1
|
Cook SR, Schwarz C, Guevar J, Assenmacher CA, Sheehy M, Fanzone N, Church ME, Murgiano L, Casal ML, Jagannathan V, Gutierrez-Quintana R, Lowrie M, Steffen F, Leeb T, Ekenstedt KJ. Canine RNF170 Single Base Deletion in a Naturally Occurring Model for Human Neuroaxonal Dystrophy. Mov Disord 2024; 39:2049-2057. [PMID: 39177409 DOI: 10.1002/mds.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Neuroaxonal dystrophy (NAD) is a group of inherited neurodegenerative disorders characterized primarily by the presence of spheroids (swollen axons) throughout the central nervous system. In humans, NAD is heterogeneous, both clinically and genetically. NAD has also been described to naturally occur in large animal models, such as dogs. A newly recognized disorder in Miniature American Shepherd dogs (MAS), consisting of a slowly progressive neurodegenerative syndrome, was diagnosed as NAD via histopathology. OBJECTIVES To describe the clinical and pathological phenotype together with the identification of the underlying genetic cause. METHODS Clinical and postmortem evaluations, together with a genome-wide association study and autozygosity mapping approach, followed by whole-genome sequencing. RESULTS Affected dogs were typically young adults and displayed an abnormal gait characterized by pelvic limb weakness and ataxia. The underlying genetic cause was identified as a 1-bp (base pair) deletion in RNF170 encoding ring finger protein 170, which perfectly segregates in an autosomal recessive pattern. This deletion is predicted to create a frameshift (XM_038559916.1:c.367delG) and early truncation of the RNF170 protein (XP_038415844.1:(p.Ala123Glnfs*11)). The age of this canine RNF170 variant was estimated at ~30 years, before the reproductive isolation of the MAS breed. CONCLUSIONS RNF170 variants were previously identified in human patients with autosomal recessive spastic paraplegia-85 (SPG85); this clinical phenotype shows similarities to the dogs described herein. We therefore propose that this novel MAS NAD could serve as an excellent large animal model for equivalent human diseases, particularly since affected dogs demonstrate a relatively long lifespan, which represents an opportunity for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shawna R Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Cleo Schwarz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julien Guevar
- AniCura Thun, Neurology Department, Burgerstrasse, Switzerland
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeve Sheehy
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Nathan Fanzone
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly E Church
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo Gutierrez-Quintana
- Small Animal Hospital, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mark Lowrie
- Movement Referrals: Independent Veterinary Specialists, Preston Brook, UK
| | - Frank Steffen
- Neurology Service, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Smolek T, Vince-Kazmerova Z, Hanes J, Stevens E, Palus V, Hajek I, Katina S, Novak P, Zilka N. On the utility of cerebrospinal fluid biomarkers in canine neurological disorders. Sci Rep 2024; 14:24129. [PMID: 39406773 PMCID: PMC11480401 DOI: 10.1038/s41598-024-73812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The cerebral biomarkers, neurofilament light chain (NfL), amyloid-β, tau, and neuron specific enolase (NSE) reflect a wide spectrum of neurological damage in the brain and spinal cord. With this study, we aimed to assess whether these biomarkers hold any potential diagnostic value for the three most common canine neurological diseases. Canines suffering from meningoencephalitis of unknown origin (MUO), brain tumors, and selected non-infectious myelopathies were included. For each diagnosis, we analyzed these biomarkers in the cerebrospinal fluid collected via cranial puncture from the cisterna magna. Elevated levels of CSF tau, NfL, and NSE were observed in MUO, with all three biomarkers being intercorrelated. Tau and NSE were increased while amyloid-β was decreased in dogs suffering from tumors. In contrast, no biomarker changes were observed in dogs with myelopathies. Covariates such as age, sex, or castration had minimal impact. CSF biomarkers may reflect molecular changes related to MUO and tumors, but not to non-infectious myelopathies. The combination of NfL, tau, and NSE may represent useful biomarkers for MUO as they reflect the same pathology and are not influenced by age.
Collapse
Affiliation(s)
- Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic
- Neuroimmunology Institute, n.p.o., Dvořákovo nábrežie 7527/10, 811 02, Bratislava, Slovak Republic
| | - Zuzana Vince-Kazmerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic
| | - Eva Stevens
- Axon Neuroscience R&D Services SE, Dvořakovo Nabrezie 10, Bratislava, Slovak Republic
| | - Viktor Palus
- Neurovet -Referral Center for Veterinary Neurology, Bratislavska 2196/32, Trencin, Slovak Republic
| | - Ivo Hajek
- Small Animal Referral Centre Sibra, Na Vrátkach 13, Bratislava, Slovak Republic
| | - Stanislav Katina
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic
- Institute of Mathematics and Statistics, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic.
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava, Slovak Republic
- Neuroimmunology Institute, n.p.o., Dvořákovo nábrežie 7527/10, 811 02, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Giron C, Hélie P, Parent J, Boutin M, St-Jean G. Clinical, imaging and histopathological characterization of a series of three cats with cerebellar cortical degeneration. BMC Vet Res 2024; 20:263. [PMID: 38890680 PMCID: PMC11186075 DOI: 10.1186/s12917-024-04127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Neurological inherited disorders are rare in domestic animals. Cerebellar cortical degeneration remains amongst the most common of these disorders. The condition is defined as the premature loss of fully differentiated cerebellar components due to genetic or metabolic defects. It has been studied in dogs and cats, and various genetic defects and diagnostic tests (including magnetic resonance imaging (MRI)) have been refined in these species. Cases in cats remain rare and mostly individual, and few diagnostic criteria, other than post-mortem exam, have been evaluated in reports with multiple cases. Here, we report three feline cases of cerebellar cortical degeneration with detailed clinical, diagnostic imaging and post-mortem findings. CASE PRESENTATION The three cases were directly (siblings, case #1 and #2) or indirectly related (same farm, case #3) and showed early-onset of the disease, with clinical signs including cerebellar ataxia and tremors. Brain MRI was highly suggestive of cerebellar cortical degeneration on all three cases. The relative cerebrospinal fluid (CSF) space, relative cerebellum size, brainstem: cerebellum area ratio, and cerebellum: total brain area ratio, were measured and compared to a control group of cats and reference cut-offs for dogs in the literature. For the relative cerebellum size and cerebellum: total brain area ratio, all affected cases had a lower value than the control group. For the relative CSF space and brainstem: cerebellum area ratio, the more affected cases (#2 and #3) had higher values than the control group, while the least affected case (#3) had values within the ranges of the control group, but a progression was visible over time. Post-mortem examination confirmed the diagnosis of cerebellar cortical degeneration, with marked to complete loss of Purkinje cells and associated granular layer depletion and proliferation of Bergmann glia. One case also had Wallerian-like degeneration in the spinal cord, suggestive of spinocerebellar degeneration. CONCLUSION Our report further supports a potential genetic component for the disease in cats. For the MRI examination, the relative cerebellum size and cerebellum: total brain area ratio seem promising, but further studies are needed to establish specific feline cut-offs. Post-mortem evaluation of the cerebellum remains the gold standard for the final diagnosis.
