1
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ma Y, Zhu H, Jiang X, Zhou Z, Zhou Y, Tian Y, Tu L, Lu J, Niu Y, Du L, Si Z, Fang H, Liu H, Liu Y, Chen P. Synthesis and Biological Activity of 2-Chloro-8-methoxy-5-methyl-5 H-indolo [2,3- b] Quinoline for the Treatment of Colorectal Cancer by Modulating PI3K/AKT/mTOR Pathways. ACS OMEGA 2024; 9:30698-30707. [PMID: 39035959 PMCID: PMC11256334 DOI: 10.1021/acsomega.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Developing novel drugs from natural products has proven to be a very effective strategy. Neocryptolepine was isolated from Cryptolepis sanguinolenta, a traditional endemic African herb, which exerts a wide range of biological activities such as antimalaria, antibacterial, and antitumor. 2-Chloro-8-methoxy-5-methyl-5H-indolo [2,3-b] quinoline (compound 49) was synthesized, and its cytotoxicity was assessed on pancreatic cancer PANC-1 cells, colorectal cancer HCT116 cells, liver cancer SMMC-7721 cells, and gastric cancer AGS cells in vitro. The results of the in vitro assay showed that compound 49 exerted remarkable cytotoxicity on colorectal cancer HCT116 and Caco-2 cells. The cytotoxicity of compound 49 to colorectal cancer HCT116 cells was 17 times higher than that of neocryptolepine and to human normal intestinal epithelial HIEC cells was significantly reduced. Compound 49 exhibited significant cytotoxicity against the colorectal cancer HCT116 and Caco-2 cells, with IC50 of 0.35 and 0.54 μM, respectively. The mechanism of cytotoxicity of compound 49 to colorectal cancer HCT116 and Caco-2 cells was further investigated. The results showed that compound 49 could inhibit colony formation and cell migration. Moreover, compound 49 could arrest the cell cycle at the G2/M phase, promote the production of reactive oxygen species, reduce mitochondrial membrane potential, and induce apoptosis. The results of Western blot indicated that compound 49 showed cytotoxicity on HCT116 and Caco-2 cells by modulating the PI3K/AKT/mTOR signaling pathway. In conclusion, these results suggested that compound 49 may be a potentially promising lead compound for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yunhao Ma
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Hongmei Zhu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Xinrong Jiang
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Zhongkun Zhou
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yong Zhou
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yanan Tian
- Faculty
of Applied Sciences, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao, Macau 999078, China
| | - Lixue Tu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Juan Lu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yuqing Niu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Liqian Du
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Zhenzhen Si
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Hong Fang
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Huanxiang Liu
- Faculty
of Applied Sciences, Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao, Macau 999078, China
| | - Yingqian Liu
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Peng Chen
- School
of Pharmacy, Lanzhou University, No. 199 Donggang West Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Shi L, Gu R, Long J, Duan G, Yang H. Application of CRISPR-cas-based technology for the identification of tuberculosis, drug discovery and vaccine development. Mol Biol Rep 2024; 51:466. [PMID: 38551745 DOI: 10.1007/s11033-024-09424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Tuberculosis (TB), which caused by Mycobacterium tuberculosis, is the leading cause of death from a single infectious agent and continues to be a major public health burden for the global community. Despite being the only globally licenced prophylactic vaccine, Bacillus Calmette-Guérin (BCG) has multiple deficiencies, and effective diagnostic and therapeutic options are limited. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is an adaptive immune system that is found in bacteria and has great potential for the development of novel antituberculosis drugs and vaccines. In addition, CRISPR-Cas is currently recognized as a prospective tool for the development of therapies for TB infection with potential diagnostic and therapeutic value, and CRISPR-Cas may become a viable tool for eliminating TB in the future. Herein, we systematically summarize the current applications of CRISPR-Cas-based technology for TB detection and its potential roles in drug discovery and vaccine development.
