1
|
Jiang M, Fang H, Tian H. Latest advancements and trends in biomedical polymers for disease prevention, diagnosis, treatment, and clinical application. J Control Release 2025; 380:138-174. [PMID: 39880039 DOI: 10.1016/j.jconrel.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Biomedical polymers are at the forefront of medical advancements, offering innovative solutions in disease prevention, diagnosis, treatment, and clinical use due to their exceptional physicochemical properties. This review delves into the characteristics, classification, and preparation methods of these polymers, highlighting their diverse applications in drug delivery, medical imaging, tissue engineering, and regenerative medicine. We present a thorough analysis of the recent advancements in biomedical polymer research and their clinical applications, acknowledging the challenges that remain, such as immune response management, controlled degradation rates, and mechanical property optimization. Addressing these issues, we explore future directions, including personalization and the integration of nanotechnology, which hold significant potential for further advancing the field. This comprehensive review aims to provide a deep understanding of biomedical polymers and serve as a valuable resource for the development of innovative polymer materials in both fundamental research and clinical practice.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Rastegar G, Salman MM, Sirsi SR. Remote Loading: The Missing Piece for Achieving High Drug Payload and Rapid Release in Polymeric Microbubbles. Pharmaceutics 2023; 15:2550. [PMID: 38004529 PMCID: PMC10675060 DOI: 10.3390/pharmaceutics15112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The use of drug-loaded microbubbles for targeted drug delivery, particularly in cancer treatment, has been extensively studied in recent years. However, the loading capacity of microbubbles has been limited due to their surface area. Typically, drug molecules are loaded on or within the shell, or drug-loaded nanoparticles are coated on the surfaces of microbubbles. To address this significant limitation, we have introduced a novel approach. For the first time, we employed a transmembrane ammonium sulfate and pH gradient to load doxorubicin in a crystallized form in the core of polymeric microcapsules. Subsequently, we created remotely loaded microbubbles (RLMBs) through the sublimation of the liquid core of the microcapsules. Remotely loaded microcapsules exhibited an 18-fold increase in drug payload compared with physically loaded microcapsules. Furthermore, we investigated the drug release of RLMBs when exposed to an ultrasound field. After 120 s, an impressive 82.4 ± 5.5% of the loaded doxorubicin was released, demonstrating the remarkable capability of remotely loaded microbubbles for on-demand drug release. This study is the first to report such microbubbles that enable rapid drug release from the core. This innovative technique holds great promise in enhancing drug loading capacity and advancing targeted drug delivery.
Collapse
Affiliation(s)
| | | | - Shashank R. Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (G.R.); (M.M.S.)
| |
Collapse
|
3
|
Wu B, Luo CJ, Palaniappan A, Jiang X, Gultekinoglu M, Ulubayram K, Bayram C, Harker A, Shirahata N, Khan AH, Dalvi SV, Edirisinghe M. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10917-10933. [PMID: 36018789 PMCID: PMC9476864 DOI: 10.1021/acs.langmuir.2c00126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Long-term stability of microbubbles is crucial to their effectiveness. Using a new microfluidic device connecting three T-junction channels of 100 μm in series, stable monodisperse SiQD-loaded bovine serum albumin (BSA) protein microbubbles down to 22.8 ± 1.4 μm in diameter were generated. Fluorescence microscopy confirmed the integration of SiQD on the microbubble surface, which retained the same morphology as those without SiQD. The microbubble diameter and stability in air were manipulated through appropriate selection of T-junction numbers, capillary diameter, liquid flow rate, and BSA and SiQD concentrations. A predictive computational model was developed from the experimental data, and the number of T-junctions was incorporated into this model as one of the variables. It was illustrated that the diameter of the monodisperse microbubbles generated can be tailored by combining up to three T-junctions in series, while the operating parameters were kept constant. Computational modeling of microbubble diameter and stability agreed with experimental data. The lifetime of microbubbles increased with increasing T-junction number and higher concentrations of BSA and SiQD. The present research sheds light on a potential new route employing SiQD and triple T-junctions to form stable, monodisperse, multi-layered, and well-characterized protein and quantum dot-loaded protein microbubbles with enhanced stability for the first time.
