
Collapse
|
7
|
Ordaz-Vázquez A, Soberanis-Ramos O, Cruz-Huerta E, Retis-Sanchez-de-la-Barquera S, Chávez-Mazari B, Gudiño-Enriquez T, Santacruz-Aguilar M, Ponce-De-León-Garduño A, Sifuentes-Osornio J, Bobadilla-Del-Valle M. Genetic diversity of Mycobacterium bovis evaluated by spoligotyping and MIRU-VNTR in an intensive dairy cattle breeding area in Mexico. Transbound Emerg Dis 2021; 69:1144-1154. [PMID: 33725428 DOI: 10.1111/tbed.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Bovine tuberculosis (bTB) is mainly caused by Mycobacterium bovis. In Mexico, dairy cattle play an important role in the persistence and spread of the bacillus. In order to describe M. bovis genetic diversity, we genotyped a total of 132 strains isolated from slaughtered cattle with bTB suggestive lesions between 2009 and 2010 in Hidalgo, Mexico, using a panel of 9-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) and spoligotyping. We found 21 spoligotypes, and 124 isolates were grouped in 13 clusters. The most frequent spoligotypes were SB0121 (49, 37.1%) and SB0673 (27, 20.5%); three new spoligotypes were reported SB02703, SB02704 and SB02705. We observed 37 MIRU-VNTR patterns, 107 isolates were grouped in 12 clusters and 25 isolates were unique. Spoligotypes SB0121, SB0673, SB0140, SB0145 and SB0120 showed marked subdivision applying MIRU-VNTR method; meanwhile, spoligotypes SB0971 and SB0327 showed single MIRU-VNTR profiles. The Hunter-Gaston discriminatory index (HGDI) was 0.88, 0.78 and 0.90 for 9-loci MIRU-VNTR, spoligotyping and both methods, respectively. Additionally, allelic diversity (h) analysis showed high diversity for QUB3232, QUB26 and QUB11b with h = 0.79, 0.66 and 0.63, respectively. Overall, high genetic variability was observed among M. bovis isolates. Thus, the use of 9-loci MIRU-VNTR panel is enough to describe genetic diversity, evolution and distribution of M. bovis. This study supports the use of these tools for subsequent epidemiological studies in high incidence areas.
Collapse
Affiliation(s)
- Anabel Ordaz-Vázquez
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Orbelin Soberanis-Ramos
- Department of Preventive Medicine and Public Health, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edith Cruz-Huerta
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sandra Retis-Sanchez-de-la-Barquera
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bárbara Chávez-Mazari
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tomasa Gudiño-Enriquez
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Alfredo Ponce-De-León-Garduño
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam Bobadilla-Del-Valle
- Laboratory of Clinical Microbiology, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
8
|
Vázquez-Chacón CA, Rodríguez-Gaxiola FDJ, López-Carrera CF, Cruz-Rivera M, Martínez-Guarneros A, Parra-Unda R, Arámbula-Meraz E, Fonseca-Coronado S, Vaughan G, López-Durán PA. Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas. PLoS Negl Trop Dis 2021; 15:e0009145. [PMID: 33591982 PMCID: PMC7886168 DOI: 10.1371/journal.pntd.0009145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Identifying the Mycobacterium tuberculosis resistance mutation patterns is of the utmost importance to assure proper patient's management and devising of control programs aimed to limit spread of disease. Zoonotic Mycobacterium bovis infection still represents a threat to human health, particularly in dairy production regions. Routinary, molecular characterization of M. bovis is performed primarily by spoligotyping and mycobacterial interspersed repetitive units (MIRU) while next generation sequencing (NGS) approaches are often performed by reference laboratories. However, spoligotyping and MIRU methodologies lack the resolution required for the fine characterization of tuberculosis isolates, particularly in outbreak settings. In conjunction with sophisticated bioinformatic algorithms, whole genome sequencing (WGS) analysis is becoming the method of choice for advanced genetic characterization of tuberculosis isolates. WGS provides valuable information on drug resistance and compensatory mutations that other technologies cannot assess. Here, we performed an analysis of the most frequently identified mutations associated with tuberculosis drug resistance and their genetic relationship among 2,074 Mycobacterium bovis WGS recovered primarily from non-human hosts. Full-length gene sequences harboring drug resistant associated mutations and their phylogenetic relationships were analyzed. The results showed that M. bovis isolates harbor mutations conferring resistance to both first- and second-line antibiotics. Mutations conferring resistance for isoniazid, fluoroquinolones, streptomycin, and aminoglycosides were identified among animal strains. Our findings highlight the importance of molecular surveillance to monitor the emergence of mutations associated with multi and extensive drug resistance in livestock and other non-human mammals.
