1
|
Lim Y, Park J, Lim JE, Park M, Koh SK, Lee M, Kim SK, Lee SH, Song KH, Park DG, Kim HY, Jeong BC, Cho D. Evaluating a combination treatment of NK cells and reovirus against bladder cancer cells using an in vitro assay to simulate intravesical therapy. Sci Rep 2024; 14:7390. [PMID: 38548803 PMCID: PMC10979019 DOI: 10.1038/s41598-024-56297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Intravesical treatment using either reovirus or natural killer (NK) cells serves as an efficient strategy for the treatment of bladder cancer cells (BCCs); however, corresponding monotherapies have often shown modest cytotoxicity. The potential of a locoregional combination using high-dose reovirus and NK cell therapy in an intravesical approach has not yet been studied. In this study, we evaluated the effectiveness of reoviruses and expanded NK cells (eNK) as potential strategies for the treatment of bladder cancer. The anti-tumor effects of mono-treatment with reovirus type 3 Dearing strain (RC402 and RP116) and in combination with interleukin (IL)-18/-21-pretreated eNK cells were investigated on BCC lines (5637, HT-1376, and 253J-BV) using intravesical therapy to simulate in vitro model. RP116 and IL-18/-21-pretreated eNK cells exhibited effective cytotoxicity against grade 1 carcinoma (5637 cells) when used alone, but not against HT-1376 (grade 2 carcinoma) and 253J-BV cells (derived from a metastatic site). Notably, combining RP116 with IL-18/-21-pretreated eNK cells displayed effective cytotoxicity against both HT-1376 and 253J-BV cells. Our findings underscore the potential of a combination therapy using reoviruses and NK cells as a promising strategy for treating bladder cancer.
Collapse
Affiliation(s)
- Yuree Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Jeehun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Joung Eun Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Minji Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Mijeong Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Dong Guk Park
- ViroCure Inc., Seoul, Republic of Korea
- Department of Surgery, School of Medicine, Dankook University, Cheonan, South Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| | - Duck Cho
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Dothan D, Raisin G, Malchi N, Gordon A, Touitou D, Chertin B. Intravesical sustained release system of lidocaine and oxybutynin results from in vitro and animal study. Int Urol Nephrol 2022; 54:2167-2174. [PMID: 35780464 DOI: 10.1007/s11255-022-03280-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic debilitating condition of unknown etiology. Intravesical lidocaine demonstrated pain relief in patients with IC/BPS. Intravesical oxybutynin has shown therapeutic efficacy in patients with urinary bladder disorders. However, loss of drug with urination requiring multiple administrations and immediate dilution of drug concentration by residual urine in the bladder mitigated intravesical use of both drugs in clinical practice. The aim of this study was to evaluate the efficacy and safety of fixed-dose combination of lidocaine and oxybutynin, forming in the urine a sustained delivery system named TRG-042. MATERIAL AND METHODS In-vitro, we have quantitatively tested the concentration of lidocaine and oxybutynin released from TRG-042 in artificial urine. Following the successful in-vitro study weekly formulation of TRG-042 was instilled intravesically to six pigs. All pigs were followed with cystoscopy to assess the gradual degradation of the delivery system and to evaluate bladder response over 7 days. Daily blood samples were tested for drug quantization. RESULTS In-vitro studies have demonstrated oxybutynin and lidocaine sustained release over 1-week period coupled with full degradation of the matrix. None of the animals demonstrated any side effects following instillation. Cystoscopy examination observed gradual disintegration of TRG-042 over 1-week with no adverse reaction to the mucosa. Plasma concentrations of oxybutynin and lidocaine were uniformly stable over the 1-week period [1.46 ± 0.176 ng/ml and 4.29 ± 2.48 ng/ml respectively(mean ± SEM)] with almost undetectable concentration of N-desethyloxybutynin (NDO)[0.032 ± 0.068 ng/ml]. CONCLUSIONS The in-vitro and animal data demonstrated that TRG-042 can safely be used for intravesical sustained release of lidocaine and oxybutynin in the treatment of BPS/IC.