Collapse
Affiliation(s)
- Céline Giron
- Department of clinical sciences, Faculty of veterinary medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Pierre Hélie
- Department of pathology and microbiology, Faculty of veterinary medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joane Parent
- Department of clinical sciences, Faculty of veterinary medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mathieu Boutin
- Department of clinical sciences, Faculty of veterinary medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Guillaume St-Jean
- Department of pathology and microbiology, Faculty of veterinary medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
4
|
Metcalfe A, Dennis MM, Ramsay EC, Cushing A. Spinal disease in a captive population of Panthera species: Review of 86 cases (2003-2021). Vet Pathol 2024; 61:248-255. [PMID: 37818973 DOI: 10.1177/03009858231203313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This retrospective study aimed to characterize and determine the prevalence of spinal disease in nondomestic felids within a sanctuary population. A review of 304 postmortem examination reports in Panthera species from 2003 to 2021 revealed that 86/304 (28%) were diagnosed with spinal disease. Spinal lesions were categorized according to pathologic process: degenerative (78/86, 91%), developmental (8/86, 9%), inflammatory (6/86, 7%), or neoplastic (8/86, 9%). Degenerative lesions included intervertebral disk disease (IVDD; 66/78, 85%), spondylosis without concurrent IVDD (4/78, 5%), and idiopathic (noncompressive) degenerative myelopathies (8/78, 10%). Fourteen individuals had lesions in more than 1 category. Developmental cases were vertebral (4/8) or spinal cord (3/8) malformations or both (1/8). Inflammatory lesions included meningitis (4/6) and meningomyelitis (2/6). Neoplasia included vertebral multiple myeloma (4/8) and others (4/8). IVDD often involved multiple disks but primarily affected the cervical (41/66, 62%) and thoracic spine (32/66, 48%). A multivariate binary logistic model predicted the diagnosis of IVDD at postmortem examination, where odds of being affected were highest for males, lions (Panthera leo), and geriatric age group (>14 years). The spinal lesions documented in this study provide insight into high-risk signalment categories and predominant associated lesions affecting captive Panthera populations. Specifically, spinal disease, especially cervical IVDD, is common among Panthera species, and lions, males, and older felids are at increased risk.
Collapse
|
5
|
Stee K, Van Poucke M, Lowrie M, Van Ham L, Peelman L, Olby N, Bhatti SF. Phenotypic and genetic aspects of hereditary ataxia in dogs. J Vet Intern Med 2023; 37:1306-1322. [PMID: 37341581 PMCID: PMC10365067 DOI: 10.1111/jvim.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/07/2023] [Indexed: 06/22/2023] Open
Abstract
Hereditary ataxias are a large group of neurodegenerative diseases that have cerebellar or spinocerebellar dysfunction as core feature, occurring as an isolated sign or as part of a syndrome. Based on neuropathology, this group of diseases has so far been classified into cerebellar cortical degenerations, spinocerebellar degenerations, cerebellar ataxias without substantial neurodegeneration, canine multiple system degeneration, and episodic ataxia. Several new hereditary ataxia syndromes are described, but most of these diseases have similar clinical signs and unspecific diagnostic findings, wherefore achieving a definitive diagnosis in these dogs is challenging. Eighteen new genetic variants associated with these diseases have been discovered in the last decade, allowing clinicians to reach a definitive diagnosis for most of these conditions, and allowing breeding schemes to adapt to prevent breeding of affected puppies. This review summarizes the current knowledge about hereditary ataxias in dogs, and proposes to add a "multifocal degenerations with predominant (spino)cerebellar component" category regrouping canine multiple system degeneration, new hereditary ataxia syndromes that do not fit in 1 of the previous categories, as well as specific neuroaxonal dystrophies and lysosomal storage diseases that cause major (spino)cerebellar dysfunction.
Collapse
Affiliation(s)
- Kimberley Stee
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Mario Van Poucke
- Department of Veterinary and BiosciencesFaculty of Veterinary Sciences, Ghent UniversityMerelbekeBelgium
| | | | - Luc Van Ham
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Luc Peelman
- Department of Veterinary and BiosciencesFaculty of Veterinary Sciences, Ghent UniversityMerelbekeBelgium
| | - Natasha Olby
- Department of Clinical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Sofie F.M. Bhatti
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| |
Collapse
|
6
|
Cerebellar Abiotrophy in Australian Working Kelpies Is Associated with Two Major Risk Loci. Genes (Basel) 2022; 13:genes13101709. [PMID: 36292596 PMCID: PMC9602046 DOI: 10.3390/genes13101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
An autosomal recessive form of inherited cerebellar abiotrophy (CA) that is characterized by a degeneration of Purkinje and granule cells in the cerebellar cortex occurs in the Australian working kelpie dog breed. The clinical signs of CA include ataxia, head tremor, motor in-coordination, wide-based stance, and high-stepping gait. Investigation of clinical and pathological features indicated two closely related diseases with differences in age of onset. A genome-wide association study on 45 CA affected and 290 normal healthy Kelpies identified two significantly associated loci, one on CFA9 and a second on CFA20. Dogs homozygous for the risk haplotype on CFA20 (23 dogs) show clinical signs before ten weeks of age. Missense variants in the sixth exon of disruptor of telomeric silencing 1-like (DOT1Lp.R200Q) and in the only exon of Leucine Rich Repeat And Ig Domain Containing 3 (LINGO3p.R359C), both on CFA20, segregate with the associated risk marker which has incomplete penetrance (42%). Affected dogs homozygous for the risk haplotype on CFA9 have later onset ataxia. A missense variant in exon 5 of Vacuole Membrane Protein 1 (VMP1 p.P160Q) on CFA9 segregates as a fully penetrant Mendelian recessive with later-onset CA. Across mammals, the variety of causative loci so far identified as influencing cerebellar disorders reinforces the complexity of the pathways that contribute to cerebellar development and function, and to the pathophysiological mechanisms that may lead to cerebellar ataxia.
