1
|
Zhang X, Wei W, Qian L, Yao L, Jin X, Xing L, Qian Z. Real-time monitoring of bioelectrical impedance for minimizing tissue carbonization in microwave ablation of porcine liver. Sci Rep 2024; 14:30404. [PMID: 39638842 PMCID: PMC11621451 DOI: 10.1038/s41598-024-80725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The charring tissue generated by the high temperature during microwave ablation can affect the therapeutic effect, such as limiting the volume of the coagulation zone and causing rejection. This paper aimed to prevent tissue carbonization while delivering an appropriate thermal dose for effective ablations by employing a treatment protocol with real-time bioelectrical impedance monitoring. Firstly, the current field response under different microwave ablation statuses is analyzed based on finite element simulation. Next, the change of impedance measured by the electrodes is correlated with the physical state of the ablated tissue, and a microwave ablation carbonization control protocol based on real-time electrical impedance monitoring was established. The finite element simulation results show that the dielectric properties of biological tissues changed dynamically during the ablation process. Finally, the relative change rule of the electrical impedance magnitude of the ex vivo porcine liver throughout the entire MWA process and the reduction of the central zone carbonization were obtained by the MWA experiment. Charring tissue was eliminated without water cooling at 40 W and significantly reduced at 50 W and 60 W. The carbonization during MWA can be reduced according to the changes in tissue electrical impedance to optimize microwave thermal ablation efficacy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wei Wei
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Liuye Yao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Lidong Xing
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| |
Collapse
|
2
|
Li S, Zhou Z, Wu S, Wu W. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones. ULTRASONIC IMAGING 2023; 45:119-135. [PMID: 36995065 DOI: 10.1177/01617346231162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The homodyned-K (HK) distribution is a generalized model of envelope statistics whose parameters α (the clustering parameter) and k (the coherent-to-diffuse signal ratio) can be used to monitor the thermal lesions. In this study, we proposed an ultrasound HK contrast-weighted summation (CWS) parametric imaging algorithm based on the H-scan technique and investigated the optimal window side length (WSL) of the HK parameters estimated by the XU estimator (an estimation method based on the first moment of the intensity and two log-moments, which was used in the proposed algorithm) through phantom simulations. H-scan diversified ultrasonic backscattered signals into low- and high-frequency passbands. After envelope detection and HK parameter estimation for each frequency band, the α and k parametric maps were obtained, respectively. According to the contrast between the target region and background, the (α or k) parametric maps of the dual-frequency band were weighted and summed, and then the CWS images were yielded by pseudo-color imaging. The proposed HK CWS parametric imaging algorithm was used to detect the microwave ablation coagulation zones of porcine liver ex vivo under different powers and treatment durations. The performance of the proposed algorithm was compared with that of the conventional HK parametric imaging and frequency diversity and compounding Nakagami imaging algorithms. For two-dimensional HK parametric imaging, it was found that a WSL equal to 4 pulse lengths of the transducer was sufficient for estimating the α and k parameters in terms of both parameter estimation stability and parametric imaging resolution. The HK CWS parametric imaging provided an improved contrast-to-noise ratio over conventional HK parametric imaging, and the HK αcws parametric imaging achieved the best accuracy and Dice score of coagulation zone detection.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Hensen B, Hellms S, Werlein C, Jonigk D, Gronski PA, Bruesch I, Rumpel R, Wittauer EM, Vondran FWR, Parker DL, Wacker F, Gutberlet M. Correction of heat-induced susceptibility changes in respiratory-triggered 2D-PRF-based thermometry for monitoring of magnetic resonance-guided hepatic microwave ablation in a human-like in vivo porcine model. Int J Hyperthermia 2022; 39:1387-1396. [DOI: 10.1080/02656736.2022.2138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Dennis L. Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, USA
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- STIMULATE-Solution Centre for Image Guided Local Therapies, Magdeburg, Germany
| |
Collapse
|
5
|
Li S, Zhou Z, Wu S, Wu W. A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. ULTRASONIC IMAGING 2022; 44:213-228. [PMID: 35993226 DOI: 10.1177/01617346221120069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Percutaneous thermal therapy is an important clinical treatment method for some solid tumors. It is critical to use effective image visualization techniques to monitor the therapy process in real time because precise control of the therapeutic zone directly affects the prognosis of tumor treatment. Ultrasound is used in thermal therapy monitoring because of its real-time, non-invasive, non-ionizing radiation, and low-cost characteristics. This paper presents a review of nine quantitative ultrasound-based methods for thermal therapy monitoring and their advances over the last decade since 2011. These methods were analyzed and compared with respect to two applications: ultrasonic thermometry and ablation zone identification. The advantages and limitations of these methods were compared and discussed, and future developments were suggested.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Jin X, Feng Y, Zhu R, Qian L, Yang Y, Yu Q, Zou Z, Li W, Liu Y, Qian Z. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Int J Hyperthermia 2022; 39:868-879. [PMID: 35858640 DOI: 10.1080/02656736.2022.2075041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The charring tissue formation in the ablated lesion during the microwave ablation (MWA) of tumors would induce various unwanted inflammatory responses. This paper aimed to deliver appropriate thermal dose for effective ablations while preventing tissue carbonization by optimizing the treatment protocol during MWA with the set combinations of temperature control and pulsed microwave energy delivery. MATERIAL AND METHODS The thermal phase transition of ex vivo porcine liver tissues were recorded by differential scanning calorimetry (DSC) to determine the temperature threshold during microwave output control. MWA was performed by an in-house built system with the ease of microwave output parameter adjustment and real-time temperature monitoring. The effects of continuous and pulsed microwave deliveries as well as various intermittent time-set of MWA were evaluated by measuring the dimensions of the coagulation zone and the carbonization zone. RESULTS The DSC scans demonstrated that the ex vivo porcine liver tissues have been in a state of endothermic heat during the heating process, where the maximum absorbed heat occurred at the temperature of 105 °C ± 5 °C. The temperature control during MWA resulted in effective coagulative necrosis while preventing tissue carbonization, after setting 100 °C as the upper threshold temperature and 60 °C as the lower threshold. Both the numerical simulation and ex vivo experiments have shown that, upon the optimization of the time-set parameters in the periodic intermittent pulsed microwave output, the tissue carbonization was significantly diminished. CONCLUSION This study developed a straight-forward anti-carbonization strategy in MWA by modulating the pulsing mode and intermittent time. The programmed protocols of intermittent pulsing MWA have demonstrated its potentials toward future expansion of MWA technology in clinical application.
