1
|
Martinez-Guerrero L, Vignaux PA, Harris JS, Lane TR, Urbina F, Wright SH, Ekins S, Cherrington NJ. Computational Approaches for Predicting Drug Interactions with Human Organic Anion Transporter 4 (OAT4). Mol Pharm 2025; 22:1847-1858. [PMID: 40112155 DOI: 10.1021/acs.molpharmaceut.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Human Organic Anion Transporter 4 (OAT4) is predominantly expressed in the kidneys, particularly in the apical membrane of the proximal tubule cells. This transporter is involved in the renal handling of endogenous and exogenous organic anions (OAs), making it an important transporter for drug-drug interactions (DDIs). To better understand OAT4-compound interactions, we generated single concentration (25 μM) in vitro inhibition data for over 1400 small molecules against the uptake of the fluorescent OA 6-carboxyfluorescein (6-CF) in Chinese hamster ovary (CHO) cells. Several drugs exhibiting higher than 50% inhibition in this initial screen were selected to determine IC50 values against three structurally distinct OAT4 substrates: estrone sulfate (ES), ochratoxin A (OTA), and 6-CF. These IC50 values were then compared to the drug plasma concentration as per the 2020 FDA drug-drug interaction (DDI) guidance. Several screened compounds, including some not previously reported, emerged as novel inhibitors of OAT4. These data were also used to build machine learning classification models to predict the activity of potential OAT4 inhibitors. We compared multiple machine learning algorithms and data cleaning techniques to model these screening data and investigated the utility of conformal predictors to predict OAT4 inhibition of a leave-out set. These experimental and computational approaches allowed us to model diverse and unbalanced data to enable predictions for DDIs mediated by this transporter.
Collapse
Affiliation(s)
- Lucy Martinez-Guerrero
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel, Tucson, Arizona 85721, United States
| | - Patricia A Vignaux
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States
| | - Joshua S Harris
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States
| | - Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, 1200 E. University Blvd., Tucson, Arizona 85724, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Dr., Raleigh, North Carolina 27606, United States
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 E. Mabel, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Sun P, Lootens O, Kabeta T, Reckelbus D, Furman N, Cao X, Zhang S, Antonissen G, Croubels S, De Boevre M, De Saeger S. Exploration of Cytochrome P450-Related Interactions between Aflatoxin B1 and Tiamulin in Broiler Chickens. Toxins (Basel) 2024; 16:160. [PMID: 38535826 PMCID: PMC10974768 DOI: 10.3390/toxins16030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2025] Open
Abstract
Poultry may face simultaneous exposure to aflatoxin B1 (AFB1) and tiamulin (TIA), given mycotoxin contamination and antibiotic use. As both mycotoxins and antibiotics can affect cytochrome P450 enzymes (CYP450), our study aimed to explore their interaction. We developed UHPLC-MS/MS methods for the first-time determination of the interaction between TIA and AFB1 in vitro and in vivo in broiler chickens. The inhibition assay showed the half maximal inhibitory concentration (IC50) values of AFB1 and TIA in chicken liver microsomes are more than 7.6 μM, indicating an extremely weak inhibitory effect on hepatic enzymes. Nevertheless, the oral TIA pharmacokinetic results indicated that AFB1 significantly increased the area under the plasma concentration-time curve (AUClast) of TIA by 167% (p < 0.01). Additionally, the oral AFB1 pharmacokinetics revealed that TIA increased the AUClast and mean residence time (MRT) of AFB1 by 194% (p < 0.01) and 136%, respectively. These results suggested that the observed inhibition may be influenced by other factors, such as transport. Therefore, it is meaningful to further explore transport and other enzymes, involved in the interaction between AFB1 and TIA. Furthermore, additional clinical studies are necessary to thoroughly assess the safety of co-exposure with mycotoxins and antibiotics.
Collapse
Affiliation(s)
- Pan Sun
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Orphélie Lootens
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Tadele Kabeta
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Oromia, Ethiopia
| | - Diethard Reckelbus
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
| | - Natalia Furman
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
- Chair Poultry Health Sciences, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium;
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Suxia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.C.); (S.Z.)
| | - Gunther Antonissen
- Chair Poultry Health Sciences, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium;
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (T.K.); (D.R.); (N.F.); (S.C.)
| | - Marthe De Boevre
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
| | - Sarah De Saeger
- Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium; (P.S.); (O.L.); (M.D.B.)
| |
Collapse
|
3
|
Sun X, Ye Y, Sun J, Tang L, Yang X, Sun X. Advances in the study of liver microsomes in the in vitro metabolism and toxicity evaluation of foodborne contaminants. Crit Rev Food Sci Nutr 2022; 64:3264-3278. [PMID: 36226776 DOI: 10.1080/10408398.2022.2131728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.