Collapse
Affiliation(s)
- David Dothan
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel
| | - Galiya Raisin
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel
| | - Nadav Malchi
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel
| | - Avi Gordon
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel
| | - Dan Touitou
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel
| | - Boris Chertin
- The Department of Urology, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, 91031, Jerusalem, Israel.
| |
Collapse
|
3
|
Jiao B, Liu K, Gong H, Ding Z, Xu X, Ren J, Zhang G, Yu Q, Gan Z. Bladder cancer selective chemotherapy with potent NQO1 substrate co-loaded prodrug nanoparticles. J Control Release 2022; 347:632-648. [PMID: 35618186 DOI: 10.1016/j.jconrel.2022.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Currently, clinical intravesical instillation chemotherapy has been greatly compromised by the toxicological and physiological factors. New formulations that can specifically and efficiently kill bladder cancer cells are in urgent need to overcome the low residence efficiency and dose limiting toxicity of current ones. The combination of mucoadhesive nanocarriers and cancer cell selective prodrugs can to great extent address these limitations. However, the insignificant endogenous stimulus difference between cancer cells and normal cells in most cases and the high local drug concentration make it essential to develop new drugs with broader selectivity-window. Herein, based on the statistically different NQO1 expression between cancerous and normal bladder tissues, the reactive oxygen species (ROS) activatable epirubicin prodrug and highly potent NQO1 substrate, KP372-1, was co-delivered using a GSH-responsive mucoadhesive nanocarrier. After endocytosis, epirubicin could be promptly activated by the NQO1-dependent ROS production caused by KP372-1, thus specifically inhibiting the proliferation of bladder cancer cells. Since KP372-1 is much more potent than some commonly used NQO1 substrates, for example, β-lapachone, the cascade drug activation could occur under much lower drug concentration, thus greatly lowering the toxicity in normal cells and broadening the selectivity-window during intravesical bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Binbin Jiao
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Kunpeng Liu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Haitao Gong
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Xu
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ren
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Guan Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Urology, China-Japan Friendship Hospital, Beijing, China.
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
4
|
Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc Natl Acad Sci U S A 2022; 119:2112696119. [PMID: 35131941 PMCID: PMC8851555 DOI: 10.1073/pnas.2112696119] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
This study provides proof-of-principle evidence for intravesical delivery of messenger RNA (mRNA) via a mucoadhesive nanoparticle (NP) strategy and reveals the therapeutic potential of KDM6A in treating bladder cancer metastasis, which remains difficult due to the physiological bladder barriers. The mucoadhesive NPs could protect loaded mRNA, prolong exposure of mRNA in disease sites, and benefit the penetration and effective expression, which all represent challenging hurdles for intravesical delivery of mRNA therapeutics. mRNA local delivery can also avoid potential toxicity issues via systemic delivery and unwanted protein expression throughout the body. We expect this mucoadhesive mRNA nanotechnology can be useful for the effective up-regulation of targeted proteins in bladder tissues in situ for both mechanistic understanding and translational study of bladder-related diseases. Lysine-specific demethylase 6A (KDM6A), also named UTX, is frequently mutated in bladder cancer (BCa). Although known as a tumor suppressor, KDM6A’s therapeutic potential in the metastasis of BCa remains elusive. It also remains difficult to fulfill the effective up-regulation of KDM6A levels in bladder tumor tissues in situ to verify its potential in treating BCa metastasis. Here, we report a mucoadhesive messenger RNA (mRNA) nanoparticle (NP) strategy for the intravesical delivery of KDM6A-mRNA in mice bearing orthotopic Kdm6a-null BCa and show evidence of KDM6A’s therapeutic potential in inhibiting the metastasis of BCa. Through this mucoadhesive mRNA NP strategy, the exposure of KDM6A-mRNA to the in situ BCa tumors can be greatly prolonged for effective expression, and the penetration can be also enhanced by adhering to the bladder for sustained delivery. This mRNA NP strategy is also demonstrated to be effective for combination cancer therapy with other clinically approved drugs (e.g., elemene), which could further enhance therapeutic outcomes. Our findings not only report intravesical delivery of mRNA via a mucoadhesive mRNA NP strategy but also provide the proof-of-concept for the usefulness of these mRNA NPs as tools in both mechanistic understanding and translational study of bladder-related diseases.