Collapse
|
7
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
8
|
Investigation of Cerebellar Abiotrophy (CA), Lavender Foal Syndrome (LFS), and Severe Combined Immunodeficiency (SCID) Variants in a Cohort of Three MENA Region Horse Breeds. Genes (Basel) 2021; 12:genes12121893. [PMID: 34946842 PMCID: PMC8701198 DOI: 10.3390/genes12121893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Genetic disorders in horses are mostly fatal or usually cause significant economic losses for breeders and owners. Here we studied a total of 177 Arabian, Barb and Arab-Barb horses from the Middle East and North Africa (MENA) using Sanger Sequencing and PCR-ACRS (polymerase chain reaction—artificially created restriction site) approaches to examine the genetic disorders in the studied horse breeds. We identified the genetic variations related to Cerebellar Abiotrophy (CA), Severe Combined Immunodeficiency (SCID) occurrence, and the studied population was free of the mutant allele determined Lavender Foal Syndrome (LFS). Overall, presented data showed that 15 of the studied horses are carriers of two genetic disorders; the investigated horse population showed that five Arabian horses were heterozygous for the CA-associated SNP (rs397160943). The SCID-deletion TCTCA within PRKDC was detected in ten horses (nine Arabian horses and one Arab-Barb horse). This investigation shows the importance of testing these breeds for genetic disorders to avoid further spread of deleterious variants
Collapse
|
9
|
Compound heterozygous PLA2G6 loss-of-function variants in Swaledale sheep with neuroaxonal dystrophy. Mol Genet Genomics 2020; 296:235-242. [PMID: 33159255 PMCID: PMC7840627 DOI: 10.1007/s00438-020-01742-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 10/28/2022]
Abstract
Sporadic occurrences of neurodegenerative disorders including neuroaxonal dystrophy (NAD) have been previously reported in sheep. However, so far no causative genetic variant has been found for ovine NAD. The aim of this study was to characterize the phenotype and the genetic aetiology of an early-onset neurodegenerative disorder observed in several lambs of purebred Swaledale sheep, a native English breed. Affected lambs showed progressive ataxia and stiff gait and subsequent histopathological analysis revealed the widespread presence of axonal spheroid indicating neuronal degeneration. Thus, the observed clinical phenotype could be explained by a novel form of NAD. After SNP genotyping and subsequent linkage mapping within a paternal half-sib pedigree with a total of five NAD-affected lambs, we identified two loss-of-function variants by whole-genome sequencing in the ovine PLA2G6 gene situated in a NAD-linked genome region on chromosome 3. All cases were carriers of a compound heterozygous splice site variant in intron 2 and a nonsense variant in exon 8. Herein we present evidence for the occurrence of a familial novel form of recessively inherited NAD in sheep due to allelic heterogeneity at PLA2G6. This study reports two pathogenic variants in PLA2G6 causing a novel form of NAD in Swaledale sheep which enables selection against this fatal disorder.
Collapse
|
10
|
Abstract
Neurologic disease in horses can be particularly challenging to diagnose and treat. These diseases can result in economic losses, emotional distress to owners, and injury to the horse or handlers. To date, there are 5 neurologic diseases caused by known genetic mutations and several more are suspected to be heritable: lethal white foal syndrome, lavender foal syndrome, cerebellar abiotrophy, occipitoatlantoaxial malformation, and Friesian hydrocephalus. Genetic testing allows owners, breeders, and veterinarians to make informed decisions when selecting dams and sires for breeding or deciding the treatment or prognosis of a neurologic animal.
Collapse
Affiliation(s)
- Lisa Edwards
- Department of Veterinary Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Room 4206 Vet Med 3A One Shields Avenue, Davis, CA 95616, USA
| | - Carrie J Finno
- Department of Veterinary Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Room 4206 Vet Med 3A One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Chiaradia E, Miller I. In slow pace towards the proteome of equine body fluids. J Proteomics 2020; 225:103880. [PMID: 32569818 DOI: 10.1016/j.jprot.2020.103880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Equine medicine represents a relevant field of veterinary science and the horse industry generates a significant economic impact. Horses can be involved in different sport disciplines, meat production, work and recreational purposes. Horses are also important for human health as they can be used as animal models for studying human diseases and in equine-assisted therapy. This review summarizes the data related to body fluids such as plasma/serum, urine, cerebrospinal fluid, synovial fluid, saliva, bronchoalveolar lavage fluid and peritoneal fluid obtained using proteomic analysis. Horse body fluid proteome analysis under various physiological and pathological conditions is a useful method for identifying new biomarkers for horse diseases which are still difficult to diagnose, but with serious consequences on equine health and welfare. The findings reported here reveal that further proteomic studies on equine body fluids collected from diseased animals are required. SIGNIFICANCE: Body fluids are sources of potential protein biomarkers for diagnosis and therapeutic target identification. Indeed, they contain proteins that play a crucial role in cell functions and whose presence or relative abundance are indicative of the health status of tissues/organs. The review reports the data on the equine body fluids obtained using proteomic analysis, including those which are commonly used to obtain a correct diagnosis and prognosis of horse diseases which still pose a significant challenge. For equine medicine, new biomarkers are needed to formulate early diagnosis and to distinguish among diseases with similar clinical signs.
Collapse
Affiliation(s)
- Elisabetta Chiaradia
- Laboratory of proteomics, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, via San Costanzo, 4, 06126 Perugia, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
12
|
Mayaki AM, Abdul Razak IS, Noraniza MA, Mazlina M, Rasedee A. Biofluid Markers of Equine Neurological Disorders Reviewed From Human Perspectives. J Equine Vet Sci 2019; 86:102907. [PMID: 32067661 DOI: 10.1016/j.jevs.2019.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are often fatal to horses. Thus, symptoms of equine NDs commonly indicate euthanasia. Current diagnostic approaches for equine NDs is based on clinical signs, differential diagnoses, analysis of cerebrospinal fluid (CSF), assessment of histopathological lesions, and imaging. However, advances in biofluid biomarkers in the diagnosis of human neurological diseases can potentially be applied to equine NDs. In this review, we described the established human blood and CSF neurobiomarkers that could potentially be used to diagnose equine NDs.
