1
|
Yamamoto S, Sugita N, Tomioka K, Shinshi T. A compact and low-frequency drive ultrasound transducer for facilitating cavitation-assisted drug permeation via skin. Biomed Phys Eng Express 2024; 10:065018. [PMID: 39214118 DOI: 10.1088/2057-1976/ad7596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Low-frequency sonophoresis has emerged as a promising minimally invasive transdermal drug delivery method. However, effectively inducing cavitation on the skin surface with a compact, low-frequency ultrasound transducer poses a significant challenge. This paper presents a modified design of a low-frequency ultrasound transducer capable of generating ultrasound cavitation on the skin surfaces. The transducer comprises a piezoelectric ceramic disk and a bowl-shaped acoustic resonator. A conical slit structure was incorporated into the modified transducer design to amplify vibration displacement and enhance the maximum sound pressure. The FEM-based simulation results confirmed that the maximum sound pressure at the resonance frequency of 78 kHz was increased by 1.9 times that of the previous design. Ultrasound cavitation could be experimentally observed on the gel surface. Moreover, 3 min of ultrasound treatment significantly improved the caffeine permeability across an artificial membrane. These results demonstrated that this transducer holds promise for enhancing drug permeation by generating ultrasound cavitation on the skin surface.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Mechanical Engineer, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Naohiro Sugita
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Keita Tomioka
- Department of Mechanical Engineer, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tadahiko Shinshi
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Hong S, Son G. Numerical investigation of ultrasound focusing and bubble collapse. ULTRASONICS 2023; 135:107133. [PMID: 37598500 DOI: 10.1016/j.ultras.2023.107133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Ultrasound focusing and microbubble collapse are numerically investigated using a level-set interface tracking method for two-phase flows with multiple interfaces. The computations for ultrasound propagating through a spherical lens demonstrate the ultrasound refraction and pressure intensification at the rear of the lens. The focusing of the initial negative pressure wave through the lens induces a converging flow and the focusing of the subsequent positive pressure wave further intensifies the pressure at the lens. Computations are extended to bubble oscillations near the focusing lens and compared with the no-lens case. The lens not only amplifies the bubble expansion and contraction rates significantly but also generates a larger pressure gradient across the bubble. This ultrasound focusing effect contributes to the asymmetric collapse of the bubble and the formation of a liquid jet that penetrates the bubble. The effects of lens size, initial bubble radius and bubble-lens distance on bubble expansion and liquid jet are further investigated.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Gihun Son
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea.
| |
Collapse
|
3
|
Park D, Won J, Lee G, Lee Y, Kim CW, Seo J. Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery. Skin Res Technol 2022; 28:291-298. [PMID: 35034386 PMCID: PMC9907662 DOI: 10.1111/srt.13129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sonophoresis can increase the delivery efficiency of various drugs into the skin. A recent advance in sonophoresis is the use of ultrasound-responsive liquid-core nuclei (URLN) to increase the probability of cavitation. In this study, we developed a URLN and ultrasound device, and demonstrated its effectiveness through in vitro and clinical tests. MATERIALS AND METHODS Three types of experiments were designed to evaluate the efficiency of sonophoresis with URLN. First, a Franz diffusion cell with cosmetic ingredients was used to analyze quantitatively the amount of drug delivered to the porcine skin. Second, after the application of sonophoresis with URLN, the porcine skin surface was examined using scanning electron microscopy (SEM) to see the changes in morphology. Finally, a clinical test was performed to verify the utility of sonophoresis with URLN. RESULTS The results indicate that sonophoresis with URLN can increase the amount of compound delivered by approximately 11.9-fold over 6 h for niacinamide and by 7.33-fold over 6 h for adenosine. In addition, we observed approximately 20-30 μm sized pores on porcine skin in SEM images. In clinical testing, the application of sonophoresis with cosmetics containing URLN for 3 min improved the efficiency of transdermal drug delivery by 1.9-fold, the depth of absorption by 2.0-fold, and the speed of absorption by 2.0-fold at 30 min after application. CONCLUSION We expect that sonophoresis with specialized URLN in transdermal drug delivery could be used widely for various skin-related applications.