Collapse
Affiliation(s)
- Xinyu Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
5
|
Pauletto M, Tolosi R, Dacasto M, Giantin M. Missense single nucleotide variants affecting CYP3A catalytic activity are present in Limousine cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1808100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marianna Pauletto
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Roberta Tolosi
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Mauro Dacasto
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| |
Collapse
|
6
|
Hu SX, Mazur CA, Feenstra KL. Assessment of Inhibition of Bovine Hepatic Cytochrome P450 by 43 Commercial Bovine Medicines Using a Combination of In Vitro Assays and Pharmacokinetic Data from the Literature. Drug Metab Lett 2020; 13:123-131. [PMID: 31750810 DOI: 10.2174/1872312813666191120094649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been a lack of information about the inhibition of bovine medicines on bovine hepatic CYP450 at their commercial doses and dosing routes. OBJECTIVE The aim of this work was to assess the inhibition of 43 bovine medicines on bovine hepatic CYP450 using a combination of in vitro assay and Cmax values from pharmacokinetic studies with their commercial doses and dosing routes in the literature. METHODS Those drugs were first evaluated through a single point inhibitory assay at 3 μM in bovine liver microsomes for six specific CYP450 metabolisms, phenacetin o-deethylation, coumarin 7- hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorzoxazone 6-hydroxylation and midazolam 1'-hydroxylation. When the inhibition was greater than 20% in the assay, IC50 values were then determined. The potential in vivo bovine hepatic CYP450 inhibition by those drugs was assessed using a combination of the IC50 values and in vivo Cmax values from pharmacokinetic studies at their commercial doses and administration routes in the literature. RESULTS Fifteen bovine medicines or metabolites showed in vitro inhibition on one or more bovine hepatic CYP450 metabolisms with different IC50 values. Desfuroylceftiour (active metabolite of ceftiofur), nitroxinil and flunixin have the potential to inhibit one of the bovine hepatic CYP450 isoforms in vivo at their commercial doses and administration routes. The rest of the bovine medicines had low risks of in vivo bovine hepatic CYP450 inhibition. CONCLUSION This combination of in vitro assay and in vivo Cmax data provides a good approach to assess the inhibition of bovine medicines on bovine hepatic CYP450.
Collapse
Affiliation(s)
- Steven X Hu
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| | - Chase A Mazur
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| | - Kenneth L Feenstra
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| |
Collapse
|
7
|
Rasmussen MK. Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 2020; 94:1899-1914. [PMID: 32172306 DOI: 10.1007/s00204-020-02710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome P450s (CYPs) constitute a family of enzymes maintaining vital functions in the body and are mostly recognized for their significant role in detoxification. Of the CYP subfamilies, CYP3A, is one of the most active in the clearance of drugs and other xenobiotics. During the last decades, much focus has been on exploring different models for human CYP3A regulation, expression and activity. In that respect, the growing knowledge of the porcine CYP3As is of great interest. Although many aspects of porcine CYP3A regulation and activity are still unknown, the current literature provides a basic understanding of the porcine CYP3As that can be used e.g., when translating results from studies done in the porcine model into human settings. In this review, the current knowledge about porcine CYP3A expression, regulation, activity and metabolic significance are highlighted. Future research needs are also identified.
Collapse
|
8
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|
9
|
Sandoval PJ, Zorn KM, Clark AM, Ekins S, Wright SH. Assessment of Substrate-Dependent Ligand Interactions at the Organic Cation Transporter OCT2 Using Six Model Substrates. Mol Pharmacol 2018; 94:1057-1068. [PMID: 29884691 PMCID: PMC6070079 DOI: 10.1124/mol.117.111443] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Organic cation transporter (OCT) 2 mediates the entry step for organic cation secretion by renal proximal tubule cells and is a site of unwanted drug-drug interactions (DDIs). But reliance on decision tree-based predictions of DDIs at OCT2 that depend on IC50 values can be suspect because they can be influenced by choice of transported substrate; for example, IC50 values for the inhibition of metformin versus MPP transport can vary by 5- to 10-fold. However, it is not clear whether the substrate dependence of a ligand interaction is common among OCT2 substrates. To address this question, we screened the inhibitory effectiveness of 20 µM concentrations of several hundred compounds against OCT2-mediated uptake of six structurally distinct substrates: MPP, metformin, N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA), TEA, cimetidine, and 4-4-dimethylaminostyryl-N-methylpyridinium (ASP). Of these, MPP transport was least sensitive to inhibition. IC50 values for 20 structurally diverse compounds confirmed this profile, with IC50 values for MPP averaging 6-fold larger than those for the other substrates. Bayesian machine-learning models of ligand-induced inhibition displayed generally good statistics after cross-validation and external testing. Applying our ASP model to a previously published large-scale screening study for inhibition of OCT2-mediated ASP transport resulted in comparable statistics, with approximately 75% of "active" inhibitors predicted correctly. The differential sensitivity of MPP transport to inhibition suggests that multiple ligands can interact simultaneously with OCT2 and supports the recommendation that MPP not be used as a test substrate for OCT2 screening. Instead, metformin appears to be a comparatively representative OCT2 substrate for both in vitro and in vivo (clinical) use.
Collapse
Affiliation(s)
- Philip J Sandoval
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (P.J.S., S.H.W.); Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.); and Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.)
| | - Kimberley M Zorn
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (P.J.S., S.H.W.); Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.); and Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.)
| | - Alex M Clark
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (P.J.S., S.H.W.); Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.); and Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.)
| | - Sean Ekins
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (P.J.S., S.H.W.); Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.); and Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.)
| | - Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (P.J.S., S.H.W.); Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.); and Molecular Materials Informatics, Inc., Montreal, Quebec, Canada (A.M.C.)
| |
Collapse
|