Collapse
Affiliation(s)
- Abubakar Musa Mayaki
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Mohd Adzahan Noraniza
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mazlan Mazlina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Scott EY, Woolard KD, Finno CJ, Murray JD. Cerebellar Abiotrophy Across Domestic Species. THE CEREBELLUM 2019; 17:372-379. [PMID: 29294214 DOI: 10.1007/s12311-017-0914-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cerebellar abiotrophy (CA) is a neurodegenerative disorder affecting the cerebellum and occurs in multiple species. Although CA is well researched in humans and mice, domestic species such as the dog, cat, sheep, cow, and horse receive little recognition. This may be due to few studies addressing the mechanism of CA in these species. However, valuable information can still be extracted from these cases. A review of the clinicohistologic phenotype of CA in these species and determining the various etiologies of CA may aid in determining conserved and required pathways necessary for proper cerebellar development and function. This review outlines research approaches of studies of CA in domestic species, compared to the approaches used in mice, with the objective of comparing CA in domestic species while identifying areas for further research efforts.
Collapse
Affiliation(s)
- Erica Yuki Scott
- Department of Animal Science, University of California, Davis, Meyer Hall, 1 Shields Ave, Davis, CA, 95616, USA
| | - Kevin Douglas Woolard
- Department of Pathology, Microbiology & Immunology, University of California, Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA
| | - James D Murray
- Department of Animal Science, University of California, Davis, Meyer Hall, 1 Shields Ave, Davis, CA, 95616, USA.
- Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Tarrant JC, Savickas P, Omodho L, Spinazzi M, Radaelli E. Spontaneous Incidental Brain Lesions in C57BL/6J Mice. Vet Pathol 2019; 57:172-182. [PMID: 31272300 DOI: 10.1177/0300985819859878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse lines on a C57BL/6J background are widely employed as preclinical models to study neurodegenerative human disorders and brain tumors. However, because of the lack of comprehensive data on the spontaneous background neuropathology of the C57BL/6J strain, discriminating between naturally occurring changes and lesions caused by experimental mutations can be challenging. In this context, this study aims at defining the spectrum and frequency of spontaneous brain changes in a large cohort of C57BL/6J mice and their association with specific biological variables, including age and sex. Brains from 203 experimentally naive and clinically unremarkable C57BL/6J mice were collected and analyzed by means of histopathology and immunohistochemistry. Mice ranged in age from 3 to 110 weeks with 89 females, 111 males, and 3 unknowns. Sixteen different spontaneous lesion categories were described in this cohort. Age-related neurodegenerative and/or neuroinflammatory findings represented the most common pathologic changes and included (1) Hirano-like inclusions in the thalamic neurons, (2) neuroaxonal dystrophy in the medulla oblongata, (3) periodic acid-Schiff-positive granular deposits in the neuropil of the hippocampus, and (4) progressive neuroinflammation characterized by microgliosis and astrogliosis. Neoplastic conditions, developmental abnormalities, and circulatory disorders were rarely observed incidental findings. In conclusion, this study describes spontaneous age-related brain lesions of the C57BL/6J mouse and provides a reference for evaluating and interpreting the neuropathological phenotype in genetically engineered mouse models developed and maintained on this congenic background.
Collapse
Affiliation(s)
- James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Patrick Savickas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lorna Omodho
- VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| | - Marco Spinazzi
- Centre de Référence des Maladies Neuromusculaires, Service de Neurologie, Centre Hospitalier Universitaire d' Angers, Angers, France
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,VIB Center for the Biology of Disease and KU Leuven Center for Human Genetics, Leuven, Belgium
| |
Collapse
|
15
|
Gołaszewska A, Bik W, Motyl T, Orzechowski A. Bridging the Gap between Alzheimer's Disease and Alzheimer's-like Diseases in Animals. Int J Mol Sci 2019; 20:ijms20071664. [PMID: 30987146 PMCID: PMC6479525 DOI: 10.3390/ijms20071664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
The average life span steadily grows in humans and in animals kept as pets or left in sanctuaries making the issue of elderly-associated cognitive impairment a hot-spot for scientists. Alzheimer’s disease (AD) is the most prevalent cause of progressive mental deterioration in aging humans, and there is a growing body of evidence that similar disorders (Alzheimer’s-like diseases, ALD) are observed in animals, more than ever found in senescent individuals. This review reveals up to date knowledge in pathogenesis, hallmarks, diagnostic approaches and modalities in AD faced up with ALD related to different animal species. If found at necropsy, there are striking similarities between senile plaques (SP) and neurofibrillary tangles (NFT) in human and animal brains. Also, the set of clinical symptoms in ALD resembles that observed in AD. At molecular and microscopic levels, the human and animal brain histopathology in AD and ALD shows a great resemblance. AD is fatal, and the etiology is still unknown, although the myriad of efforts and techniques were employed in order to decipher the molecular mechanisms of disease onset and its progression. Nowadays, according to an increasing number of cases reported in animals, apparently, biochemistry of AD and ALD has a lot in common. Described observations point to the importance of extensive in vivo models and extensive pre-clinical studies on aging animals as a suitable model for AD disease.
Collapse
Affiliation(s)
- Anita Gołaszewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Tomasz Motyl
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
16
|
Stylianaki I, Komnenou AT, Posantzis D, Nikolaou K, Papaioannou N. Alzheimer’s disease‐like pathological lesions in an aged bottlenose dolphin (
Tursiops truncatus
). VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2018-000700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ioanna Stylianaki
- Department of PathologyAristotle University of ThessalonikiThessalonikiGreece
| | - Anastasia T Komnenou
- Department of Comparative Ophthalmology‐Exotic and Wildlife MedicineAristotle University of ThessalonikiThessalonikiGreece
| | | | - Konstantina Nikolaou
- Laboratory of Productive AgricultureDivision of Crop ProductionDepartment of Agricultural TechnologyTechnological Educational Institute of EpirusArtaGreece
| | | |
Collapse
|
17
|
Minor KM, Letko A, Becker D, Drögemüller M, Mandigers PJJ, Bellekom SR, Leegwater PAJ, Stassen QEM, Putschbach K, Fischer A, Flegel T, Matiasek K, Ekenstedt KJ, Furrow E, Patterson EE, Platt SR, Kelly PA, Cassidy JP, Shelton GD, Lucot K, Bannasch DL, Martineau H, Muir CF, Priestnall SL, Henke D, Oevermann A, Jagannathan V, Mickelson JR, Drögemüller C. Canine NAPEPLD-associated models of human myelin disorders. Sci Rep 2018; 8:5818. [PMID: 29643404 PMCID: PMC5895582 DOI: 10.1038/s41598-018-23938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Canine leukoencephalomyelopathy (LEMP) is a juvenile-onset neurodegenerative disorder of the CNS white matter currently described in Rottweiler and Leonberger dogs. Genome-wide association study (GWAS) allowed us to map LEMP in a Leonberger cohort to dog chromosome 18. Subsequent whole genome re-sequencing of a Leonberger case enabled the identification of a single private homozygous non-synonymous missense variant located in the highly conserved metallo-beta-lactamase domain of the N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD) gene, encoding an enzyme of the endocannabinoid system. We then sequenced this gene in LEMP-affected Rottweilers and identified a different frameshift variant, which is predicted to replace the C-terminal metallo-beta-lactamase domain of the wild type protein. Haplotype analysis of SNP array genotypes revealed that the frameshift variant was present in diverse haplotypes in Rottweilers, and also in Great Danes, indicating an old origin of this second NAPEPLD variant. The identification of different NAPEPLD variants in dog breeds affected by leukoencephalopathies with heterogeneous pathological features, implicates the NAPEPLD enzyme as important in myelin homeostasis, and suggests a novel candidate gene for myelination disorders in people.