Collapse
Affiliation(s)
- Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Ruiqi Gu
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Ansari MA, Shoaib S, Alomary MN, Ather H, Ansari SMA, Hani U, Jamous YF, Alyahya SA, Alharbi JN, Imran MA, Wahab S, Ahmad W, Islam N. Deciphering the emerging role of phytocompounds: Implications in the management of drug-resistant tuberculosis and ATDs-induced hepatic damage. J Infect Public Health 2023; 16:1443-1459. [PMID: 37523915 DOI: 10.1016/j.jiph.2023.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia.
| | - Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Jameela Naif Alharbi
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 120752, Republic of Korea
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
5
|
Mahmoud M, Tan Y. New advances in the treatments of drug-resistant tuberculosis. Expert Rev Anti Infect Ther 2023; 21:863-870. [PMID: 37477234 DOI: 10.1080/14787210.2023.2240022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION TB is associated with high mortality and morbidity among infected individuals and a high transmission rate from person to person. Despite the availability of vaccines and several anti-TB,TB infection continues to increase. Global resistance to TB remains the greatest challenge. There has not been extensive research into a new treatment and management strategy for TB resistance therapy. This review is based on a review of new advances and alternative drugs in the treatment of drug-resistant TB. AREAS COVERED New drug-resistant Mycobacterium tuberculosis therapy involves a combination of the latest TB drugs, new anti-TB drugs based on medicinal plant extracts for drug-resistant TB, mycobacteriophage therapy, the CRISPR/Cas9 system, and nanotechnology. EXPERT OPINION It is necessary to determine the function of individual gene alterations in drug-resistant TB. A combination of the most recent anti-TB drugs, such as bedaquiline and delamanid, is recommended. Longitudinal studies and animal model experiments with some medicinal plant extracts are required for better results. Nanotechnology has the potential to reduce drug side effects. Useful efficacy of phage therapy and CRISPR-cas9 technology as adjunct therapies for the management of drug-resistant TB.
Collapse
Affiliation(s)
- Mohanad Mahmoud
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Desfontaine V, Guinchard S, Marques S, Vocat A, Moulfi F, Versace F, Huser-Pitteloud J, Ivanyuk A, Bardinet C, Makarov V, Ryabova O, André P, Prod'Hom S, Chtioui H, Buclin T, Cole ST, Decosterd L. Optimized LC-MS/MS quantification of tuberculosis drug candidate macozinone (PBTZ169), its dearomatized Meisenheimer Complex and other metabolites, in human plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123555. [PMID: 36563654 PMCID: PMC9883661 DOI: 10.1016/j.jchromb.2022.123555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis, and especially multidrug-resistant tuberculosis (MDR-TB), is a major global health threat which emphasizes the need to develop new agents to improve and shorten treatment of this difficult-to-manage infectious disease. Among the new agents, macozinone (PBTZ169) is one of the most promising candidates, showing extraordinary potency in vitro and in murine models against drug-susceptible and drug-resistant Mycobacterium tuberculosis. A previous analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed by our group to support phase I clinical trials of PBTZ169. These plasma sample analyses revealed the presence of several additional metabolites among which the most prominent was H2PBTZ, a reduced species obtained by dearomatization of macozinone, one of the first examples of Meisenheimer Complex (MC) metabolites identified in mammals. Identification of these new metabolites required the optimization of our original method for enhancing the selectivity between isobaric metabolites as well as for ensuring optimal stability for H2PBTZ analyses. Sample preparation methods were also developed for plasma and urine, followed by extensive quantitative validation in accordance with international bioanalytical method recommendations, which include selectivity, linearity, qualitative and quantitative matrix effect, trueness, precision and the establishment of accuracy profiles using β-expectation tolerance intervals for known and newer analytes. The newly optimized methods have been applied in a subsequent Phase Ib clinical trial conducted in our University Hospital with healthy subjects. H2PBTZ was found to be the most abundant species circulating in plasma, underscoring the importance of measuring accurately and precisely this unprecedented metabolite. Low concentrations were found in urine for all monitored analytes, suggesting extensive metabolism before renal excretion.
Collapse
Affiliation(s)
- Vincent Desfontaine
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvie Guinchard
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sara Marques
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anthony Vocat
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Farizade Moulfi
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - François Versace
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Jeff Huser-Pitteloud
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Anton Ivanyuk
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Carine Bardinet
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Vadim Makarov
- Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland,Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Olga Ryabova
- Federal Research Center “Fundamentals of Biotechnology RAS”, Moscow, Russia
| | - Pascal André
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Sylvain Prod'Hom
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Haithem Chtioui
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland
| | - Thierry Buclin
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Stewart T. Cole
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland,Innovative Medicines for Tuberculosis (IM4TB), Lausanne, Switzerland
| | - Laurent Decosterd
- Laboratory & Service of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital of Lausanne and University of Lausanne, Switzerland,Corresponding author.