Collapse
|
5
|
Xu Y, Luo C, Wang J, Chen L, Chen J, Chen T, Zeng Q. Application of nanotechnology in the diagnosis and treatment of bladder cancer. J Nanobiotechnology 2021; 19:393. [PMID: 34838048 PMCID: PMC8626998 DOI: 10.1186/s12951-021-01104-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer (BC) is a common malignancy in the genitourinary system and the current theranostic approaches are unsatisfactory. Sensitivity and specificity of current diagnosis methods are not ideal and high recurrence and progression rates after initial treatment indicate the urgent need for management improvements in clinic. Nanotechnology has been proposed as an effective method to improve theranosis efficiency for both non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). For example, gold nanoparticles (AuNPs) have been developed for simple, fast and sensitive urinary sample test for bladder cancer diagnosis. Nanoparticles targeting bladder cancers can facilitate to distinguish the normal and abnormal bladder tissues during cystoscopy and thus help with the complete removal of malignant lesions. Both intravenous and intravesical agents can be modified by nanotechnology for targeted delivery, high anti-tumor efficiency and excellent tolerability, exhibiting encouraging potential in bladder cancer treatment. Photosensitizers and biological agents can also be delivered by nanotechnology, intermediating phototherapy and targeted therapy. The management of bladder cancer remained almost unchanged for decades with unsatisfactory effect. However, it is likely to change with the fast-developed nanotechnology. Herein we summarized the current utility of nanotechnology in bladder cancer diagnosis and treatment, providing insights for the future designing and discovering novel nanoparticles for bladder cancer management. ![]()
Collapse
Affiliation(s)
- Yadong Xu
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Luo
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jieqiong Wang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junxing Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| | - Qinsong Zeng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Kolawole OM, Lau WM, Khutoryanskiy VV. Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100007. [PMID: 31517272 PMCID: PMC6733296 DOI: 10.1016/j.ijpx.2019.100007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
The development of mucoadhesive in situ gelling formulations for intravesical application may improve the therapeutic outcomes of bladder cancer patients. In this work, chitosan/β-glycerophosphate (CHIGP) thermosensitive formulations have been prepared using three different chitosan grades (62, 124 and 370 kDa). Their ability to form in situ gelling systems triggered by changes in temperature upon administration to urinary bladder were evaluated using vial inversion and rheological methods. Texture analysis was used to study their mucoadhesive properties as well as syringeability through the urethral catheter. The retention of CHIGP formulations, with fluorescein sodium as the model drug, was studied on porcine urinary bladder mucosa ex vivo using the flow-through technique and fluorescent microscopy. CHIGP formulations containing mitomycin-C were prepared and drug release was studied using in vitro dialysis method. It was established that the molecular weight of chitosan influenced the thermogelling, mucoadhesive and drug release behaviour of the in situ gelling delivery systems. Formulations prepared from chitosan with greatest molecular weight (370 kDa) were found to be the most promising for intravesical application due to their superior gelling properties and in vitro retention in the bladder.
Collapse
Affiliation(s)
- Oluwadamilola M Kolawole
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, RG6 6AD Berkshire, United Kingdom
| | - Wing Man Lau
- School of Pharmacy, The Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, RG6 6AD Berkshire, United Kingdom
| |
Collapse
|
7
|
Pandey R, Jackson JK, Liggins R, Mugabe C, Burt HM. Enhanced taxane uptake into bladder tissues following co-administration with either mitomycin C, doxorubicin or gemcitabine: association to exfoliation processes. BJU Int 2018; 122:898-908. [PMID: 29862643 DOI: 10.1111/bju.14423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the effect of three anticancer drugs (mitomycin c (MMC), doxorubicin or gemcitabine) on bladder wall morphology and the uptake of paclitaxel or docetaxel following coadministration. The primary objective of this study was to measure the uptake of MMC, doxorubicin or gemcitabine with or without exposure of the tissue to amine terminated cationic nanoparticles (CNPs) and to investigate any possible exfoliation effects of the three drugs on intact bladder tissue. The secondary objective was to investigate the uptake of taxane drugs (docetaxel, DTX) and paclitaxel, (PTX) from surfactant micelle formulations in the presence of MMC, doxorubicin or gemcitabine. MATERIALS AND METHODS Sections of fresh pig bladder tissue were incubated in Franz diffusion cells with the urothelial side exposed to solutions of doxorubicin, MMC and gemcitabine containing radioactive drug for 90 min. Some tissue samples were simultaneously exposed to each of the three drugs in combination with the surfactant micelle formulations of PTX (Taxol) or DTX (Taxotere). Tissue sections were then cryostat sectioned for drug quantitation by liquid scintillation counting or fixed for scanning electron microscopy and haematoxylin and eosin staining. RESULTS All three drugs caused exfoliation of the urothelial layer of bladder tissues. Drug uptake studies showed that all three drugs effectively penetrated the lamina propria through to the muscular layer over a 2-h incubation and these levels were unaffected by pre-treatment with CNPs. The uptake levels of the taxane drugs PTX and DTX were significantly enhanced following simultaneous treatment of bladders with MMC, doxorubicin or gemcitabine. CONCLUSION The exfoliation effects of MMC, doxorubicin and gemcitabine allow for good tissue penetration of these drugs with no additional effect from CNP treatment of bladders. The observed exfoliation effect of these amine-containing drugs probably arises from a cationic interaction with the mucus and urothelium cell layer in a manner similar to that previously reported for CNPs. These studies suggest that the lack of long-term clinical efficacy of these drugs may not arise from poor intravesical drug penetration but may result from a rapid diffusion of the drugs into the deeper vascularised muscular region with rapid drug clearance. The enhanced uptake of PTX or DTX following co-administration with MMC, doxorubicin or gemcitabine probably arises from the removal of the urothelial barrier by exfoliation allowing for improved taxane partitioning into superficial layers. These effects may allow for dual drug intravesical strategies offering greatly improved taxane uptake and potential additive drug effects for improved efficacy.