Collapse
Affiliation(s)
- Bingjie Wu
- Department
of Mechanical Engineering, University College
London (UCL), London WC1E 7JE, U.K.
| | - C. J. Luo
- Department
of Mechanical Engineering, University College
London (UCL), London WC1E 7JE, U.K.
| | - Ashwin Palaniappan
- Department
of Mechanical Engineering, University College
London (UCL), London WC1E 7JE, U.K.
| | - Xinyue Jiang
- Department
of Mechanical Engineering, University College
London (UCL), London WC1E 7JE, U.K.
| | - Merve Gultekinoglu
- Department
of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Kezban Ulubayram
- Department
of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Cem Bayram
- Nanotechnology
and Nanomedicine Division, Institute for Graduate Studies in Science
& Engineering, Hacettepe University, Ankara 06100, Turkey
| | - Anthony Harker
- Department
of Physics and Astronomy, University College
London (UCL), London WC1E 7JE, U.K.
| | - Naoto Shirahata
- WPI
International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Aaqib H. Khan
- Chemical
Engineering, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sameer V. Dalvi
- Chemical
Engineering, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Mohan Edirisinghe
- Department
of Mechanical Engineering, University College
London (UCL), London WC1E 7JE, U.K.
| |
Collapse
|
4
|
Chen W, Cai H, Zhang X, Huang D, Yang J, Chen C, Qian Q, He Y, Chen Z. Physiologic Factors Affecting the Circulatory Persistence of Copolymer Microbubbles and Comparison of Contrast-Enhanced Effects between Copolymer Microbubbles and Sonovue. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:721-734. [PMID: 31899039 DOI: 10.1016/j.ultrasmedbio.2019.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound contrast agents have been widely used in clinical diagnosis. Knowledge of the physiologic factors affecting circulatory persistence is helpful in preparing long-lasting microbubbles (MBs) for blood perfusion and drug delivery research. In the study described here, we prepared copolymer MBs, compared their characteristics and contrast-enhanced effects with those of SonoVue and investigated the influence of external pressure, temperature, plasma components, renal microcirculation and cardiac motion on their circulatory persistence. The mean size of the copolymer MBs was 3.57 μm, larger than that of SonoVue. The copolymer MBs had longer circulatory persistence than SonoVue. At external pressures of 110 and 150 mm Hg, neither the quantity nor the morphology of the copolymer MBs changed. Further, their quantity and size were similar after incubation at 4°C and 39.4°C and when rabbit plasma and saline were compared. In vivo contrast-enhanced ultrasonography revealed a slightly larger area under the curve for the renal artery than for the renal vein. Thus, copolymer MBs exhibited good stability. However, the quantity of copolymer MBs decreased significantly after 180 s of circulation in an isolated toad heart perfusion model, indicating that cardiac motion was the main factor affecting their circulatory persistence.
Collapse
Affiliation(s)
- Wanping Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Hongjiao Cai
- Fisheries College of Jimei University, Xiamen, China
| | - Xiujuan Zhang
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Danfeng Huang
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Yang
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Qingfu Qian
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yimi He
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhikui Chen
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Peng Y, Li Q, Seekell RR, Kheir JN, Porter TM, Polizzotti BD. Tunable Nonlinear Acoustic Reporters Using Micro- and Nanosized Air Bubbles with Porous Polymeric Hard Shells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7-12. [PMID: 30444111 DOI: 10.1021/acsami.8b16737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to tailor acoustic cavitation of contrast agents is pivotal for ultrasound applications in enhanced imaging, drug delivery, and cancer therapy, etc. A biopolymer-based system of microbubbles and nanobubbles was developed as acoustic reporters that consist of extremely porous hard shells. Despite the existence of an incompressible shell, these porous contrast agents exhibited strong nonlinear acoustic response under very low acoustic pressure, e.g, harmonics, characteristic of free gas bubbles. The large air/water surface area within the transmural capillaries are believed to facilitate oscillation of the inner gas core. Furthermore, the acoustic cavitation can be tailored by variation in polymer structures. This synthetically based platform offers insight for the rational design of advanced acoustic biomaterials.