Collapse
Affiliation(s)
- K M Minor
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - A Letko
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - D Becker
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - M Drögemüller
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - P J J Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - S R Bellekom
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - P A J Leegwater
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - Q E M Stassen
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3508, CM, The Netherlands
| | - K Putschbach
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - A Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - T Flegel
- Department of Small Animal Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - K Matiasek
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, 80539, Germany
| | - K J Ekenstedt
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - E Furrow
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - E E Patterson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - S R Platt
- Small Animal Medicine and Surgery, University of Georgia, Athens, GA, 30602, USA
| | - P A Kelly
- Veterinary Sciences Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - J P Cassidy
- Veterinary Sciences Centre, University College Dublin, Dublin, D04 V1W8, Ireland
| | - G D Shelton
- Department of Pathology, University of California, La Jolla, CA, 92093, USA
| | - K Lucot
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA, 95616, USA
| | - D L Bannasch
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA, 95616, USA
| | - H Martineau
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - C F Muir
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - S L Priestnall
- Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - D Henke
- Division of Clinical Neurology, University of Bern, Bern, 3001, Switzerland
| | - A Oevermann
- Division of Neurological Sciences, University of Bern, Bern, 3001, Switzerland
| | - V Jagannathan
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - J R Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - C Drögemüller
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland.
| |
Collapse
|
18
|
Barker EN, Dawson LJ, Rose JH, Van Meervenne S, Frykman O, Rohdin C, Leijon A, Soerensen KE, Järnegren J, Johnson GC, O'Brien DP, Granger N. Degenerative Encephalopathy in Nova Scotia Duck Tolling Retrievers Presenting with a Rapid Eye Movement Sleep Behavior Disorder. J Vet Intern Med 2018; 30:1681-1689. [PMID: 27717189 PMCID: PMC5032881 DOI: 10.1111/jvim.14575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/17/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022] Open
Abstract
Background Neurodegenerative diseases are a heterogeneous group of disorders characterized by loss of neurons and are commonly associated with a genetic mutation. Hypothesis/Objectives To characterize the clinical and histopathological features of a novel degenerative neurological disease affecting the brain of young adult Nova Scotia Duck Tolling Retrievers (NSDTRs). Animals Nine, young adult, related NSDTRs were evaluated for neurological dysfunction and rapid eye movement sleep behavior disorder. Methods Case series review. Results Clinical signs of neurological dysfunction began between 2 months and 5 years of age and were progressive in nature. They were characterized by episodes of marked movements during sleep, increased anxiety, noise phobia, and gait abnormalities. Magnetic resonance imaging documented symmetrical, progressively increasing, T2‐weighted image intensity, predominantly within the caudate nuclei, consistent with necrosis secondary to gray matter degeneration. Abnormalities were not detected on clinicopathological analysis of blood and cerebrospinal fluid, infectious disease screening or urine metabolite screening in most cases. Postmortem examination of brain tissue identified symmetrical malacia of the caudate nuclei and axonal dystrophy within the brainstem and spinal cord. Genealogical analysis supports an autosomal recessive mode of inheritance. Conclusions and Clinical Importance A degenerative encephalopathy was identified in young adult NSDTRs consistent with a hereditary disease. The prognosis is guarded due to the progressive nature of the disease, which is minimally responsive to empirical treatment.
Collapse
Affiliation(s)
- E N Barker
- School of Veterinary Sciences, University of Bristol, Langford, UK.
| | - L J Dawson
- IDEXX Laboratories Ltd Wetherby, West Yorkshire, UK
| | - J H Rose
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | | | | | - C Rohdin
- Department of Clinical Sciences, Swedish University of Agricultural Science, Uppsala, Sweden.,Anicura, Albano Small Animal Hospital, Danderyd, Sweden
| | - A Leijon
- Department of Biomedical Sciences and Veterinary Public Health, Section of Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K E Soerensen
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - J Järnegren
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - G C Johnson
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO
| | - N Granger
- School of Veterinary Sciences, University of Bristol, Langford, UK
| |
Collapse
|
19
|
Variation in MUTYH expression in Arabian horses with Cerebellar Abiotrophy. Brain Res 2017; 1678:330-336. [PMID: 29103988 DOI: 10.1016/j.brainres.2017.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
Abstract
Cerebellar Abiotrophy (CA) is a neurodegenerative disease in Arabian horses affecting the cerebellum, more specifically the Purkinje neurons. Although CA occurs in several domestic species, CA in Arabian horses is unique in that a single nucleotide polymorphism (SNP) has been associated with the disease. Total RNA sequencing (RNA-seq) was performed on CA-affected horses to address the molecular mechanism underlying the disease. This research expands upon the RNA-seq work by measuring the impact of the CA-associated SNP on the candidate gene MutY homolog (MUTYH) and its regulation, isoform-specific expression and protein localization. We hypothesized that the CA-associated SNP compromises the promoter region of MUTYH, leading to differential expression of its isoforms. Our research demonstrates that the CA-associated SNP introduces a new binding site for a novel transcription factor (Myelin Transcription Factor-1 Like protein, MYT1L). In addition, CA-affected horses show differential expression of a specific isoform of MUTYH as well as different localization in the Purkinje and granular neurons of the cerebellum.