| |
Collapse
|
7
|
Discovery of cryptolepine derivatives as novel promising agents against phytopathogenic bacteria. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
8
|
Jagatap VR, Ahmad I, Patel HM. Recent updates in natural terpenoids as potential anti-mycobacterial agents. Indian J Tuberc 2022; 69:282-304. [PMID: 35760478 DOI: 10.1016/j.ijtb.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/15/2023]
Abstract
Tuberculosis is considered as a leading health issue globally. Even though, the todays first line anti-mycobacterial treatments used in the hospital have low deaths, multidrug-resistance forms of the ailment have now spread globally and become a major issue. The wide-ranging biodiversity of medicinal plants, ocean animals have gained considerable attention for drug discovery in previous spans, and the emergence of TB drug resistance has inspired interest in judging natural products (NPs) to cure this disease. Till now, several compounds have been isolated from natural sources with anti-mycobacterial activity, few of which demonstrate significant activity and have the potential for further development. Worldwide huge natural flora and fauna are existing, this flora and fauna must be investigated for new potent lead against infectious TB. This review systematically surveys various classes of terpenoid molecules obtained from different medicinal plants, fungi, sponges, and sea plumes with anti-TB activity, which could be useful for further optimization and development in this field.
Collapse
Affiliation(s)
- Vilas R Jagatap
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Iqrar Ahmad
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India
| | - Harun M Patel
- Division of Bioinformatics, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, Maharashtra, 425 405, India.
| |
Collapse
|
9
|
Bhat BA, Mir WR, Sheikh BA, Rather MA, Dar TUH, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115046. [PMID: 35167935 DOI: 10.1016/j.jep.2022.115046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microorganisms are developing resistance to synthetic drugs. As a result, the search for novel antimicrobial compounds has become an urgent need. Medicinal plants are commonly used as traditional medicine and Delphinium is one of the prominent genus used in the treatment of several diseases. AIM OF THE STUDY The present study aimed to determine the in vitro and in silico antimicrobial activities of petroleum ether, ethyl acetate and methanol extracts from the leaf samples of plant (Delphinium cashmerianum L.) against various bacterial and fungal strains. MATERIAL AND METHODS Three extracts of Delphinium cashmerianum prepared and 88 bioactive compounds were analyzed through LC-MS data with the vast majority of them having therapeutic applications. These extracts have been screened for the antimicrobial activity against various bacterial (Escherichia coli, Micrococcus luteus, Klebsiella pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungal (Candida albicans, Candida glabrata, Candida paropsilosis) species through in silico molecular docking approach using autodock vina software, molecular dynamic simulation (MDS), in vitro disc diffusion and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS Our results demonstrated that all three extracts were active against the whole set of microorganisms. The ethyl acetate extract was the most active against S.pneumonia, K. pneumoniae and C. albicans with a minimum inhibitory concentration (MIC) value of 6.25, 25 and 50 μg/ml, respectively. The petroleum ether and methanol extracts were active against S.pneumonia and N.mucosa with MIC values of 25 and 50 μg/ml. Furthermore, we also performed the in silico virtual screening of all these compounds obtained from LC-MS data analysis against various known drug targets of bacterium and fungi. Upon analysis, we obtained 5 compounds that were efficiently binding to the drug targets. However, after performing exhaustive molecular docking and molecular dynamic simulation (MDS) analysis, it was observed that Daidzein compound is bound to drug targets more efficiently. CONCLUSION The results showed that these plant extracts exhibit antimicrobial activity and ethyl acetate extract proved to exhibit the most effective antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Muzafar Ahmad Rather
- Plant Biotechnology and Molecular Biology Lab, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
| | - Tanver Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India.