Collapse
Affiliation(s)
- Rakhi Pandey
- Pharmaceutical Science, The University of British Columbia, Vancouver, BC, Canada
| | - John K Jackson
- Pharmaceutical Science, The University of British Columbia, Vancouver, BC, Canada
| | - Richard Liggins
- Centre for Drug Research and Development, The University of British Columbia, Vancouver, BC, Canada
| | - Clement Mugabe
- Centre for Drug Research and Development, The University of British Columbia, Vancouver, BC, Canada
| | - Helen M Burt
- Pharmaceutical Science, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Novel in-situ gel for intravesical administration of ketorolac. Saudi Pharm J 2018; 26:845-851. [PMID: 30202226 PMCID: PMC6128712 DOI: 10.1016/j.jsps.2018.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
The urinary bladder stores urine until the time of urination. Systemic administration of drugs to treat bladder diseases faces several limitations. Therefore, intravesical drug delivery is a promising alternative route of administration. An in-situ gel is used to form a gel inside the bladder cavity and ensure continuous release of the drug even after urination. The objective of the present study was to optimize an in-situ gel formulation of poloxamer and chitosan for intravesical delivery of ketorolac tromethamine. The gelling temperature of the prepared combinations ranged from 20.67 to 25.8 °C. In-vitro release of KT was sustained for up to 7 h using a poloxamer concentration ranging from 17% to 19% and a chitosan concentration ranging from 1% to 2%. Design-Expert® 10 was used to select the optimized formulation (poloxamer/chitosan 17/1.589% w/w) which significantly (p < 0.05) extended the drug release more than each polymer alone. An ex-vivo study showed the ability of the optimized formulation to sustain drug release after emptying two times to mimic urination. Furthermore, the formed gel adhered to the bladder tissue throughout the time period of the experiment. Intravesical administration of the optimized formulation to rabbits via catheter showed no obstruction of urine flow and continuous release of the drug for 12 h.
Collapse
|
9
|
Griffin JI, Cheng SKK, Hayashi T, Carson D, Saraswathy M, Nair DP, Simberg D. Cell-penetrating peptide CGKRK mediates efficient and widespread targeting of bladder mucosa following focal injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:1925-1932. [PMID: 28428051 PMCID: PMC5618708 DOI: 10.1016/j.nano.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/12/2017] [Accepted: 04/07/2017] [Indexed: 01/28/2023]
Abstract
The bladder presents an attractive target for topical drug delivery. The barrier function of the bladder mucosa (urothelium) presents a penetration challenge for small molecules and nanoparticles. We found that focal mechanical injury of the urothelium greatly enhances the binding and penetration of intravesically-administered cell-penetrating peptide CGKRK (Cys-Gly-Lys-Arg-Lys). Notably, the CGKRK bound to the entire urothelium, and the peptide was able to penetrate into the muscular layer. This phenomenon was not dependent on intravesical bleeding and was not caused by an inflammatory response. CGKRK also efficiently penetrated the urothelium after disruption of the mucosa with ethanol, suggesting that loss of barrier function is a prerequisite for widespread binding and penetration. We further demonstrate that the ability of CGKRK to efficiently bind and penetrate the urothelium can be applied toward mucosal targeting of CGKRK-conjugated nanogels to enable efficient and widespread delivery of a model payload (rhodamine) to the bladder mucosa.