Collapse
Affiliation(s)
- Yifeng Peng
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - Qian Li
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Raymond R Seekell
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - John N Kheir
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| | - Tyrone M Porter
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Brian D Polizzotti
- Department of Cardiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Department of Pediatrics , Harvard Medical School , Boston , Massachussets 02115 , United States
| |
Collapse
|
6
|
Qian X, Han X, Chen Y. Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials 2017; 142:13-30. [DOI: 10.1016/j.biomaterials.2017.07.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/24/2017] [Accepted: 07/09/2017] [Indexed: 12/11/2022]
|
7
|
Jablonowski LJ, Alfego D, Andorko JI, Eisenbrey JR, Teraphongphom N, Wheatley MA. Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential. Biomaterials 2016; 103:197-206. [DOI: 10.1016/j.biomaterials.2016.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
|
8
|
Lajoinie G, De Cock I, Coussios CC, Lentacker I, Le Gac S, Stride E, Versluis M. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. BIOMICROFLUIDICS 2016; 10:011501. [PMID: 26865903 PMCID: PMC4733084 DOI: 10.1063/1.4940429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 05/08/2023]
Abstract
Besides their use as contrast agents for ultrasound imaging, microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to fully understand the numerous paths by which bubbles can interact with cells and the even larger number of possible biological responses from the cells, thorough and extensive work is necessary. In this review, we consider the range of experimental techniques implemented in in vitro studies with the aim of elucidating these microbubble-cell interactions. First of all, the variety of cell types and cell models available are discussed, emphasizing the need for more and more complex models replicating in vivo conditions together with experimental challenges associated with this increased complexity. Second, the different types of stabilized microbubbles and more recently developed droplets and particles are presented, followed by their acoustic or optical excitation methods. Finally, the techniques exploited to study the microbubble-cell interactions are reviewed. These techniques operate over a wide range of timescales, or even off-line, revealing particular aspects or subsequent effects of these interactions. Therefore, knowledge obtained from several techniques must be combined to elucidate the underlying processes.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Ine De Cock
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | | | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | - Séverine Le Gac
- MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford , Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
9
|
Mahalingam S, Xu Z, Edirisinghe M. Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9771-9780. [PMID: 26307462 DOI: 10.1021/acs.langmuir.5b02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.
Collapse
Affiliation(s)
| | - Zewen Xu
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London , Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
10
|
Perfluoroalkylated poly(oxyethylene) thiols: Synthesis, adsorption dynamics and surface activity at the air/water interface, and bubble stabilization behaviour. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Kovalenko A, Polavarapu P, Pourroy G, Waton G, Krafft MP. pH-controlled microbubble shell formation and stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6339-6347. [PMID: 24821482 DOI: 10.1021/la5007023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on microbubbles with a shell self-assembled from an anionic perfluoroalkylated surfactant, perfluorooctyl(ethyl)phosphate (F8H2Phos). Microbubbles were formed and effectively stabilized from aqueous solutions of F8H2Phos at pH 5.6-8.5. This range overlaps the domains of existence of the monosodic and disodic salts. The shell morphology of microbubbles formed spontaneously by heating aqueous solutions of F8H2Phos was monitored during cooling, directly on the microscope's stage. At pH 5.6, the shell collapses through nucleation of folds, as typical for insoluble surfactants. At pH 8.5, no folds were seen during shrinking. At higher pH, the microbubbles rapidly adsorb on the glass. The effect of pH (from 5.6 to 9.7) on adsorption kinetics of F8H2Phos at the air/water interface, and on the elasticity of its Gibbs films, was determined. At low pH, F8H2Phos is highly surface active. The interfacial film undergoes a dilute-to-condensed phase transition and a dramatic increase of elastic module, leading to extremely high values (up to 500 mN m(-1)). At high pH, the surfactant's adsorption is quasi-instantaneous, but interfacial tension lowering is limited, leading to very low elastic module (∼5 mN m(-1)). At pH 5.6 and 8.5, the interfacial tension of F8H2Phos adsorbed on millimetric bubbles and compressed at a rate similar to that exerted on micrometric bubbles during deflation is lower than the equilibrium interfacial tension. Langmuir monolayers of F8H2Phos are highly stable at low pH and feature a liquid expanded/liquid condensed transition; at high pH, they do not withstand compression. Both mono- and disodic F8H2Phos salts are needed to effectively stabilize microbubbles: the rapidly adsorbed disodic salt stabilizes a newly created air/water interface; the more surface active monosodic salt then replaces the more water-soluble disodic salt at the interface. During deflation, the surfactant shell undergoes a transition toward a highly elastic phase, which further contributes to bubble stabilization.