Collapse
|
20
|
Hawes MC, Finnie JW, Jerrett IV, Badman R, Scott M. Primary, congenital neuroaxonal dystrophy with peripheral nerve demyelination in Merino-Border Leicester × Polled Dorset lambs. Aust Vet J 2017; 95:416-420. [PMID: 28901548 DOI: 10.1111/avj.12633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 11/28/2022]
Abstract
CASE REPORT Clinicopathological features of neuroaxonal dystrophy (NAD) in newborn, Merino-Border Leicester × Polled Dorset lambs are described. The affected lambs were unable to walk at birth and microscopic examination of brainstem and spinal cord sections revealed bilaterally symmetrical accumulations of axonal swellings (spheroids), the histological hallmark of primary NAD. The neurological deficit was also exacerbated by myelin loss and secondary axonal degeneration, particularly in the spinal cord and sciatic nerves, but also, to a more limited extent, in brainstem and spinal nerves. CONCLUSIONS Although lambs previously diagnosed with NAD have ranged in age from 2 days to 7 months, this is believed to be the first report of congenital NAD in this species. Moreover, the present cases are the only ones in which peripheral nerve demyelination has been found.
Collapse
Affiliation(s)
- M C Hawes
- DEDJTR Victoria, Veterinary Diagnostic Services, Bundoora, Victoria, Australia
| | - J W Finnie
- SA Pathology and University of Adelaide, Frome Road, Adelaide 5000, South Australia, Australia
| | - I V Jerrett
- DEDJTR Victoria, Veterinary Diagnostic Services, Bundoora, Victoria, Australia
| | - R Badman
- DEDJTR Victoria, Animal Health and Welfare, Bendigo, Victoria, Australia
| | - M Scott
- DEDJTR Victoria, Animal Health and Welfare, Bendigo, Victoria, Australia
| |
Collapse
|
21
|
Finnie JW, Manavis J. Axonal spheroids in ovine neuroaxonal dystrophy are immunopositive to kinesin and dynein. J Vet Diagn Invest 2017; 29:852-855. [DOI: 10.1177/1040638717721579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurologic disorder of sheep characterized by accumulation of numerous axonal swellings (spheroids) in specific regions of the brainstem and spinal cord. Disruption of axonal transport, which is driven in anterograde and retrograde directions by the molecular motors, kinesin and dynein, respectively, is believed to contribute to spheroid development. Accordingly, we examined spheroids in ovine NAD cases immunohistochemically for kinesin and dynein and found both motor proteins, with dynein more strongly expressed than kinesin. Further investigations of the kinesin and dynein content of axonal spheroids in NAD, and other neurodegenerative disorders of domestic animals, could assist in better understanding the pathogenesis of these diseases.
Collapse
Affiliation(s)
- John W. Finnie
- SA Pathology, Hanson Institute Centre for Neurological Diseases and Schools of Medicine and Veterinary Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Jim Manavis
- SA Pathology, Hanson Institute Centre for Neurological Diseases and Schools of Medicine and Veterinary Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Degl’Innocenti S, Asiag N, Zeira O, Falzone C, Cantile C. Neuroaxonal Dystrophy and Cavitating Leukoencephalopathy of Chihuahua Dogs. Vet Pathol 2017; 54:832-837. [DOI: 10.1177/0300985817712557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nimrod Asiag
- San Michele Veterinary Hospital, Tavazzano con Villavesco, Lombardia, Italy
| | - Offer Zeira
- San Michele Veterinary Hospital, Tavazzano con Villavesco, Lombardia, Italy
| | | | - Carlo Cantile
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Barrows M, Killick R, Day C, Saunders R, Baiker K, Ressel L, Denk D. Neuroaxonal Dystrophy in a Flock of Pied Imperial Pigeons (Ducula bicolor). J Comp Pathol 2017; 156:451-457. [PMID: 28391972 DOI: 10.1016/j.jcpa.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
Abstract
Five juvenile pied imperial pigeons (Ducula bicolor) presented with neurological signs including torticollis, ataxia and poor flying ability. All were humanely destroyed and submitted for post-mortem examination. Microscopically, the most significant findings were in the brain and spinal cord. Spheroid formation was evident within the medulla, pons, diencephalon, cortical grey and subcortical white matter, spinal cord white and grey matter and the granular and molecular cell layers of the cerebellum. There was no evidence of associated inflammation. Immunohistochemistry revealed positive labelling within the spheroids for S100 axons and phosphorylated neurofilaments including SMI31, neurofilament cocktail and microtubule-associated protein 2. Transmission electron microscopy confirmed the light microscopical findings of frequent axonal spheroids. These results are consistent with neuroaxonal dystrophy, which has not been described previously in pigeons. This highlights the importance of considering neuroaxonal dystrophy in juvenile birds with neurological signs. A genetic basis is suspected in this group.
Collapse
Affiliation(s)
- M Barrows
- Bristol Zoological Society, Clifton, Bristol, UK.
| | - R Killick
- Bristol Zoological Society, Clifton, Bristol, UK
| | - C Day
- Bristol Zoological Society, Clifton, Bristol, UK
| | - R Saunders
- Bristol Zoological Society, Clifton, Bristol, UK
| | - K Baiker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | - L Ressel
- Department of Veterinary Pathology, Infection and Public Health, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, UK
| | - D Denk
- International Zoo Veterinary Group Pathology, Station House, Parkwood Street, Keighley, UK
| |
Collapse
|
24
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Pintus D, Cancedda MG, Macciocu S, Contu C, Ligios C. Pathological findings in a Dachshund-cross dog with neuroaxonal dystrophy. Acta Vet Scand 2016; 58:37. [PMID: 27267214 PMCID: PMC4895804 DOI: 10.1186/s13028-016-0218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/28/2016] [Indexed: 12/14/2022] Open
Abstract
Background Neuroaxonal dystrophy (NAD) is a neurodegenerative condition affecting humans and animals characterized by the widespread presence of swollen axons (spheroids). Case presentation Herein, we report the pathological findings in a case of neuroaxonal dystrophy in a Dachshund-cross puppy, which was euthanized because of a proprioceptive positioning deficits and irreversible ataxia of the hind limbs. Histologically, there was a bilaterally symmetric neuroaxonal dystrophy with eosinophilic axonal spheroids exclusively localized at the level of the ventral posterior lateral nucleus of the thalamus, medial lemniscus, gracilis nucleus, medial cuneatus nucleus in the brain as well as the gracilis and cuneatus fasciculi throughout the spinal cord. Conclusion To the authors’ knowledge, this is the first report of canine neuroaxonal dystrophy with this exclusive and specific localization only in the neuronal circuit implicated in the transmission of conscious proprioceptive information.