Collapse
Affiliation(s)
- Carlos Arturo Vázquez-Chacón
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | | | | | - Mayra Cruz-Rivera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Martínez-Guarneros
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Ricardo Parra-Unda
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Salvador Fonseca-Coronado
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
| | - Gilberto Vaughan
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
| | - Paúl Alexis López-Durán
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
| |
Collapse
|
9
|
Kanipe C, Palmer MV. Mycobacterium bovis and you: A comprehensive look at the bacteria, its similarities to Mycobacterium tuberculosis, and its relationship with human disease. Tuberculosis (Edinb) 2020; 125:102006. [PMID: 33032093 DOI: 10.1016/j.tube.2020.102006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
While Mycobacterium tuberculosis is the primary cause of tuberculosis in people, multiple other mycobacteria are capable of doing so. With the World Health Organization's goal of a 90% reduction in tuberculosis by 2035, all tuberculous mycobacteria need to be addressed. Understanding not only the similarities, but importantly the differences between the different species is crucial if eradication is ever to be achieved. Mycobacterium bovis, while typically thought of as a disease of cattle, remains a possible source of human infection worldwide. Although this species' genome differs from Mycobacterium tuberculosis by only 0.05%, significant differences are present, creating unique challenges to address. This review focuses on features which distinguish this bacterium from Mycobacterium tuberculosis, including differences in origin, structure, environmental persistence, host preferences, infection and disease, host immune response, diagnostics and treatment.
Collapse
Affiliation(s)
- Carly Kanipe
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Mitchell V Palmer
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
10
|
Macedo Couto R, Ranzani OT, Waldman EA. Zoonotic Tuberculosis in Humans: Control, Surveillance, and the One Health Approach. Epidemiol Rev 2020; 41:130-144. [PMID: 32294188 DOI: 10.1093/epirev/mxz002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
Zoonotic tuberculosis is a reemerging infectious disease in high-income countries and a neglected one in low- and middle-income countries. Despite major advances in its control as a result of milk pasteurization, its global burden is unknown, especially due the lack of surveillance data. Additionally, very little is known about control strategies. The purpose of this review was to contextualize the current knowledge about the epidemiology of zoonotic tuberculosis and to describe the available evidence regarding surveillance and control strategies in high-, middle-, and low-income countries. We conducted this review enriched by a One Health perspective, encompassing its inherent multifaceted characteristics. We found that the burden of zoonotic tuberculosis is likely to be underreported worldwide, with higher incidence in low-income countries, where the surveillance systems are even more fragile. Together with the lack of specific political commitment, surveillance data is affected by lack of a case definition and limitations of diagnostic methods. Control measures were dependent on risk factors and varied greatly between countries. This review supports the claim that a One Health approach is the most valuable concept to build capable surveillance systems, resulting in effective control measures. The disease characteristics and suggestions to implement surveillance and control programs are discussed.