Collapse
Affiliation(s)
- Donghee Park
- BioInfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | - Jongho Won
- BioInfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | - Gyounjung Lee
- BiSang Soft, 405, Medical Industry Techno Tower, Wonju, Gangwon-do, Republic of Korea
| | - Yongheum Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Chul-Woo Kim
- BioInfra Life Science Inc., Cancer Research Institute, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | - Jongbum Seo
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
4
|
Wang M, Zhou Y. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. ULTRASONICS SONOCHEMISTRY 2018; 42:327-338. [PMID: 29429677 DOI: 10.1016/j.ultsonch.2017.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Inertial cavitation thresholds, which are defined as bubble growth by 2-fold from the equilibrium radius, by two types of ultrasonic excitation (at the classical single-frequency mode and dual-frequency mode) were calculated. The effect of the dual-frequency excitation on the inertial cavitation threshold in the different surrounding media (fluid and tissue) was studied, and the paramount parameters (driving frequency, amplitude ratio, phase difference, and frequency ratio) were also optimized to maximize the inertial cavitation. The numerical prediction confirms the previous experimental results that the dual-frequency excitation is capable of reducing the inertial cavitation threshold in comparison to the single-frequency one at the same output power. The dual-frequency excitation at the high frequency (i.e., 3.1 + 3.5 MHz vs. 1.1 + 1.3 MHz) is preferred in this study. The simulation results suggest that the same amplitudes of individual components, zero phase difference, and large frequency difference are beneficial for enhancing the bubble cavitation. Overall, this work may provide a theoretical model for further investigation of dual-frequency excitation and guidance of its applications for a better outcome.
Collapse
Affiliation(s)
- Mingjun Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore; Motor Group, R&D, ASM Pacific Technology Ltd, 3/F, Watson Centre, 16-22 Kung Yip St, Kwai Chung, Hong Kong, PR China.
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore
| |
Collapse
|
5
|
Huang P, Zhang Y, Chen J, Shentu W, Sun Y, Yang Z, Liang T, Chen S, Pu Z. Enhanced antitumor efficacy of ultrasonic cavitation with up-sized microbubbles in pancreatic cancer. Oncotarget 2016; 6:20241-51. [PMID: 26036312 PMCID: PMC4653001 DOI: 10.18632/oncotarget.4048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
Ultrasonic cavitation is a novel potential approach for cancer treatment. We optimized the techniques of ultrasonic cavitation to enhance antitumor efficacy in a mouse model with human pancreatic cancer. A polydisperse MB contrast agent formulation (TS-P) with a mean number diameter of 1.9 μm was depleted in small diameter particles by differential centrifugation, producing an “up-sized” size distribution (TS-PL) possessing a mean diameter of 2.9 μm. Mice bearing the XPA-1-RFP pancreatic tumor were treated daily for 3 consecutive days with either up-sized or standard MB. Both treatment cohorts exhibited a significant reduction in tumor volume relative to the untreated control cohort (P < 0.05), and TS-PL group has significantly reduction in tumor volume (1215.1± 324.7 mm3) compared with standard TS-P group (2131.2±753.4 mm3) (P < 0.05). The treatment with TS-PL resulted in more tumor cell necrosis and apoptosis than with TS-P. Decreased expression of CD31 and MVD was observed histologically in tumors treated with TS-PL relative to TS-P. This study demonstrates that tuning the size distribution of existing contrast agent products, specifically to reduce the concentration of small MB, is required for enhanced anti-tumor cavitation activity.
Collapse
Affiliation(s)
- Pintong Huang
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Ying Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Jian Chen
- Department of Surgery, The Second Affiliated Hospital Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Weihui Shentu
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Yu Sun
- Origin Biosciences Inc., Nanjing, Jiangsu Province, P. R. China
| | - Zhijian Yang
- Origin Biosciences Inc., Nanjing, Jiangsu Province, P. R. China
| | - Tingbo Liang
- Department of Surgery, The Second Affiliated Hospital Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| | - Shuyuan Chen
- Baylor Research Institute, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Zhaoxia Pu
- Department of Ultrasonography, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Park D, Song G, Jo Y, Won J, Son T, Cha O, Kim J, Jung B, Park H, Kim CW, Seo J. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration. PLoS One 2016; 11:e0157707. [PMID: 27322539 PMCID: PMC4913954 DOI: 10.1371/journal.pone.0157707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the concentration of microbubbles in case stable cavitation is predominant.