Collapse
Affiliation(s)
- Artem Kovalenko
- Institut Charles Sadron (ICS, UPR CNRS 22), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | | | | | | | | |
Collapse
|
12
|
Paul S, Nahire R, Mallik S, Sarkar K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. COMPUTATIONAL MECHANICS 2014; 53:413-435. [PMID: 26097272 PMCID: PMC4470369 DOI: 10.1007/s00466-013-0962-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.
Collapse
Affiliation(s)
- Shirshendu Paul
- Department of Mechanical Engineering, University of Delaware, Newark DE 19716, USA
| | - Rahul Nahire
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo ND 58108, USA
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
13
|
Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013; 456:437-45. [PMID: 24008081 DOI: 10.1016/j.ijpharm.2013.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described.
Collapse
Affiliation(s)
- Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy.
| | | | | |
Collapse
|
14
|
Paul S, Russakow D, Rodgers T, Sarkar K, Cochran M, Wheatley M. Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1277-91. [PMID: 23643050 PMCID: PMC3674163 DOI: 10.1016/j.ultrasmedbio.2013.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 05/22/2023]
Abstract
The stabilizing encapsulation of a microbubble-based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from materials commonly used (i.e., lipids or proteins) for monolayer encapsulation, have the potential for better stability and improved control of encapsulation properties. Air-filled microbubbles coated with poly(DL-lactic acid) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each model using attenuation of ultrasound through a suspension of microbubbles. Then the model predictions are compared with scattered non-linear (sub- and second harmonic) responses. For this microbubble population (average diameter, 1.9 μm), the peak in attenuation measurement indicates a weighted-average resonance frequency of 2.5-3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter, 1.9 μm). This apparently contradictory result stems from the extremely low surface dilational elasticity (around 0.01-0.07 N/m) and the reduced surface tension of the poly(DL-lactic acid) encapsulation, as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the non-linear regime because of the low surface dilational elasticity value. Pressure-dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) revealed strongly non-linear behavior with 25-30 dB and 5-20 dB enhancements in fundamental and second-harmonic responses, respectively, for a contrast agent concentration of 1.33 μg/mL in the suspension. Sub-harmonic responses are registered above a relatively low generation threshold of 100-150 kPa, with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the experimental second-harmonic response. The characteristic features of sub-harmonic responses and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on estimated properties and size distribution. The variation in size distribution from sample to sample leads to variation in estimates of encapsulation properties: the lowest estimated value for surface dilational viscosity better predicts the sub-harmonic threshold.
Collapse
Affiliation(s)
- Shirshendu Paul
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Daniel Russakow
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Tyler Rodgers
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Kausik Sarkar
- Mechanical Engineering, University of Delaware, Newark, DE 19716
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052
| | - Michael Cochran
- Biomedical Engineering, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
15
|
|
16
|
Wheatley MA, Cochran MC, Eisenbrey JR, Oum KL. Cellular signal transduction can be induced by TRAIL conjugated to microcapsules. J Biomed Mater Res A 2012; 100:2602-11. [PMID: 22539118 DOI: 10.1002/jbm.a.34189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 12/31/2022]
Abstract
The extracellular agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells but spare normal cells. Ligation of TRAIL to a nanoparticle would serve to facilitate targeting to an extravascular site. Polymeric ultrasound contrast agents (UCA) (microencapsulated gas bubbles) can be tracked by ultrasound imaging, and fragmented into nanoparticles by focused ultrasound. This tumor-targeted delivery system has been shown to deliver more efficiently than solid nanoparticles. Additionally, small molecule inhibitors such as bortezomib, shown to sensitize TRAIL-resistant cells, could be co-administered within these UCA. In this pilot study, TRAIL was conjugated to UCA while preserving the agent's sensitivity to ultrasound. Human cancer cell lines, OVCAR-3 and A2058, were bathed with the TRAIL-UCA with and without the addition of bortezomib. Apoptosis was quantified using flow cytometry. OVCAR-3 treated with TRAIL-UCA exhibit significant (p < 0.05) apoptotosis compared to unmodified UCA, equal to positive controls, but no synergistic effect when combined with bortezomib. A2058 cells treated with TRAIL-UCA also exhibited significant apoptosis (p < 0.01) compared to unmodified UCA, similar to positive controls and bortezomib significantly increased apoptosis in combination with TRAIL-UCA. We conclude that TRAIL-ligated UCA show exciting potential as a new therapy.