Collapse
Affiliation(s)
- James I Griffin
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Tomoko Hayashi
- Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Dennis Carson
- Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Manju Saraswathy
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dmitri Simberg
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Barros AA, Oliveira C, Reis RL, Lima E, Duarte ARC. In Vitro and Ex Vivo Permeability Studies of Paclitaxel and Doxorubicin From Drug-Eluting Biodegradable Ureteral Stents. J Pharm Sci 2017; 106:1466-1474. [PMID: 28257819 DOI: 10.1016/j.xphs.2017.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
A drug-eluting biodegradable ureteral stent (BUS) has been developed as a new approach for the treatment of urothelial tumors of upper urinary tract cancer. In a previous work, this system has proven to be a good carrier for anticancer drugs as a potential effective and sustainable intravesical drug delivery system. BUS has revealed to reduce in 75% the viability of human urothelial cancer cells (T24) after 72 h of contact and demonstrated minimal cytotoxic effect on human umbilical vein endothelial cells (HUVECs) which were used as a control. In this work, we studied the permeability of the anticancer drugs, such as paclitaxel and doxorubicin, alone or released from the BUS developed. We used 3 different membranes to study the permeability: polyethersulfone (PES) membrane, HUVECs cell monolayer, and an ex vivo porcine ureter. The ureter thickness was measured (864.51 μm) and histological analysis was performed to confirm the integrity of urothelium. Permeability profiles were measured during 8 h for paclitaxel and doxorubicin. The drugs per se have shown to have a different profile and as expected, increasing the complexity of the membrane to be permeated, the permeability decreased, with the PES being more permeable and the ex vivo ureter tissue being less permeable. The molecular weight has also shown to influence the permeability of each drug and a higher percentage for doxorubicin (26%) and lower for paclitaxel (18%) was observed across the ex vivo ureter. The permeability (P), diffusion (D), and partition (Kd) coefficients of paclitaxel and doxorubicin through the permeable membranes were calculated. Finally, we showed that paclitaxel and doxorubicin drugs released from the BUS were able to remain in the ex vivo ureter and only a small amount of the drugs can across the different permeable membranes with a permeability of 3% for paclitaxel and 11% for doxorubicin. The estimated amount of paclitaxel that remains in the ex vivo ureter tissue is shown to be effective to affect the cancer cell and not affect the noncancer cells.
Collapse
Affiliation(s)
- Alexandre A Barros
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Barco GMR 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Oliveira
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Barco GMR 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Estevão Lima
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana Rita C Duarte
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Barco GMR 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Li NN, Cai XY, Chen JC, Hu XF, Xu LQ. Conjugation of Lectin to Poly(ε-caprolactone)-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery. Polymers (Basel) 2016; 8:E379. [PMID: 30974656 PMCID: PMC6432143 DOI: 10.3390/polym8110379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 01/15/2023] Open
Abstract
Amphiphilic poly(ε-caprolactone)-block-poly[2-(α-d-mannopyranosyloxy) ethyl acrylamide] (PCL-b-PManEA) block copolymers were synthesized via a combination of ring-opening polymerization (ROP), reversible addition-fragmentation chain transfer (RAFT) polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX). To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA) lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM) images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.
Collapse
Affiliation(s)
- Ning Ning Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Xiao Yan Cai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Jiu Cun Chen
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| | - Xue Feng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Li Qun Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Şenyiğit ZA, Karavana SY, İlem-Özdemir D, Çalışkan Ç, Waldner C, Şen S, Bernkop-Schnürch A, Baloğlu E. Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int J Nanomedicine 2015; 10:6493-507. [PMID: 26508855 PMCID: PMC4610785 DOI: 10.2147/ijn.s93750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to develop an intravesical delivery system of gemcitabine HCl for superficial bladder cancer in order to provide a controlled release profile, to prolong the residence time, and to avoid drug elimination via urination. For this aim, bioadhesive nanoparticles were prepared with thiolated chitosan (chitosan–thioglycolic acid conjugate) and were dispersed in bioadhesive chitosan gel or in an in situ gelling poloxamer formulation in order to improve intravesical residence time. In addition, nanoparticle-loaded gels were diluted with artificial urine to mimic in vivo conditions in the bladder and were characterized regarding changes in gel structure. The obtained results showed that chitosanthioglycolic acid nanoparticles with a mean diameter of 174.5±3.762 nm and zeta potential of 32.100±0.575 mV were successfully developed via ionotropic gelation and that the encapsulation efficiency of gemcitabine HCl was nearly 20%. In vitro/ex vivo characterization studies demonstrated that both nanoparticles and nanoparticle-loaded chitosan and poloxamer gels might be alternative carriers for intravesical administration of gemcitabine HCl, prolonging its residence time in the bladder and hence improving treatment efficacy. However, when the gel formulations were diluted with artificial urine, poloxamer gels lost their in situ gelling properties at body temperature, which is in conflict with the aimed formulation property. Therefore, 2% chitosan gel formulation was found to be a more promising carrier system for intravesical administration of nanoparticles.