Collapse
Affiliation(s)
- Donghee Park
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Gillsoo Song
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Yongjun Jo
- Gumi Electronics & Information Technology Research Institute, Gumi, Gyeongsangbuk-do, Republic of Korea
| | - Jongho Won
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Taeyoon Son
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Ohrum Cha
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jinho Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Byungjo Jung
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Hyunjin Park
- School of Electronic Electrical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Chul-Woo Kim
- Department of Pathology, Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Jongbum Seo
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
Yang Y, Bai W, Chen Y, Zhang W, Wang M, Hu B. Low-frequency and low-intensity ultrasound-mediated microvessel disruption enhance the effects of radiofrequency ablation on prostate cancer xenografts in nude mice. Mol Med Rep 2015; 12:7517-25. [PMID: 26458324 DOI: 10.3892/mmr.2015.4375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to examine the impact of low-frequency, low-intensity ultrasound (US)-stimulated microbubbles (USMB) on radiofrequency ablation (RFA) in the treatment of nude mice with human prostate cancer xenografts. The tumor‑bearing nude mice were divided into three groups: The USMB+RFA group was treated with USMB immediately followed by RFA, the RFA group was treated with RFA alone, and the control group remained untreated. The animals underwent enhanced US to calculate the tumor volumes, ablation volumes and ablation rates. Subsequently, the tumors were excised for hematoxylin and eosin staining, to identify necrosis in the tumors following the treatments, and immunohistochemical staining, to analyze the apoptotic index (AI), proliferative index (PI) and microvessel density (MVD) at 1, 4 and 7 days post-treatment. Each group contained five mice at each time‑point. Necrosis was apparent in the center of the tumors in the treatment groups. Ablation lesion volumes of the USMB+RFA group were larger than those in the RFA group at 1 and 4 days post‑treatment (P=0.002 and P=0.022, respectively), and the ablation rates of the USMB+RFA group were significantly higher, compared with the RFA group at the three time‑points (all P<0.001). There were fewer apoptotic cells and more proliferative cells in the RFA group, compared with the control group 1,4 and 7 days post‑treatment (all P<0.05). The AI of the USMB+RFA group was higher than that of the control group and lower than that of the RFA group 1 day post-treatment (P=0.034 and P=0.016, respectively). The PI of the USMB+RFA group was lower than that of the control group and higher than that of the RFA group 4 and 7 days post-treatment (all P<0.05). No significant differences were observed in MVD among the three groups throughout the experiment. In conclusion, exposure to USMB prior to RFA produced larger volumes of ablation, compared with treatment with RFA alone, and increased AI and reduced PI in the residual carcinoma cells induced by RFA.
Collapse
Affiliation(s)
- Yu Yang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wei Zhang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Meiwen Wang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
8
|
Yang YU, Bai W, Chen Y, Lin Y, Hu B. Optimization of low-frequency low-intensity ultrasound-mediated microvessel disruption on prostate cancer xenografts in nude mice using an orthogonal experimental design. Oncol Lett 2015; 10:2999-3007. [PMID: 26722279 DOI: 10.3892/ol.2015.3716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/09/2015] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to provide a complete exploration of the effect of sound intensity, frequency, duty cycle, microbubble volume and irradiation time on low-frequency low-intensity ultrasound (US)-mediated microvessel disruption, and to identify an optimal combination of the five factors that maximize the blockage effect. An orthogonal experimental design approach was used. Enhanced US imaging and acoustic quantification were performed to assess tumor blood perfusion. In the confirmatory test, in addition to acoustic quantification, the specimens of the tumor were stained with hematoxylin and eosin and observed using light microscopy. The results revealed that sound intensity, frequency, duty cycle, microbubble volume and irradiation time had a significant effect on the average peak intensity (API). The extent of the impact of the variables on the API was in the following order: Sound intensity; frequency; duty cycle; microbubble volume; and irradiation time. The optimum conditions were found to be as follows: Sound intensity, 1.00 W/cm2; frequency, 20 Hz; duty cycle, 40%; microbubble volume, 0.20 ml; and irradiation time, 3 min. In the confirmatory test, the API was 19.97±2.66 immediately subsequent to treatment, and histological examination revealed signs of tumor blood vessel injury in the optimum parameter combination group. In conclusion, the Taguchi L18 (3)6 orthogonal array design was successfully applied for determining the optimal parameter combination of API following treatment. Under the optimum orthogonal design condition, a minimum API of 19.97±2.66 subsequent to low-frequency and low-intensity mediated blood perfusion blockage was obtained.
Collapse
Affiliation(s)
- Y U Yang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yanduan Lin
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
9
|
Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Ther Deliv 2015; 5:843-57. [PMID: 25287389 DOI: 10.4155/tde.14.32] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The skin is a formidable diffusion barrier that restricts passive diffusion to small (<500 Da) lipophilic molecules. Methods used to permeabilize this barrier for the purpose of drug delivery are maturing as an alternative to oral drug delivery and hypodermic injections. Ultrasound can reversibly and non-invasively permeabilize the diffusion barrier posed by the skin. This review discusses the mechanisms of ultrasound-permeability enhancement, and presents technological innovations in equipment miniaturization and recent advances in permeabilization capabilities. Additionally, potentially exciting applications, including protein delivery, vaccination, gene therapy and sensing of blood analytes, are discussed. Finally, the future challenges and opportunities associated with the use of ultrasound are discussed. It is stressed that developing ultrasound for suitable applications is key to ensure commercial success.