Collapse
Affiliation(s)
- Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
17
|
Néstor MM, Kei NPE, Guadalupe NAM, Elisa MES, Adriana GQ, David QG. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging. ULTRASONICS 2011; 51:839-45. [PMID: 21570702 DOI: 10.1016/j.ultras.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/13/2011] [Accepted: 04/20/2011] [Indexed: 05/19/2023]
Abstract
The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging.
Collapse
Affiliation(s)
- Mendoza-Muñoz Néstor
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico.
| | | | | | | | | | | |
Collapse
|
18
|
Xiong X, Zhao F, Shi M, Yang H, Liu Y. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2011; 22:417-28. [PMID: 21144258 DOI: 10.1163/092050610x540440] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gas-filled microbubbles ultrasound agent have received wide attention, not only because they can improve ultrasound signals, but also they can be used as drug/gene carriers. Among all types of microbubbles fabricated by different membrane materials and core gases, polymer-shell microbubbles are highly promising. Polymeric microbubbles are more stable than other soft shell microbubbles in vivo. Under destructive ultrasound, polymer-stabilized microbubbles disintegrate and emit a strong non-linear signal, which enables ultrasound imaging with superior sensitivity. Except for ultrasound imaging, polymeric microbubbles could also be applied as drug/gene-delivery system. The thick polymeric shells allow loading a large amount of drugs. Meanwhile, site-specific targeting and controlled drug release in the area of interest can be realized through chemical and physical modification. In this review, we highlight some of the recent examples on polymeric microbubbles and their applications in ultrasound molecular imaging and drug delivery.
Collapse
Affiliation(s)
- Xiaoyan Xiong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | | | | | | | | |
Collapse
|
19
|
Rossi S, Waton G, Krafft MP. Phospholipid-coated gas bubble engineering: key parameters for size and stability control, as determined by an acoustical method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1649-1655. [PMID: 20099916 DOI: 10.1021/la9025987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have recently reported the sampling of differently sized monomodal populations of microbubbles from a polydisperse lipid-coated bubble preparation. The microbubbles were coated with dimyristoylphosphatidylcholine (DMPC) and stabilized by perfluorohexane (PFH). Such microbubbles are useful as contrast agents and, potentially, for oxygen, drug, and gene delivery and as therapeutic devices. Monomodal populations of small bubbles (approximately 1.6 microm in radius) and large bubbles (approximately 5.4 microm) have been obtained, as assessed by acoustical measurement, static light scattering, and optical microscopy. In this paper, we have determined the influence of various preparation parameters on the initial size characteristics (mean radius and radii distribution) of the microbubbles and on their stability upon time. The bubble size was determined acoustically, with a homemade acoustic setup equipped with a low-power emitter, to avoid altering the bubble stability. We have focused on the effects of the bubble flotation time during the fractionation process and on the DMPC concentration. PFH was indispensable for obtaining stable bubbles. The nature of the buffer [Isoton II vs N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)] used as the continuous phase did not significantly impact the bubble characteristics and stability. In both buffers, the half-lives of small bubbles (approximately 1.6 microm in radius in Isoton II and approximately 2.1 microm in HEPES) were found to be longer than those of larger ones (approximately 5.4 and approximately 5.9 microm in Isoton II and HEPES, respectively). The bubble stability study revealed that in both buffers, the average radius of the population of large bubbles progressively increased with time. On the other hand, the average radius of the population of small bubbles decreased slightly in Isoton II and remained constant in HEPES. This suggests that the dissolution behavior of small and large bubbles is governed by different mechanisms.