Collapse
|
26
|
Hanshaw DM, Finnie JW, Manavis J, Kessell AE. Axonal Spheroid Accumulation In the Brainstem and Spinal Cord of A Young Angus Cow with Ataxia. Aust Vet J 2015. [PMID: 26220321 DOI: 10.1111/avj.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CASE REPORT An 18-month-old Angus cow presented with rapidly developing ataxia and subsequently died. The finding of large numbers of axonal spheroids in brainstem nuclei and spinal cord grey matter, bilaterally symmetrical in distribution, was consistent with a histopathological diagnosis of neuroaxonal dystrophy (NAD). Most of the axonal swellings were immunopositive to amyloid precursor protein, suggesting that interruption to axonal flow was important in their genesis. CONCLUSIONS The topographical distribution of axonal spheroids in the brain and spinal cord in this bovine case closely resembled that found in the ovine neurodegenerative disorder termed NAD, in which axonal swellings are the major pathological feature. This appears to be the first reported case of this type of NAD in cattle. The aetiology of the spheroidal aggregations in this case was not determined. There was no evidence from the case history or neuropathology to indicate whether the axonal spheroids in this case involved an acquired or heritable aetiology.
Collapse
Affiliation(s)
- D M Hanshaw
- Gribbles Veterinary Pathology (VETLAB), Adelaide, SA, Australia
| | - J W Finnie
- SA Pathology, Hanson Institute Centre for Neurological Diseases, Adelaide, South Australia, Australia. .,School of Veterinary Science, University of Adelaide, Adelaide, SA, Australia.
| | - J Manavis
- SA Pathology, Hanson Institute Centre for Neurological Diseases, Adelaide, South Australia, Australia
| | - A E Kessell
- Gribbles Veterinary Pathology (VETLAB), Adelaide, SA, Australia
| |
Collapse
|
27
|
Hahn K, Rohdin C, Jagannathan V, Wohlsein P, Baumgärtner W, Seehusen F, Spitzbarth I, Grandon R, Drögemüller C, Jäderlund KH. TECPR2 Associated Neuroaxonal Dystrophy in Spanish Water Dogs. PLoS One 2015; 10:e0141824. [PMID: 26555167 PMCID: PMC4640708 DOI: 10.1371/journal.pone.0141824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022] Open
Abstract
Clinical, pathological and genetic examination revealed an as yet uncharacterized juvenile-onset neuroaxonal dystrophy (NAD) in Spanish water dogs. Affected dogs presented with various neurological deficits including gait abnormalities and behavioral deficits. Histopathology demonstrated spheroid formation accentuated in the grey matter of the cerebral hemispheres, the cerebellum, the brain stem and in the sensory pathways of the spinal cord. Iron accumulation was absent. Ultrastructurally spheroids contained predominantly closely packed vesicles with a double-layered membrane, which were characterized as autophagosomes using immunohistochemistry. The family history of the four affected dogs suggested an autosomal recessive inheritance. SNP genotyping showed a single genomic region of extended homozygosity of 4.5 Mb in the four cases on CFA 8. Linkage analysis revealed a maximal parametric LOD score of 2.5 at this region. By whole genome re-sequencing of one affected dog, a perfectly associated, single, non-synonymous coding variant in the canine tectonin beta-propeller repeat-containing protein 2 (TECPR2) gene affecting a highly conserved region was detected (c.4009C>T or p.R1337W). This canine NAD form displays etiologic parallels to an inherited TECPR2 associated type of human hereditary spastic paraparesis (HSP). In contrast to the canine NAD, the spinal cord lesions in most types of human HSP involve the sensory and the motor pathways. Furthermore, the canine NAD form reveals similarities to cases of human NAD defined by widespread spheroid formation without iron accumulation in the basal ganglia. Thus TECPR2 should also be considered as candidate gene for human NAD. Immunohistochemistry and the ultrastructural findings further support the assumption, that TECPR2 regulates autophagosome accumulation in the autophagic pathways. Consequently, this report provides the first genetic characterization of juvenile canine NAD, describes the histopathological features associated with the TECPR2 mutation and provides evidence to emphasize the association between failure of autophagy and neurodegeneration.
Collapse
Affiliation(s)
- Kerstin Hahn
- University of Veterinary Medicine Hannover, Department of Pathology, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Cecilia Rohdin
- University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Anicura, Albano Small Animal Hospital, Danderyd, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Wohlsein
- University of Veterinary Medicine Hannover, Department of Pathology, Hannover, Germany
| | - Wolfgang Baumgärtner
- University of Veterinary Medicine Hannover, Department of Pathology, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Frauke Seehusen
- University of Veterinary Medicine Hannover, Department of Pathology, Hannover, Germany
| | - Ingo Spitzbarth
- University of Veterinary Medicine Hannover, Department of Pathology, Hannover, Germany
| | - Rodrigo Grandon
- Department of Biomedical Sciences and Veterinary Public Health, Division of Pathology, Pharmacology and Toxicology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| | - Karin Hultin Jäderlund
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
28
|
Finnie JW, Jerrett IV, Manavis J, Cave J. Neuroaxonal dystrophy in Merino-Border Leicester × Polled Dorset lambs. Aust Vet J 2014; 92:389-91. [PMID: 25123686 DOI: 10.1111/avj.12222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
Abstract
CASE REPORT The clinicopathological features of neuroaxonal dystrophy (NAD) in 2 lambs are described. Of 40 Merino-Border Leicester × Polled Dorset lambs on a property in north-eastern Victoria, 4 presented with marked ataxia and listlessness, and 2 affected animals (2 days and 2 weeks of age, respectively) of both sexes were necropsied. Numerous axonal swellings (spheroids) were found in the central nervous system, particularly in brainstem nuclei and spinal cord grey matter, and there was severe spinal cord demyelination. CONCLUSIONS This is the first report of NAD in such crossbred lambs; the affected animals were much younger than in previously described cases of ovine NAD and myelin loss was of much greater magnitude than previously reported.