Collapse
|
10
|
Tonucci LB, Mourão DM, Ribeiro AQ, Bressan J. Noninvasive body contouring: biological and aesthetic effects of low-frequency, low-intensity ultrasound device. Aesthetic Plast Surg 2014; 38:959-67. [PMID: 25192747 DOI: 10.1007/s00266-014-0391-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent advancements in body-contouring techniques have prompted the investigation of ultrasound (US) technology as a potential noninvasive alternative for nonobese subjects for lifting, tightening, and reducing small areas of unwanted fat. This prospective study aimed to evaluate the biological and aesthetic effects of a low-frequency, low-intensity US device in reducing localized fat deposits for improving the body contours. METHODS A total of 20 female subjects included in this study were subjected to low-frequency US in the abdomen area. The effectiveness of this technique was determined by measuring changes in the anthropometric measurements and body composition, photographs, and a Client Satisfaction Questionnaire. The safety of the technique for application was determined by assessing the clinical features and biochemical tests results. RESULTS After five US sessions, a significant mean reduction of 1.5, 2.1, and 1.9 cm was noted in the waist, abdominal, and umbilical circumferences, respectively. No significant changes were noted in the levels of free fatty acids, insulin, liver enzymes, or lipid profile. However, a significant increase in the fasting glucose level was noted. However, four adverse side effects were reported: mild burning or discomfort, tingling or unilateral numbness in the lower limbs, pain around the bony areas, and soreness in the abdomen. CONCLUSION The low-frequency, low-intensity US device provides reduction in the abdominal region with a moderate level of satisfaction. However, more studies are required to assess the effectiveness of US for body contouring and its effect on glucose metabolism.
Collapse
Affiliation(s)
- Livia Bordalo Tonucci
- Department of Nutrition and Health, Federal University of Viçosa, Av. PH Rolfs, s/n, Campus UVF, CCB II, Viçosa, Minas Gerais, 36.570-000, Brazil,
| | | | | | | |
Collapse
|
11
|
Yuksel Durmaz Y, Vlaisavljevich E, Xu Z, ElSayed M. Development of Nanodroplets for Histotripsy-Mediated Cell Ablation. Mol Pharm 2014; 11:3684-95. [DOI: 10.1021/mp500419w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yasemin Yuksel Durmaz
- Department
of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eli Vlaisavljevich
- Department
of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhen Xu
- Department
of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed ElSayed
- Department
of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Shen ZY, Shen E, Diao XH, Bai WK, Zeng MX, Luan YY, Nan SL, Lin YD, Wei C, Chen L, Sun DI, Hu B. Inhibitory effects of subcutaneous tumors in nude mice mediated by low-frequency ultrasound and microbubbles. Oncol Lett 2014; 7:1385-1390. [PMID: 24765142 PMCID: PMC3997662 DOI: 10.3892/ol.2014.1934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/27/2014] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to investigate the sonication effects of 21-kHz ultrasound (US) with microbubbles (MBs) on the subcutaneous prostate tumors of nude mice. In total, 15 tumor-bearing nude mice were divided into three groups: The control group, the low-frequency US group and the US+MB group. The MBs used were from US contrast agent SonoVue. The parameters of the US were as follows: 21 kHz, 26 mW/cm2 and a 40% duty cycle (2 sec on, 3 sec off) for 3 min, once every other day for 2 weeks. Color Doppler flow imaging, hematoxylin and eosin (HE) staining, immunoblotting and transmission electron microscopy (TEM) were used to evaluate the results. Following 2 weeks of treatment, the blood flow signal disappeared in the US+MB group only, and the tumor size was smaller when compared with the control and US groups. For the immunoblotting, the intensity of cyclooxygenase-2 and vascular endothelial growth factor in the US+MB group was lower compared with the other two groups. Tumor necrosis was present and the nucleus disappeared upon HE staining in the US+MB group. Upon TEM analysis, increased cytoplasmic vacuolation and dilatation of the perinuclear cisternae of the tumor cells were found in the US+MB group. In the control and US groups, the tumors had intact vascular endothelia and vessel lumens. However, lumen occlusion of the vessels was observed in the US+MB group. In conclusion, 21-kHz low-intensity US with MBs may result in vessel occlusion and growth inhibitory effects in the subcutaneous tumors of nude mice.