Collapse
Affiliation(s)
- Rodrigo Macedo Couto
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Otavio T Ranzani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliseu Alves Waldman
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Phylogenomic Perspective on a Unique Mycobacterium bovis Clade Dominating Bovine Tuberculosis Infections among Cattle and Buffalos in Northern Brazil. Sci Rep 2020; 10:1747. [PMID: 32019968 PMCID: PMC7000724 DOI: 10.1038/s41598-020-58398-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
Lack of routine surveillance in countries endemic for bovine tuberculosis (TB) and limited laboratory support contributes to the inability to differentiate the Mycobacterium tuberculosis Complex species, leading to an underestimated burden of the disease. Here, Whole-Genome Sequencing of Mycobacterium bovis isolated from tissues with TB-like lesions obtained from cattle and buffalos at Marajó Island, Brazil, demonstrates that recent transmission of M. bovis is ongoing at distinct sites. Moreover, the M. bovis epidemiology in this setting is herein found to be dominated by an endemic and unique clade composed of strains evolved from a common ancestor that are now genetically differentiated from other M. bovis clades. Additionally, envisioning a rapid strain differentiation and tracing across multiple settings, 28 globally validated strain-specific SNPs were identified, three of which considered as robust markers for the M. bovis Marajó strain. In conclusion, this study contributes with data regarding the identification of a novel M. bovis phylogenetic clade responsible for ongoing transmission events in both cattle and buffalo species in Brazil, provides a framework to investigate the dissemination of this highly prevalent strain and, holds the potential to inform TB control strategies that may help to prevent the spread of bovine and zoonotic TB.
Collapse
|
12
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
Otchere ID, van Tonder AJ, Asante-Poku A, Sánchez-Busó L, Coscollá M, Osei-Wusu S, Asare P, Aboagye SY, Ekuban SA, Yahayah AI, Forson A, Baddoo A, Laryea C, Parkhill J, Harris SR, Gagneux S, Yeboah-Manu D. Molecular epidemiology and whole genome sequencing analysis of clinical Mycobacterium bovis from Ghana. PLoS One 2019; 14:e0209395. [PMID: 30830912 PMCID: PMC6398925 DOI: 10.1371/journal.pone.0209395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a re-emerging problem in both livestock and humans. The association of some M. bovis strains with hyper-virulence, MDR-TB and disseminated disease makes it imperative to understand the biology of the pathogen. METHODS Mycobacterium bovis (15) among 1755 M. tuberculosis complex (MTBC) isolated between 2012 and 2014 were characterized and analyzed for associated patient demography and other risk factors. Five of the M. bovis isolates were whole-genome sequenced and comparatively analyzed against a global collection of published M. bovis genomes. RESULTS Mycobacterium bovis was isolated from 3/560(0.5%) females and 12/1195(1.0%) males with pulmonary TB. The average age of M. bovis infected cases was 46.8 years (7-72years). TB patients from the Northern region of Ghana (1.9%;4/212) had a higher rate of infection with M. bovis (OR = 2.7,p = 0.0968) compared to those from the Greater Accra region (0.7%;11/1543). Among TB patients with available HIV status, the odds of isolating M. bovis from HIV patients (2/119) was 3.3 higher relative to non-HIV patients (4/774). Direct contact with livestock or their unpasteurized products was significantly associated with bTB (p<0.0001, OR = 124.4,95% CI = 30.1-508.3). Two (13.3%) of the M. bovis isolates were INH resistant due to the S315T mutation in katG whereas one (6.7%) was RIF resistant with Q432P and I1491S mutations in rpoB. M. bovis from Ghana resolved as mono-phyletic branch among mostly M. bovis from Africa irrespective of the host and were closest to the root of the global M. bovis phylogeny. M. bovis-specific amino acid mutations were detected among MTBC core genes such as mce1A, mmpL1, pks6, phoT, pstB, glgP and Rv2955c. Additional mutations P6T in chaA, G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas and A563T in eccA1 were restricted to the 5 clinical M. bovis from Ghana. CONCLUSION Our data indicate potential zoonotic transmission of bTB in Ghana and hence calls for intensified public education on bTB, especially among risk groups.
