1
|
Rong B, Jiang H, Zhu W, Yang G, Zhou X, Lyu Z, Li X, Zhang J. Unraveling the role of macrophages in diabetes: Impaired phagocytic function and therapeutic prospects. Medicine (Baltimore) 2025; 104:e41613. [PMID: 39993124 PMCID: PMC11856964 DOI: 10.1097/md.0000000000041613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
The rising aging population and changing lifestyles have led to a global increase in diabetes and its complications, making it one of the most prevalent diseases worldwide. Chronic inflammation is a key pathogenic feature of diabetes and its complications, yet the precise mechanisms remain unclear, impeding the development of targeted therapies. Recent studies have highlighted the β cell-macrophage crosstalk pathway as a crucial factor in chronic low-grade inflammation and glucose homeostasis imbalance in both type 1 and type 2 diabetes. Furthermore, impaired macrophage phagocytic functions, including pathogen phagocytosis, efferocytosis, and autophagy, play a significant role in diabetes complications. Given their high plasticity, macrophages represent a promising research target. This review summarizes recent findings on macrophage phagocytic dysfunction in diabetes and its complications, and explores emerging therapies targeting macrophage phagocytic function. We also discuss the current challenges in translating basic research to clinical practice, aiming to guide researchers in developing targeted treatments to regulate macrophage status and phagocytic function, thus preventing and treating metabolic inflammatory diseases.
Collapse
Affiliation(s)
- Bing Rong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongxi Lyu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangyi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Agnivesh PK, Roy A, Sau S, Kumar S, Kalia NP. Advancements and challenges in tuberculosis drug discovery: A comprehensive overview. Microb Pathog 2025; 198:107074. [PMID: 39521155 DOI: 10.1016/j.micpath.2024.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance. We explore promising drug targets, encompassing inhibition of mycolyarabinogalactan peptidoglycan (MAGP) assembly, mycolic acid biosynthesis, DNA replication, transcription, translation, protein synthesis, and bioenergetics/metabolism pathways. A comprehensive overview of the global pipeline of anti-tuberculosis drugs at various stages of clinical trials, the diverse strategies being pursued to tackle this complex disease. By gaining an understanding of the mechanisms that contribute to resistance development and identifying suitable targets, we can pave the way for more effective treatments and contribute to global efforts to combat drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
3
|
Kleynhans L, Kunsevi-Kilola C, Tshivhula H, Webber T, Keyser A, Prins N, Snyders CI, Shabangu A, Rozot V, Kidd M, Zhang H, Cai H, Wang Y, Ewing AD, Malherbe ST, Azad AK, Arnett E, Restrepo BI, Schlesinger LS, Ronacher K. HUMAN ALVEOLAR MACROPHAGE FUNCTION IS IMPAIRED IN TUBERCULOSIS CONTACTS WITH DIABETES. RESEARCH SQUARE 2024:rs.3.rs-5489046. [PMID: 39649174 PMCID: PMC11623777 DOI: 10.21203/rs.3.rs-5489046/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Type 2 diabetes (T2D) increases susceptibility to tuberculosis (TB) with the underlying mechanisms remaining unknown. To determine whether immune dysfunction in the lung contributes to TB susceptibility, we obtained paired human alveolar macrophages (HAMs) and monocyte-derived macrophages (MDMs) from TB-exposed individuals with/without T2D. Upon infection with Mycobacterium tuberculosis (M.tb), T2D-HAMs had more M.tb growth and produced more TNF. There were fewer neutrophils in the bronchoalveolar lavage of T2D patients which was inversely correlated with M.tb growth. Both T2D-HAMs and MDMs expressed less CD32, with T2D patients having fewer M1-like MDMs. T2D-MDMs produced less IL-1RA and CSF2. Overall M.tb-induced gene expression was delayed in T2D-HAMs, but genes involved in negative regulation of neutrophil migration were upregulated. T2D-HAM DNA was hypermethylated compared to control HAMs, however genes linked to TNF signalling were hypomethylated. We show here the first in-depth analysis of T2D-HAMs providing an explanation for more severe TB in T2D patients.