Collapse
Affiliation(s)
- Zeynep Ay Şenyiğit
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, İzmir, Turkey
| | - Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, İzmir, Turkey
| | - Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, İzmir, Turkey
| | - Çağrı Çalışkan
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, İzmir, Turkey
| | | | - Sait Şen
- Faculty of Medicine, Department of Pathology, Ege University, Bornova, İzmir, Turkey
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy, Department of Pharmaceutical Technology, University of Innsbruck, Innsbruck, Austria
| | - Esra Baloğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, İzmir, Turkey
| |
Collapse
|
13
|
Lu S, Neoh KG, Kang ET, Mahendran R, Chiong E. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. Eur J Pharm Sci 2015; 72:57-68. [PMID: 25772330 DOI: 10.1016/j.ejps.2015.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/24/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
In this paper, amine-functionalized polyacrylamide nanogels (PAm-NH2) loaded with docetaxel (DTX) were evaluated as a mucoadhesive and sustained intravesical drug delivery (IDD) system for potential bladder cancer therapy. Nanogels have not been applied for such therapy before. The mucoadhesiveness of the PAm-NH2 nanogels, which is a critical factor for IDD application, was investigated using the mucin-particle method and by analyzing the direct attachment of the PAm-NH2 nanogels onto the luminal surface of porcine urinary bladder. DTX, as a model hydrophobic drug, was successfully loaded into hydrophilic PAm-NH2 nanogels with high loading efficiency (>90%), and sustained release of DTX from the nanogels over 9 days in artificial urine was achieved. The nanogels were also taken in by bladder cancer cells in a concentration-dependent manner. The efficiency of the DTX-loaded nanogels in killing UMUC3 and T24 bladder cancer cells was determined to be equivalent to free DTX, and the morphology of the bladder urothelium was not adversely altered by the PAm-NH2 nanogels. These findings indicate that such mucoadhesive nanogels are potentially a promising candidate for intravesical delivery of hydrophobic drugs in bladder cancer therapy.
Collapse
Affiliation(s)
- Shengjie Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Ratha Mahendran
- Department of Surgery, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Edmund Chiong
- Department of Surgery, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| |
Collapse
|
14
|
Zhang Q, Neoh KG, Xu L, Lu S, Kang ET, Mahendran R, Chiong E. Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6151-6161. [PMID: 24824061 DOI: 10.1021/la500746e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The synthesis of a series of β-cyclodextrin modified mesoporous silica nanoparticles with hydroxyl, amino, and thiol groups was described. A comparison of their mucoadhesive properties and potential as a drug delivery system for superficial bladder cancer therapy was made. The thiol-functionalized nanoparticles exhibit significantly higher mucoadhesivity on the urothelium as compared to the hydroxyl- and amino-functionalized nanoparticles. This is attributed to the formation of disulfide bonds between the thiol-functionalized nanoparticles and cysteine-rich subdomains of mucus glycoproteins. An anticancer drug, doxorubicin, was loaded into the mesopores of the thiol-functionalized nanoparticles, and sustained drug release triggered by acidic pH was achieved. The present study demonstrates that thiol-functionalized mesoporous silica nanoparticles are promising as a mucoadhesive and sustained drug delivery system for superficial bladder cancer therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Chemical and Biomolecular Engineering and ‡Department of Surgery, National University of Singapore , Kent Ridge, Singapore 119077
| | | | | | | | | | | | | |
Collapse
|
15
|
Cima MJ, Lee H, Daniel K, Tanenbaum LM, Mantzavinou A, Spencer KC, Ong Q, Sy JC, Santini J, Schoellhammer CM, Blankschtein D, Langer RS. Single compartment drug delivery. J Control Release 2014; 190:157-71. [PMID: 24798478 DOI: 10.1016/j.jconrel.2014.04.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 02/06/2023]
Abstract
Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as "privileged," since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective.