Collapse
Affiliation(s)
- Zhi-Yong Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China ; Department of Radiology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Xue-Hong Diao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Wen-Kun Bai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Min-Xia Zeng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Yan Yan Luan
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Shu-Liang Nan
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Yan-Duan Lin
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Cong Wei
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Li Chen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - DI Sun
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai Jiaotong University School of Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
13
|
Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. ULTRASONICS 2014; 54:56-65. [PMID: 23899825 DOI: 10.1016/j.ultras.2013.07.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/01/2013] [Accepted: 07/02/2013] [Indexed: 05/15/2023]
Abstract
Transdermal drug delivery (TDD) has several significant advantages compared to oral drug delivery, including elimination of pain and sustained drug release. However, the use of TDD is limited by low skin permeability due to the stratum corneum (SC), the outermost layer of the skin. Sonophoresis is a technique that temporarily increases skin permeability such that various medications can be delivered noninvasively. For the past several decades, various studies of sonophoresis in TDD have been performed focusing on parameter optimization, delivery mechanism, transport pathway, or delivery of several drug categories including hydrophilic and high molecular weight compounds. Based on these various studies, several possible mechanisms of sonophoresis have been suggested. For example, cavitation is believed to be the predominant mechanism responsible for drug delivery in sonophoresis. This review presents details of various studies on sonophoresis including the latest trends, delivery of various therapeutic drugs, sonophoresis pathways and mechanisms, and outlook of future studies.
Collapse
Affiliation(s)
- Donghee Park
- Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | | | | | | |
Collapse
|
14
|
Removing vascular obstructions: a challenge, yet an opportunity for interventional microdevices. Biomed Microdevices 2012; 14:511-32. [PMID: 22331446 DOI: 10.1007/s10544-011-9627-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide; they are mainly due to vascular obstructions which, in turn, are mainly caused by thrombi and atherosclerotic plaques. Although a variety of removal strategies has been developed for the considered obstructions, none of them is free from limitations and conclusive. The present paper analyzes the physical mechanisms underlying state-of-art removal strategies and classifies them into chemical, mechanical, laser and hybrid (namely chemo-mechanical and mechano-chemical) approaches, while also reviewing corresponding commercial/research tools/devices and procedures. Furthermore, challenges and opportunities for interventional micro/nanodevices are highlighted. In this spirit, the present review should support engineers, researchers active in the micro/nanotechnology field, as well as medical doctors in the development of innovative biomedical solutions for treating vascular obstructions. Data were collected by using the ISI Web of Knowledge portal, buyer's guides and FDA databases; devices not reported on scientific publications, as well as commercial devices no more for sale were discarded. Nearly 70% of the references were published since 2006, 55% since 2008; these percentages respectively raise to 85% and 65% as regards the section specifically reviewing state-of-art removal tools/devices and procedures.
Collapse
|
15
|
Ahmadi F, McLoughlin IV, Chauhan S, ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 108:119-38. [PMID: 22402278 DOI: 10.1016/j.pbiomolbio.2012.01.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022]
Abstract
Low-frequency (LF) ultrasound (20-100 kHz) has a diverse set of industrial and medical applications. In fact, high power industrial applications of ultrasound mainly occupy this frequency range. This range is also used for various therapeutic medical applications including sonophoresis (ultrasonic transdermal drug delivery), dentistry, eye surgery, body contouring, the breaking of kidney stones and eliminating blood clots. While emerging LF applications such as ultrasonic drug delivery continue to be developed and undergo translation for human use, significant gaps exist in the coverage of safety standards for this frequency range. Accordingly, the need to understand the biological effects of LF ultrasound is becoming more important. This paper presents a broad overview of bio-effects and safety of LF ultrasound as an aid to minimize and control the risk of these effects. Its particular focus is at low intensities where bio-effects are initially observed. To generate a clear perspective of hazards in LF exposure, the mechanisms of bio-effects and the main differences in action at low and high frequencies are investigated and a survey of harmful effects of LF ultrasound at low intensities is presented. Mechanical and thermal indices are widely used in high frequency diagnostic applications as a means of indicating safety of ultrasonic exposure. The direct application of these indices at low frequencies needs careful investigation. In this work, using numerical simulations based on the mathematical and physical rationale behind the indices at high frequencies, it is observed that while thermal index (TI) can be used directly in the LF range, mechanical index (MI) seems to become less reliable at lower frequencies. Accordingly, an improved formulation for the MI is proposed for frequencies below 500 kHz.
Collapse
Affiliation(s)
- Farzaneh Ahmadi
- School of Computer Engineering, Nanyang Technological University, N4-02b-52, Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | |
Collapse
|