Collapse
Affiliation(s)
- Simona Rossi
- Systèmes Organisés Fluores à Finalités Thérapeutiques, Université de Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | | | | |
Collapse
|
20
|
Eisenbrey JR, Burstein OM, Kambhampati R, Forsberg F, Liu JB, Wheatley MA. Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release 2010; 143:38-44. [PMID: 20060024 DOI: 10.1016/j.jconrel.2009.12.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
An echogenic, intravenous drug delivery platform is proposed in which an encapsulated chemotherapeutic can travel to a desired location and drug delivery can be triggered using external, focused ultrasound at the area of interest. Three methods of loading poly(lactic acid) (PLA) shelled ultrasound contrast agents (UCA) with doxorubicin are presented. Effects on encapsulation efficiency, in vitro enhancement, stability, particle size, morphology and release during UCA rupture are compared by loading method and drug concentration. An agent containing doxorubicin within the shell was selected as an ideal candidate for future hepatocellular carcinoma studies. The agent achieved a maximal drug load of 6.2 mg Dox/g PLA with an encapsulation efficiency of 20.5%, showed a smooth surface morphology and tight size distribution (poly dispersity index=0.309) with a peak size of 1865 nm. Acoustically, the agent provided 19 dB of enhancement in vitro at a dosage of 10 microg/ml, with a half life of over 15 min. In vivo, the agent provided ultrasound enhancement of 13.4+/-1.6 dB within the ascending aorta of New Zealand rabbits at a dose of 0.15 ml/kg. While the drug-incorporated agent is thought to be well suited for future drug delivery experiments, this study has shown that agent properties can be tailored for specific applications based on choice of drug loading method.
Collapse
Affiliation(s)
- J R Eisenbrey
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9:325-41. [PMID: 19435455 DOI: 10.1586/erm.09.15] [Citation(s) in RCA: 589] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E DeBakey Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Exceptionally long lived microbubbles containing a fluorocarbon as part of their filling gas have been obtained by using a fluorinated phospholipid instead of a standard phospholipid as shell component. An unexpected, strong synergistic effect between the fluorocarbon gas and the fluorinated phospholipid has been discovered. Such bubbles could be used for in vivo oxygen delivery, ultrasound contrast imaging and drug delivery.
Collapse
Affiliation(s)
- Frédéric Gerber
- Systèmes Organisés Fluorés à Finalités Thérapeutiques (SOFFT), Institut Charles Sadron, Strasbourg Cedex, France
| | | | | | | |
Collapse
|
23
|
Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 2009; 98:1935-61. [PMID: 18979536 DOI: 10.1002/jps.21571] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Originally developed as contrast agents for ultrasound imaging and diagnostics, in the past years, microbubbles have made their way back from the patients' bedside to the researcher's laboratory. Microbubbles are currently believed to have great potential as carriers for drugs, small molecules, nucleic acids, and proteins. This review provides insight into this intriguing new frontier from the perspective of the pharmaceutical scientist. First, basic aspects on the application of ultrasound-targeted microbubble destruction for drug delivery will be presented. Next, we will review the recently applied approaches for manufacturing and drug-loading microbubbles. Important quality issues and characterization techniques for advanced microbubble formulation will be discussed. Finally, we will provide an assessment of the prospects for microbubbles in drug and gene therapy, illustrating the problems and requirements for their future development.