Collapse
Affiliation(s)
- Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Carine Kunsevi-Kilola
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Happy Tshivhula
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alana Keyser
- Vaccines for Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicole Prins
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayanda Shabangu
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Virginie Rozot
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Stellenbosch University, Stellenbosch, South Africa
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Adam D Ewing
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Stephanus T Malherbe
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abul K Azad
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Blanca I Restrepo
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Epidemiology, School of Public Health-Brownsville Campus, University of Texas Health Science Center at Houston, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
7
|
Valtierra-Alvarado MA, Castañeda-Delgado JE, Lugo-Villarino G, Dueñas-Arteaga F, Rivas-Santiago B, Enciso-Moreno JA, Serrano CJ. Increased frequency of CD14 +HLA-DR -/low cells in type 2 diabetes patients with poor glycemic control. Hum Immunol 2022; 83:789-795. [PMID: 36028458 DOI: 10.1016/j.humimm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 11/04/2022]
Abstract
AIMS Type 2 diabetes (T2DM) is associated with alterations of the immune response and T2DM patients have an increased risk for infections and certain sorts of cancers. Although CD14+HLA-DR-/low cells have emerged as important mediators of immunosuppression in several pathologies, including cancer and non-malignant diseases, the presence of these cells in T2DM is not fully characterized. METHODS In this study, we evaluated the frequency of CD14+HLA-DR-/low cells in non-obese T2DM patients and their association with glycemic control. Peripheral blood mononuclear cells were isolated from healthy controls (HC, n = 24) and non-obese T2DM patients (n = 25), the population was evaluated by flow cytometry, and an analysis of correlation between cell frequencies and clinical variables was performed. RESULTS CD14+HLA-DR-/low monocytes were expanded in patients with T2DM compared to HC regardless of weight. Among the subjects with T2DM, the frequency of CD14+HLA-DR-/low was higher in patients with poor glycemic control (HbA1c > 9%) compared to those with better glycemic control (HbA1c < 9%) and, positively correlated with the years since the diagnosis of T2DM, the age of the patients and the glycemic index. CONCLUSIONS An increased frequency of CD14+HLA-DR-/low cells in the blood of T2DM patients was recorded. The influence of hyperglycemia seems to be independent of obesity, but related to glycemic control and age.
Collapse
Affiliation(s)
- M A Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), San Luis Potosí, México
| | - J E Castañeda-Delgado
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Mexico
| | - G Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - F Dueñas-Arteaga
- Hospital General No. 26, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Zacatecas, Mexico
| | - B Rivas-Santiago
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico
| | - J A Enciso-Moreno
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico; Postgrado en Química Diagnóstica, Facultad de Química, Universidad Autónoma de Querétaro. Querétaro, México
| | - C J Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Mexico.
| |
Collapse
|
8
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
9
|
Ngo MD, Bartlett S, Ronacher K. Diabetes-Associated Susceptibility to Tuberculosis: Contribution of Hyperglycemia vs. Dyslipidemia. Microorganisms 2021; 9:2282. [PMID: 34835407 PMCID: PMC8620310 DOI: 10.3390/microorganisms9112282] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a major risk factor for tuberculosis (TB). Diabetes increases the risk of the progression from latent tuberculosis infection (LTBI) to active pulmonary TB and TB patients with diabetes are at greater risk of more severe disease and adverse TB treatment outcomes compared to TB patients without co-morbidities. Diabetes is a complex disease, characterised not only by hyperglycemia but also by various forms of dyslipidemia. However, the relative contribution of these underlying metabolic factors to increased susceptibility to TB are poorly understood. This review summarises our current knowledge on the epidemiology and clinical manifestation of TB and diabetes comorbidity. We subsequently dissect the relative contributions of body mass index, hyperglycemia, elevated cholesterol and triglycerides on TB disease severity and treatment outcomes. Lastly, we discuss the impact of selected glucose and cholesterol-lowering treatments frequently used in the management of diabetes on TB treatment outcomes.