Collapse
Affiliation(s)
- Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yu Feng
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Roujun Zhu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qindong Yu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhihan Zou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yangyang Liu
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
7
|
Li S, Chen Z, Tan L, Wu Q, Ren X, Fu C, Niu M, Li H, Meng X. MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and anti-angiogenesis of colorectal cancer. Biomaterials 2022; 283:121472. [DOI: 10.1016/j.biomaterials.2022.121472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 02/09/2023]
|
8
|
Song S, Tsui PH, Wu W, Wu S, Zhou Z. Monitoring microwave ablation using ultrasound homodyned K imaging based on the noise-assisted correlation algorithm: An ex vivo study. ULTRASONICS 2021; 110:106287. [PMID: 33091652 DOI: 10.1016/j.ultras.2020.106287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we proposed ultrasound homodyned K (HK) imaging based on the noise-assisted correlation algorithm (NCA) for monitoring microwave ablation of porcine liver ex vivo. The NCA-based HK (αNCA and kNCA) imaging was compared with NCA-based Nakagami (mNCA) imaging and NCA-based cumulative echo decorrelation (CEDNCA) imaging. Backscattered ultrasound radiofrequency signals of porcine liver ex vivo during and after the heating of microwave ablation were collected (n = 15), which were processed for constructing B-mode imaging, NCA-based HK imaging, NCA-based Nakagami imaging, and NCA-based CED imaging. To quantitatively evaluate the final coagulation zone, the polynomial approximation (PAX) technique was applied. The accuracy of detecting coagulation area with αNCA, kNCA, mNCA, and CEDNCA parametric imaging was evaluated by comparing the PAX imaging with the gross pathology. The receiver operating characteristic (ROC) curve was used to further evaluate the performance of the three quantitative ultrasound imaging methods for detecting the coagulation zone. Experimental results showed that the average accuracies of αNCA, kNCA, mNCA, and CEDNCA parametric imaging combined with PAX imaging were 89.6%, 83.25%, 89.23%, and 91.6%, respectively. The average areas under the ROC curve (AUROCs) of αNCA, kNCA, mNCA, and CEDNCA parametric imaging were 0.83, 0.77, 0.83, and 0.86, respectively. The proposed NCA-based HK imaging may be used as a new method for monitoring microwave ablation.
Collapse
Affiliation(s)
- Shuang Song
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| |
Collapse
|
9
|
Zhou Z, Wang Y, Song S, Wu W, Wu S, Tsui PH. Monitoring Microwave Ablation Using Ultrasound Echo Decorrelation Imaging: An ex vivo Study. SENSORS (BASEL, SWITZERLAND) 2019; 19:E977. [PMID: 30823609 PMCID: PMC6412341 DOI: 10.3390/s19040977] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
In this study, a microwave-induced ablation zone (thermal lesion) monitoring method based on ultrasound echo decorrelation imaging was proposed. A total of 15 cases of ex vivo porcine liver microwave ablation (MWA) experiments were carried out. Ultrasound radiofrequency (RF) signals at different times during MWA were acquired using a commercial clinical ultrasound scanner with a 7.5-MHz linear-array transducer. Instantaneous and cumulative echo decorrelation images of two adjacent frames of RF data were calculated. Polynomial approximation images were obtained on the basis of the thresholded cumulative echo decorrelation images. Experimental results showed that the instantaneous echo decorrelation images outperformed conventional B-mode images in monitoring microwave-induced thermal lesions. Using gross pathology measurements as the reference standard, the estimation of thermal lesions using the polynomial approximation images yielded an average accuracy of 88.60%. We concluded that instantaneous ultrasound echo decorrelation imaging is capable of monitoring the change of thermal lesions during MWA, and cumulative ultrasound echo decorrelation imaging and polynomial approximation imaging are feasible for quantitatively depicting thermal lesions.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yue Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Song
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing 100054, China.
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan.
| |
Collapse
|