Collapse
Affiliation(s)
- Michael J Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Heejin Lee
- TARIS Biomedical, Inc., Lexington, MA 02421, USA
| | - Karen Daniel
- TARIS Biomedical, Inc., Lexington, MA 02421, USA
| | - Laura M Tanenbaum
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aikaterini Mantzavinou
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin C Spencer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qunya Ong
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay C Sy
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John Santini
- On Demand Therapeutics, Inc., Menlo Park, CA 94025, USA
| | - Carl M Schoellhammer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert S Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Moch C, Salmon D, Rodríguez Armesto L, Colombel M, Pivot C, Pirot F. Bladder tissue permeability and transport modelling of intravesical alum, lidocaine hydrochloride, methylprednisolone hemisuccinate and mitomycin C. Int J Pharm 2014; 464:91-103. [DOI: 10.1016/j.ijpharm.2014.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/12/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
17
|
Williams NA, Bowen JL, Al-Jayyoussi G, Gumbleton M, Allender CJ, Li J, Harrah T, Raja A, Joshi HB. An ex Vivo Investigation into the Transurothelial Permeability and Bladder Wall Distribution of the Nonsteroidal Anti-Inflammatory Ketorolac. Mol Pharm 2014; 11:673-82. [DOI: 10.1021/mp400274z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas A. Williams
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, U.K., CF10 3NB
| | - Jenna L. Bowen
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, U.K., CF10 3NB
| | - Ghaith Al-Jayyoussi
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, U.K., CF10 3NB
| | - Mark Gumbleton
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, U.K., CF10 3NB
| | - Chris J. Allender
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, U.K., CF10 3NB
| | - Jamie Li
- Urology & Women’s Health, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, Massachusetts 01752, United States
| | - Tim Harrah
- Urology & Women’s Health, Boston Scientific Corporation, 100 Boston Scientific Way, Marlborough, Massachusetts 01752, United States
| | - Aditya Raja
- Department
of Urology, University Hospital of Wales, Cardiff, U.K
| | - Hrishi B. Joshi
- Department
of Urology, University Hospital of Wales, Cardiff, U.K
| |
Collapse
|
18
|
A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 2013; 34:10258-66. [DOI: 10.1016/j.biomaterials.2013.09.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022]
|
19
|
Moch C, Salmon D, Rome P, Marginean R, Pivot C, Colombel M, Pirot F. Stratégies thérapeutiques innovantes pour l’administration médicamenteuse intravésicale. Prog Urol 2013; 23:369-77. [DOI: 10.1016/j.purol.2012.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/07/2012] [Accepted: 12/23/2012] [Indexed: 01/03/2023]
|
20
|
Tissue uptake of docetaxel loaded hydrophobically derivatized hyperbranched polyglycerols and their effects on the morphology of the bladder urothelium. Biomaterials 2012; 33:692-703. [DOI: 10.1016/j.biomaterials.2011.09.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
|
21
|
Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. Int J Pharm 2011; 416:339-45. [PMID: 21726619 DOI: 10.1016/j.ijpharm.2011.06.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 01/13/2023]
Abstract
PURPOSE Purpose of the present study was the development of a mucoadhesive nanoparticulate drug delivery system for local use in intravesical therapy of interstitial cystitis, since only a small fraction of drug actually reaches the affected site by conventional treatment of bladder diseases via systemic administration. METHODS Chitosan-thioglycolic acid (chitosan-TGA) nanoparticles (NP) and unmodified chitosan NP were formed via ionic gelation with tripolyphosphate (TPP). Trimethoprim (TMP) was incorporated during the preparation process of NP. Thereafter, the mucoadhesive properties of NP were determined in porcine urinary bladders and the release of TMP among simulated conditions with artificial urine was evaluated. RESULTS The particles size ranged from 183nm to 266nm with a positive zeta potential of +7 to +13mV. Under optimized conditions the encapsulation efficiency of TMP was 37%. The adhesion of prehydrated chitosan-TGA NP on the urinary bladder mucosa under continuous urine voiding was 14-fold higher in comparison to unmodified chitosan NP. Release studies indicated a more sustained TMP release from covalently cross linked particles in comparison to unmodified chitosan-TPP NP over a period of 3h in artificial urine at 37°C. CONCLUSION Utilizing the method described here, chitosan-TGA NP might be a useful tool for local intravesical drug delivery in the urinary bladder.