Collapse
Affiliation(s)
- Minh Dao Ngo
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
| | - Stacey Bartlett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
| | - Katharina Ronacher
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (M.D.N.); (S.B.)
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Scordo JM, Aguillón-Durán GP, Ayala D, Quirino-Cerrillo AP, Rodríguez-Reyna E, Mora-Guzmán F, Caso JA, Ledezma-Campos E, Schlesinger LS, Torrelles JB, Turner J, Restrepo BI. A prospective cross-sectional study of tuberculosis in elderly Hispanics reveals that BCG vaccination at birth is protective whereas diabetes is not a risk factor. PLoS One 2021; 16:e0255194. [PMID: 34324578 PMCID: PMC8321126 DOI: 10.1371/journal.pone.0255194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Aging increases the risk of tuberculosis (TB) and its adverse outcomes, but most studies are based on secondary analyses, and few are in Hispanics. Diabetes is a risk factor for TB in adults, but its contribution in the elderly is unknown. We aimed to identify the role of diabetes and other risk factors for TB in elderly Hispanics. METHODS Cross-sectional study among newly-diagnosed TB patients, recent contacts (ReC), or community controls (CoC) totaling 646 participants, including 183 elderly (>60 years; 43 TB, 80 ReC, 60 CoC) and 463 adults (18 to 50 years; 80 TB, 301 ReC and 82 CoC). Host characteristics associated with TB and latent Mycobacterium tuberculosis infection (LTBI) were identified in the elderly by univariable and confirmed by multivariable logistic regression. RESULTS LTBI was more prevalent among the elderly CoC (55% vs. 23.2% in adults; p<0.001), but not in ReC (elderly 71.3% vs. adult 63.8%); p = 0.213). Risk factors for TB in the elderly included male sex (adj-OR 4.33, 95% CI 1.76, 10.65), smoking (adj-OR 2.55, 95% CI 1.01, 6.45) and low BMI (adj-OR 12.34, 95% CI 4.44, 34.33). Unexpectedly, type 2 diabetes was not associated with TB despite its high prevalence (adj-OR 0.38, 95% CI 0.06, 2.38), and BCG vaccination at birth was protective (adj-OR 0.16, 95% CI 0.06, 0.45). CONCLUSIONS We report novel distinctions in TB risk factors in the elderly vs. adults, notably in diabetes and BCG vaccination at birth. Further studies are warranted to address disparities in this vulnerable, understudied population.
Collapse
Affiliation(s)
- Julia M. Scordo
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States of America
- The University of Texas Health Science Center of San Antonio, San Antonio, TX, United States of America
| | | | - Doris Ayala
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX, United States of America
| | - Ana Paulina Quirino-Cerrillo
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX, United States of America
| | - Eminé Rodríguez-Reyna
- Secretaria de Salud de Tamaulipas, Reynosa, Matamoros and Ciudad Victoria, Tamaulipas, México
| | - Francisco Mora-Guzmán
- Secretaria de Salud de Tamaulipas, Reynosa, Matamoros and Ciudad Victoria, Tamaulipas, México
| | - Jose A. Caso
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX, United States of America
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States of America
| | - Eder Ledezma-Campos
- Secretaria de Salud de Tamaulipas, Reynosa, Matamoros and Ciudad Victoria, Tamaulipas, México
| | - Larry S. Schlesinger
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Jordi B. Torrelles
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Joanne Turner
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Blanca I. Restrepo
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville, TX, United States of America
- Biology Department, University of Texas Rio Grande Valley, Edinburg, TX, United States of America
| |
Collapse
|