Collapse
Affiliation(s)
- Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Yaw Aboagye
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | | | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Akosua Baddoo
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Clement Laryea
- Public Health Department, 37 Military Hospital, Accra, Ghana
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon R. Harris
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
14
|
Domínguez-Zepahua M, Hernández-Arteaga S, López-Revilla R. Genotyping based on thermal denaturation of amplification products identifies species of the Mycobacterium tuberculosis complex. J Med Microbiol 2018; 67:1310-1320. [PMID: 30074475 DOI: 10.1099/jmm.0.000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To develop a fast and inexpensive genotyping assay to identify the Mycobacterium tuberculosis complex (MTC) species most prevalent in human tuberculosis (TB), based on the thermal denaturation profiles of PCR products from mycobacterial 16S rDNA and three MTC genomic regions of difference (RD). METHODOLOGY Genotypes were determined by the presence and thermal denaturation profiles of the amplicons generated in the 'preliminary' PCR mixture (16S rDNA), followed by those of the simultaneous D1 (RD9+, RD1-) and D2 (RD4+, RD4-) PCR mixtures. The 16S rDNA profile identifies the genus Mycobacterium; the absence of any additional RD profile identifies Mycobacterium non-tuberculous (MNT) strains; additional RD4+ and RD9+ profiles without RD1- identify M. tuberculosis; an additional RD4+ profile per se identifies M. africanum; an additional RD4- profile per se identifies Mycobaterium bovis; additional RD1- and RD4- profiles identify M. bovis BCG. RESULTS Genotypes of a panel with 44 mycobacterial strains coincided in 16 MB and five non-MTC strains; in the remaining 23 MTC strains, 17 MTB and five MA concordant genotypes and one discordant MB genotype were resolved. The genotypes of 13 human and bovine MTC isolates coincided in all four MB and eight of the nine MTB isolates. CONCLUSION Sensitivity, specificity and positive and negative predictive values of the method are 100 % for the genus Mycobacterium, which resolves MB, MTB and MA genotypes. Species/genotype agreement is 97.7 % for the panel and 92.3 % for the MTC isolates. This method may be advantageously used to identify the most prevalent MTC species in humans.
Collapse
Affiliation(s)
- Mariel Domínguez-Zepahua
- 1División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, 78216 San Luis Potosí, S.L.P., Mexico
| | - Socorro Hernández-Arteaga
- 2Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis-Matehuala km 14.5, 78321 Soledad de Graciano Sánchez, S.L.P., Mexico
| | - Rubén López-Revilla
- 1División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, 78216 San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
15
|
Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique. PLoS Negl Trop Dis 2018; 12:e0006147. [PMID: 29346413 PMCID: PMC5772998 DOI: 10.1371/journal.pntd.0006147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Bovine tuberculosis is a zoonotic disease with largely unknown impact in Africa, with risk factors such as HIV and direct contact with animals or consumption of Mycobacterium bovis infected animal products. In order to understand and quantify this risk and design intervention strategies, good epidemiological studies are needed. Such studies can include molecular typing of M. bovis isolates. The aim of this study was to apply these tools to provide novel information concerning the distribution of bovine tuberculosis in cattle in Mozambique and thereby provide relevant information to guide policy development and strategies to contain the disease in livestock, and reduce the risk associated with transmission to humans. A collection of 178 M. bovis isolates was obtained from cattle in Mozambique. Using spoligotyping and regions of difference analysis, we classified the isolates into clonal complexes, thus reporting the first characterisation of M. bovis strains in this region. Data from MIRU-VNTR typing was used to compare isolates from a number of African countries, revealing a deeply geographically structured diversity of M. bovis. Eastern Africa appears to show high diversity, suggesting deep evolution in that region. The diversity of M. bovis in Africa does not seem to be a function of recent importation of animals, but is probably maintained within each particular region by constant reinfection from reservoir animals. Understanding the transmission routes of M. bovis in Mozambique and elsewhere is essential in order to focus public health and veterinary resources to contain bovine tuberculosis. Bovine tuberculosis is a rather neglected zoonotic disease caused by Mycobacterium bovis that is of global concern owing to the persistence of the bacillus in reservoirs that can spread bovine tuberculosis between animals and humans. Africa remains understudied regarding this pathogen, and should be an area of concern given that in many regions the consumption of raw milk or meat from infected animals persists and the presence of HIV infection renders the population more susceptible. In order to control the disease, we need to understand M. bovis epidemiology, which includes the sources of infection. The important conclusion drawn from the work presented here is that there is a strong association between M. bovis genetic characteristics and geography. This implies that the diversity of M. bovis isolates in Mozambique does not seem to be caused by recent introductions to the territory, but is probably maintained within reservoirs in each particular region.