Collapse
|
22
|
Tyagi P, Tyagi V, Yoshimura N, Chancellor M. Functional role of cannabinoid receptors in urinary bladder. Indian J Urol 2011; 26:26-35. [PMID: 20535281 PMCID: PMC2878434 DOI: 10.4103/0970-1591.60440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids, the active components of Cannabis sativa (maijuana), and their derivatives produce a wide spectrum of central and peripheral effects, some of which may have clinical applications. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to the general cannabinoid pharmacology. In recent years, studies on the functional role of cannabinoid receptors in bladder have been motivated by the therapeutic effects of cannabinoids on voiding dysfunction in multiple sclerosis patients. In this review, we shall summarize the literature on the expression of cannabinoid receptors in urinary bladder and the peripheral influence of locally and systemically administered cannabinoids in the bladder. The ongoing search for cannabinoid-based therapeutic strategies devoid of psychotropic effects can be complemented with local delivery into bladder by the intravesical route. A greater understanding of the role of the peripheral CB1 and CB2 receptor system in lower urinary tract is necessary to allow the development of new treatment for pelvic disorders.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Departments of Urology, William Beaumont Hospital, MI, USA
| | | | | | | |
Collapse
|
23
|
Mugabe C, Matsui Y, So AI, Gleave ME, Heller M, Zeisser-Labouèbe M, Heller L, Chafeeva I, Brooks DE, Burt HM. In Vitro and In Vivo Evaluation of Intravesical Docetaxel Loaded Hydrophobically Derivatized Hyperbranched Polyglycerols in an Orthotopic Model of Bladder Cancer. Biomacromolecules 2011; 12:949-60. [DOI: 10.1021/bm101316q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Alan I. So
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | - Markus Heller
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | - Lindsay Heller
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
24
|
Mugabe C, Matsui Y, So AI, Gleave ME, Baker JHE, Minchinton AI, Manisali I, Liggins R, Brooks DE, Burt HM. In vivo Evaluation of Mucoadhesive Nanoparticulate Docetaxel for Intravesical Treatment of Non–Muscle-Invasive Bladder Cancer. Clin Cancer Res 2011; 17:2788-98. [DOI: 10.1158/1078-0432.ccr-10-2981] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Chuang YC, Tyagi P, Huang HY, Yoshimura N, Wu M, Kaufman J, Chancellor MB. Intravesical immune suppression by liposomal tacrolimus in cyclophosphamide-induced inflammatory cystitis. Neurourol Urodyn 2010; 30:421-7. [DOI: 10.1002/nau.20981] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
|
26
|
TYAGI P, CHUANG YC, YOSHIMURA N, KAUFMANN J, CHANCELLOR MB. Bladder Instillation of Liposomes for Bladder Coating and Drug Delivery Platform. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00040.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Optimization of epirubicin nanoparticles using experimental design for enhanced intravesical drug delivery. Int J Pharm 2009; 376:195-203. [DOI: 10.1016/j.ijpharm.2009.04.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/22/2009] [Accepted: 04/25/2009] [Indexed: 11/20/2022]
|
28
|
Mugabe C, Hadaschik BA, Kainthan RK, Brooks DE, So AI, Gleave ME, Burt HM. Paclitaxel incorporated in hydrophobically derivatized hyperbranched polyglycerols for intravesical bladder cancer therapy. BJU Int 2009; 103:978-86. [DOI: 10.1111/j.1464-410x.2008.08132.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Hadaschik BA, ter Borg MG, Jackson J, Sowery RD, So AI, Burt HM, Gleave ME. Paclitaxel and cisplatin as intravesical agents against non-muscle-invasive bladder cancer. BJU Int 2008; 101:1347-55. [PMID: 18384637 DOI: 10.1111/j.1464-410x.2008.07571.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the effects of cisplatin and paclitaxel against human bladder cancer cells in vitro, and to obtain both pharmacokinetic and pharmacodynamic data after intravesical administration in mice. MATERIALS AND METHODS Six bladder cancer cell lines (J82, KU7, RT4, SW780, T24, UMUC3) were treated with various combined doses of both drugs and cell proliferation was evaluated 3 days later. In vivo, solutions of cisplatin and micellar paclitaxel were instilled transurethrally in female mice and pharmacokinetic data were acquired using high-performance liquid chromatography-mass spectrometry and atomic absorption methods. To obtain efficacy data, mice with orthotopic KU7-luc tumours were administered cisplatin and/or micellar paclitaxel intravesically, and the tumour burden quantified using bioluminescence imaging. RESULTS In vitro, both cisplatin and paclitaxel potently decreased the proliferation of all cell lines tested, and in combination had an additive but not a synergistic effect. After intravesical instillation, mouse serum concentrations of cisplatin and paclitaxel were in the low microgram/millilitre range and bladder tissue concentrations achieved were 82 and 241 microg/g, respectively. Similar drug levels were reached using combined therapy. In vivo, all chemotherapeutic agents significantly inhibited bladder tumour growth, with the best results for combined therapy and micellar paclitaxel alone. However, there was toxicity in the combined treatment arm. CONCLUSIONS Both cisplatin and paclitaxel were absorbed at effective amounts into bladder tissues. As intravesical agents, paclitaxel had slightly stronger anticancer potency than cisplatin. Due to increased adverse events, caution should be exercised when combining both cisplatin and paclitaxel intravesically.
Collapse
Affiliation(s)
- Boris A Hadaschik
- The Prostate Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|