Collapse
Affiliation(s)
- J W Finnie
- SA Pathology, Hanson Institute Centre for Neurological Diseases, Adelaide, South Australia, Australia; School of Veterinary Science, University of Adelaide, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
29
|
Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses 2013; 82:97-104. [PMID: 24315447 DOI: 10.1016/j.mehy.2013.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Damage to the locus ceruleus, with a subsequent decrease of CNS noradrenaline, occurs in a wide range of neurodegenerative, demyelinating and psychiatric disorders. The cause of the initial locus ceruleus damage remains unknown. Recently, inorganic mercury was found to enter human locus ceruleus neurons selectively. This has led to the formulation of a new hypothesis as to the cause of these disorders. HYPOTHESIS Toxicants enter locus ceruleus neurons selectively, aided by the extensive exposure these neurons have to CNS capillaries, as well as by stressors that upregulate locus ceruleus activity. The resulting noradrenaline dysfunction affects a wide range of CNS cells and can trigger a number of neurodegenerative (Alzheimer's, Parkinson's and motor neuron disease), demyelinating (multiple sclerosis), and psychiatric (major depression and bipolar disorder) conditions. CONCLUSIONS This hypothesis proposes that environmental toxicants entering the locus ceruleus can give rise to a variety of CNS disorders. Proposals are made for experiments to gain further evidence for this hypothesis. If it is shown that toxicants in the locus ceruleus are responsible for these conditions, attempts can be made to prevent the toxicant exposures or to remove the toxicants from the nervous system.
Collapse
Affiliation(s)
- Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
30
|
Identification and management of cognitive decline in companion animals and the comparisons with Alzheimer disease: A review. J Vet Behav 2013. [DOI: 10.1016/j.jveb.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Kyöstilä K, Cizinauskas S, Seppälä EH, Suhonen E, Jeserevics J, Sukura A, Syrjä P, Lohi H. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 2012; 8:e1002759. [PMID: 22719266 PMCID: PMC3375262 DOI: 10.1371/journal.pgen.1002759] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/30/2012] [Indexed: 11/23/2022] Open
Abstract
Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders. Hereditary ataxias are a heterogeneous group of rare disorders characterized by progressive cerebellar neurodegeneration. Several causative mutations have been identified in various forms of human ataxias. In addition to humans, inherited ataxias have been described in several other species, including the domestic dog. In this study, we have studied the clinical and genetic properties of cerebellar ataxia in the Finnish Hound dog breed. The breed suffers from a progressive ataxia that has an early onset before the age of 3 months. Affected puppies have difficulties in coordinating their movements and balance, and have to be euthanized due to rapidly worsening symptoms. Our pedigree analysis suggested an autosomal recessive mode of inheritance, which was confirmed by identifying a homozygous mutation in the SEL1L gene through genome-wide association and linkage analyses. The SEL1L protein functions in a protein quality control pathway that targets misfolded proteins to degradation in the endoplasmic reticulum. Mutations in the SEL1L gene have not been previously found in ataxias. Our study indicates SEL1L as a novel candidate gene for human childhood ataxias, establishes a large animal model to investigate mechanisms of cerebellar neurodegeneration, and enables carrier screening for breeding purposes.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Eija H. Seppälä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Esko Suhonen
- Small Animal Clinic Kontiolahti, Kontiolahti, Finland
| | | | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
32
|
Wong DM, Ghosh A, Fales-Williams AJ, Haynes JS, Kanthasamy AG. Evidence of oxidative injury of the spinal cord in 2 horses with equine degenerative myeloencephalopathy. Vet Pathol 2012; 49:1049-53. [PMID: 22390882 DOI: 10.1177/0300985812439074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cervical spinal cords of 2 horses with equine degenerative myeloencephalopathy (EDM) were evaluated for evidence of oxidative damage to the central nervous system (CNS) using immunohistochemical staining for 3-nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE). Neurons of the CNS from horses with EDM had positive immunohistochemical staining, whereas control samples did not, thus supporting the theory that oxidative damage is a potential underlying factor in horses with EDM. In addition, serum vitamin E concentration was low in both EDM-affected horses, and vitamin E concentration was also deficient in the cerebrospinal fluid in 1 EDM horse, further supporting the association between low vitamin E concentrations and oxidative damage to the CNS. Continued research is necessary to further define the pathophysiologic mechanisms of EDM.
Collapse
Affiliation(s)
- D M Wong
- Department of Veterinary Clinical Sciences, Lloyd Veterinary Medical Center, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
33
|
Kessell AE, Finnie JW, Blumbergs PC, Manavis J, Jerrett IV. Neuroaxonal dystrophy in Australian Merino lambs. J Comp Pathol 2011; 147:62-72. [PMID: 22055697 DOI: 10.1016/j.jcpa.2011.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/12/2011] [Accepted: 09/24/2011] [Indexed: 01/16/2023]
Abstract
Neuroaxonal dystrophy (NAD) is a morphological abnormality in man and animals that is characterized by the occurrence of numerous axonal swellings (spheroids) in the nervous system. NAD has been described in Suffolk lambs in the USA, Merino lambs in Australia and several breeds of sheep in New Zealand. This paper describes the clinicopathological changes of only the second occurrence of NAD reported in Merino lambs. There were some features (myelin loss, gliosis and visual impairment) in these Australian cases that have not been reported previously in ovine NAD. Application of immunohistochemical markers of axonal transport suggested that disruption of this transport mechanism contributed to spheroid development.
Collapse
Affiliation(s)
- A E Kessell
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | | | | | | | |
Collapse
|
34
|
Fyfe JC, Al-Tamimi RA, Castellani RJ, Rosenstein D, Goldowitz D, Henthorn PS. Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia. J Comp Neurol 2010; 518:3771-84. [PMID: 20653033 DOI: 10.1002/cne.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of phospholipase A2 group VI gene (PLA2G6), but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Brosnahan M, Holbrook T, Ritchey J. Neuroaxonal Dystrophy Associated with Cerebellar Dysfunction in a 5-Month-Old Pony of the Americas Colt. J Vet Intern Med 2009; 23:1303-6. [DOI: 10.1111/j.1939-1676.2009.0379.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
da Costa RC, Parent JM, Poma R, de Lahunta A. Multisystem axonopathy and neuronopathy in Golden Retriever dogs. J Vet Intern Med 2009; 23:935-9. [PMID: 19496908 DOI: 10.1111/j.1939-1676.2009.0329.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- R C da Costa
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | | | | | | |
Collapse
|
37
|
Golini L, Colangeli R, Tranquillo V, Mariscoli M. Association between neurologic and cognitive dysfunction signs in a sample of aging dogs. J Vet Behav 2009. [DOI: 10.1016/j.jveb.2008.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|