Collapse
Affiliation(s)
- Steliyan Tinkov
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians University-Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
24
|
Lavisse S, Peronneau P, Rouffiac V, Paci A, Vigouroux J, Opolon P, Roche A, Lassau N. Acoustic characterization of a new trisacryl contrast agent. Part II: Flow phantom study and in vivo quantification. ULTRASONICS 2008; 48:26-34. [PMID: 18191434 DOI: 10.1016/j.ultras.2007.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/10/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
The biocompatible trisacryl particles (TMP) are made of a cross-linked acrylic copolymer. Their inherent acoustic properties, studied for a contrast agent application, have been previously demonstrated in a in vitro Couette device. To measure their acoustic behaviour under circulating blood conditions, the TMP backscatter enhancement was further evaluated on a home-made flow phantom at different TMP doses (0.12-15.6 mg/ml) suspended in aqueous and blood media, and in nude mice (aorta and B16 grafted melanoma). Integrated backscatter (IB) was measured by spectral analysis of the Doppler signals recorded from an ultrasound system (Aplio) combined with a 12-MHz probe. Doppler phantom experiments revealed a maximal IB of 17+/-0.88 dB and 7.5+/-0.7 dB in aqueous and blood media, respectively. IB measured on mice aorta, in pulsed Doppler mode, confirmed a constant maximal value of 7.29+/-1.72 dB over the first minutes after injection of a 7.8 mg/ml TMP suspension. Following the injection, a 60% enhancement of intratumoral vascularization detection was observed in power Doppler mode. A preliminary histological study revealed inert presence of some TMP in lungs 8 and 16 days after injection. Doppler phantom experiments on whole blood allowed to anticipate the in vivo acoustic behaviour. Both protocols demonstrated TMP effectiveness in significantly increasing Doppler signal intensity and intratumoral vascularization detection. However, it was also shown that blood conditions seemed to shadow the TMP contrast effect, as compared to in vitro observations. These results encourage further investigations on the specific TMP targeting and on their bio-distribution in the different tissues.
Collapse
Affiliation(s)
- Sonia Lavisse
- Universite de Paris-Sud, Imaging Department and UPRES EA 4040, Orsay F-91405, Institut Gustave Roussy, 39, Rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sagis LMC, Boeriu CG, Frissen GE, Schols HA, Wierenga PA. Highly stable foams from block oligomers synthesized by enzymatic reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:359-361. [PMID: 18081334 DOI: 10.1021/la7030494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have synthesized a new amphiphilic block oligomer by the enzymatic linking of a fatty acid (lauric acid) to a fructan oligomer (inulin) and tested the functionality of this carbohydrate derivative in foam stabilization. The structure of the modified oligosaccharide was found to be (Fruc)n(Glc)1CO-C11H23, which implies that on average one lauric acid molecule was linked to one inulin molecule. The new component produces foams with exceptional stability. Our results show that enzymatic acylation can produce an entirely new class of amphiphilic materials, with functionality comparable to that of synthetic block copolymers.
Collapse
Affiliation(s)
- Leonard M C Sagis
- Food Physics Group and Laboratory of Food Chemistry, Wageningen University and Research Center, Bomenweg 2, 6703 HD Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Wheatley MA, Forsberg F, Oum K, Ro R, El-Sherif D. Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. ULTRASONICS 2006; 44:360-7. [PMID: 16730047 DOI: 10.1016/j.ultras.2006.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/05/2006] [Accepted: 04/10/2006] [Indexed: 05/09/2023]
Abstract
A comparison between in vitro and in vivo experiments conducted to investigate the acoustic properties of a novel, 1.2 microm diameter poly(lactic-co-glycolic acid) (50:50) (PLGA) ultrasound contrast agent, the development of which was described previously by us, is presented. A pulse-echo setup was used to determine enhancement in vitro. Additional in vitro studies further characterized the hollow microcapsules, including resonance frequency from attenuation measurements (from 2.25 to 15 MHz) and temperature effects (25 degrees C vs. 37 degrees C). In vivo, four rabbits received intravenous injections of the agent (dose range: 0.005-0.13 ml/kg). Quantitative in vivo dose-responses were calculated off-line using spectral power analysis of audio Doppler signals acquired from a custom-made 10 MHz cuff transducer placed around the surgically exposed distal aorta. This frequency was chosen since the very shallow scanning depths encountered in rabbits, in particular for the cuff transducer placed directly around the vessel, necessitates the use of high frequency imaging devices with sufficient spatial resolution to enable meaningful measurements. For qualitative assessments, two rabbits were imaged pre- and post-contrast administration (dose: 0.1 ml/kg) in power Doppler mode. Significant acoustic enhancements (up to 24 dB) were reported both in vitro and in vivo. Moreover, the rabbits did not show any adverse side effects from multiple injections (>20) of the agent. Measured in vitro resonance frequency between 3.09 and 3.49 MHz was lower than predicted for a similar sized free bubble, potentially due to capsule wall structure. Minimal loss of signal (approximately 4 dB) was observed at 25 degrees C over 20 min of insonation at 5 MHz but at 37 degrees C the signal dropped close to base line within the first 5 min. This temperature sensitivity could be due to loss of capsule integrity (and hence loss of gas). Potential causes include increased hydrolysis or polymer softening and increased water uptake by the shell at temperatures closer to the glass transition temperature (T(g)).