Collapse
|
16
|
Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico. Int J Infect Dis 2017; 63:48-56. [PMID: 28739421 DOI: 10.1016/j.ijid.2017.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/04/2017] [Accepted: 07/16/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To determine genetic diversity by comparing the whole genome sequences of cattle and human Mycobacterium bovis isolates from Baja California. METHODS A whole genome sequencing strategy was used to obtain the molecular fingerprints of 172 isolates of M. bovis obtained from Baja California, Mexico; 155 isolates were from cattle and 17 isolates were from humans. Spoligotypes were characterized in silico and single nucleotide polymorphism (SNP) differences between the isolates were evaluated. RESULTS A total of 12 M. bovis spoligotype patterns were identified in cattle and humans. Two predominant spoligotypes patterns were seen in both cattle and humans: SB0145 and SB1040. The SB0145 spoligotype represented 59% of cattle isolates (n=91) and 65% of human isolates (n=11), while the SB1040 spoligotype represented 30% of cattle isolates (n=47) and 30% of human isolates (n=5). When evaluating SNP differences, the human isolates were intimately intertwined with the cattle isolates. CONCLUSIONS All isolates from humans had spoligotype patterns that matched those observed in the cattle isolates, and all human isolates shared common ancestors with cattle in Baja California based on SNP analysis. This suggests that most human tuberculosis caused by M. bovis in Baja California is derived from M. bovis circulating in Baja California cattle. These results reinforce the importance of bovine tuberculosis surveillance and control in this region.
Collapse
|
17
|
Krajewska-Wędzina M, Zabost A, Augustynowicz-Kopeć E, Weiner M, Szulowski K. Evaluation of Susceptibility to Antimycobacterial Drugs in Mycobacterium Tuberculosis Complex Strains Isolated from Cattle in Poland. J Vet Res 2017; 61:23-26. [PMID: 29978051 PMCID: PMC5894403 DOI: 10.1515/jvetres-2017-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction Tuberculosis is a highly infectious disease affecting humans and animals. It is caused by the Mycobacterium tuberculosis complex (MTBC) - Mycobacterium bovis and Mycobacterium caprae, which are aetiological factors of bovine tuberculosis (bTB). In Poland, the bTB eradication programme exists. Animals diagnosed with tuberculosis are in the majority of cases not treated, but removed from their herd and then sanitary slaughtered. Material and Methods In total, 134 MTBC strains isolated from cattle in Poland were subjected to microbiological analysis. The resistance phenotype was tested for first-line antimycobacterial drugs used in tuberculosis treatment in humans: streptomycin, isoniazid, rifampicin, ethambutol, and pyrazinamide. The strains were isolated from tissues collected post mortem, so the test for drug resistance fulfilled only epidemiological criterion. Results The analysis of drug-resistance of MTBC strains revealed that strains classified as M. bovis were susceptible to 4 antimycobacterial drugs: isoniazid, rifampicin, streptomycin, and ethambutol, and resistant to pyrazynamide. The strains classified as M. caprae were sensitive to all tested drugs. Conclusion The results indicate that despite enormously dynamic changes in mycobacterial phenotype, Polish strains of MTBC isolated from cattle have not acquired environmental resistance. The strains classified as M. bovis are characterised by natural resistance to pyrazinamide, which is typical for this species.
Collapse
Affiliation(s)
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Institute in Warsaw, 01-138 Warsaw, Poland
| | | | - Marcin Weiner
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland.,Pope John Paul II State School of Higher Education in Biala Podlaska, 21-500 Biała Podlaska, Poland
| | - Krzysztof Szulowski
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|