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
10
|
Tuyiringire N, Taremwa Mugisha I, Tusubira D, Munyampundu JP, Mambo Muvunyi C, Vander Heyden Y. In vitro antimycobacterial activity of medicinal plants Lantana camara, Cryptolepis sanguinolenta, and Zanthoxylum leprieurii. J Clin Tuberc Other Mycobact Dis 2022; 27:100307. [PMID: 35284659 PMCID: PMC8904236 DOI: 10.1016/j.jctube.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Imperative need exists to search for new anti-TB drugs that are safer, and more effective against drug-resistant strains. Medicinal plants have been the source of active ingredients for drug development. However, the slow growth and biosafety level requirements of M. tuberculosis culture are considerable challenges. M. smegmatis can be used as a surrogate for M. tuberculosis. In the current study, preliminary phytochemical screening and antimycobacterial activity evaluation of crude methanolic extracts of medicinal plants against M. smegmatis, and two M. tuberculosis strains, were conducted. Materials and Methods Crude methanolic extracts, obtained from the leaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii, were tested for antimycobacterial activity against M. smegmatis (mc2155), pan-sensitive (H37Rv), and rifampicin-resistant (TMC-331) M. tuberculosis, using visual Resazurin Microtiter Assay (REMA) on 96 well plates. Preliminary qualitative phytochemical screening tests were performed using standard chemical methods. Results The three methanolic extracts inhibited mycobacterial growth in vitro. They were more active against rifampicin-resistant strain with MICs of 176, 97, and 45 µg/mL for L. camara, C. sanguinolenta, and Z. leprieurii extracts, respectively. The lowest activity was observed against M. smegmatis with MICs of 574, 325, and 520 µg/mL, respectively. Against H37Rv, activity was intermediate to those of TMC-331 and mc2155. However, L. camara extract showed the same activity against H37Rv and M. smegmatis. Preliminary phytochemical analysis revealed alkaloids, flavonoids, phenolic compounds, saponins, tannins, and terpenoids. Conclusions Leaves of L. camara, roots of C. sanguinolenta, and stem barks of Z. leprieurii exhibit antimycobacterial activity against M. smegmatis, pan-sensitive, and rifampicin-resistant M. tuberculosis. This offers the possibilities for novel therapeutic opportunities against TB including multidrug-resistant TB. Further investigations on safety and mechanisms of action are required. These studies could be done using M. smegmatis as a surrogate for the highly pathogenic M. tuberculosis.
Collapse
Affiliation(s)
- Naasson Tuyiringire
- Pharm-BioTechnology and Traditional Medicine Centre (PHARMBIOTRAC), Department of Pharmacy, Mbarara University of Science & Technology, P. O. Box 1410, Mbarara, Uganda
- School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, KG11 Ave, 47St/P.O. Box 3286, Kigali, Rwanda
- Corresponding author.
| | - Ivan Taremwa Mugisha
- Institute of Applied Health Sciences, Clarke International University, P.O. Box 7782, Kampala, Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, P. O. Box 1410, Mbarara, Uganda
| | - Jean-Pierre Munyampundu
- School of Science, College of Science and Technology, University of Rwanda, KN 67 Street Nyarugenge, P.O. Box 3900, Kigali, Rwanda
| | - Claude Mambo Muvunyi
- College of Medicine and Health Sciences, University of Rwanda, KG11 Ave, 47St/P.O. Box 3286, Kigali, Rwanda
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
11
|
Chen YJ, Liu H, Zhang SY, Li H, Ma KY, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Design, Synthesis, and Antifungal Evaluation of Cryptolepine Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1259-1271. [PMID: 33496176 DOI: 10.1021/acs.jafc.0c06480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the widely antiphytopathogenic application of diversified derivatives from natural sources, cryptolepine and its derivatives were subsequently designed, synthesized, and evaluated for their antifungal activities against four agriculturally important fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, and Sclerotinia sclerotiorum. The results obtained from in vitro assay indicated that compounds a1-a24 showed great fungicidal property against B. cinerea (EC50 < 4 μg/mL); especially, a3 presented significantly prominent inhibitory activity with an EC50 of 0.027 μg/mL. In the pursuit of further expanding the antifungal spectrum of cryptolepine, ring-opened compound f1 produced better activity with an EC50 of 3.632 μg/mL against R. solani and an EC50 of 5.599 μg/mL against F. graminearum. Furthermore, a3 was selected to be a candidate to investigate its preliminary antifungal mechanism to B. cinerea, revealing that not only spore germination was effectively inhibited and the normal physiological structure of mycelium was severely undermined but also detrimental reactive oxygen was obviously accumulated and the normal function of the nucleus was fairly disordered. Besides, in vivo curative experiment against B. cinerea found that the therapeutic action of a3 was comparable to that of the positive control azoxystrobin. These results suggested that compound a3 could be regarded as a novel and promising agent against B. cinerea for its valuable potency.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|