Collapse
Affiliation(s)
- Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
28
|
Sparano A, Acampora C, di Nuzzo L, Liguori P, Farina R, Scaglione M, Romano L. Color power Doppler US and contrast-enhanced US features of abdominal solid organ injuries. Emerg Radiol 2006; 12:216-22. [PMID: 16741757 DOI: 10.1007/s10140-006-0470-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 12/16/2005] [Indexed: 12/26/2022]
Abstract
Utilization of color power Doppler and sonographic contrast agents to basic ultrasound (US) further improve the detection and characterization of abdominal injuries, increasing the diagnostic accuracy and value of US as an important technique in the evaluation of the abdominal trauma. This paper provides an illustrated summary of our clinical experience with color power Doppler US (CD-US) and contrast-enhanced US (CE-US) in the evaluation of abdominal solid organ injuries, involving 32 documented cases over a 2-year period. The findings of the CD-US and CE-US were compared with those provided by state-of-the-art contrast-enhanced multidetector 16-row CT.
Collapse
Affiliation(s)
- Amelia Sparano
- Department of Radiology, Cardarelli Hospital, Via A. Cardarelli, 9-80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gerber F, Pierre Krafft M, Waton G, Vandamme TF. Microbubbles with exceptionally long life—synergy between shell and internal phase components. NEW J CHEM 2006. [DOI: 10.1039/b600061b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Wheatley MA, Forsberg F, Dube N, Patel M, Oeffinger BE. Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:83-93. [PMID: 16364800 DOI: 10.1016/j.ultrasmedbio.2005.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 05/05/2023]
Abstract
Ultrasound contrast agents (CA) are generally micron-sized stabilized gas bubbles, injected IV. However, to penetrate beyond the vasculature and accumulate in targets such as tumors, CA must be an order of magnitude smaller. We describe a method of achieving nanometer-sized, surfactant-stabilized CA by differential centrifugation. High g force was shown to destroy bubble integrity. Optimal conditions (300 rpm for 3 min) produced an agent with a mean diameter of 450 nm, which gave 25.5 dB enhancement in vitro at a dose of 10 microL/mL, with a 13 min half-life. In vivo, the CA produced excellent power Doppler and grey-scale pulse inversion harmonic images at low acoustic power when administered. In vivo dose-response curves obtained in three rabbits showed enhancement between 20 and 25 dB for dosages above 0.025 mL/kg. These results encourage further investigation of the possible diagnostic and therapeutic benefits of using nanoparticles as CA, including passive targeting and accumulation in tumors.
Collapse
Affiliation(s)
- Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Lavisse S, Paci A, Rouffiac V, Adotevi C, Opolon P, Peronneau P, Bourget P, Roche A, Perricaudet M, Fattal E, Lassau N. In Vitro Echogenicity Characterization of Poly[lactide-coglycolide] (PLGA) Microparticles and Preliminary In Vivo Ultrasound Enhancement Study for Ultrasound Contrast Agent Application. Invest Radiol 2005; 40:536-44. [PMID: 16024992 DOI: 10.1097/01.rli.0000170818.03210.ee] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This work includes (1) the characterization of a reproducible poly[lactide-coglycolide] (PLGA) microparticle preparation with an optimial mean diameter and size distribution and (2) the preliminary in vivo ultrasonographic investigation of PLGA microparticles. METHODS A first series of PLGA microparticle preparations (1 to 15 mum) was acoustically characterized on a hydrodynamic device to select the most appropriate for ultrasound contrast agent application. Preparations of 3-microm microparticles were selected, characterized at different doses, and then injected into 20 melanoma grafted mice for contrast-enhanced power Doppler ultrasonography evaluation. RESULTS The 3-microm microparticles (3.26-microm mean diameter with 0.41-microm standard deviation) led to in vitro enhancement of 18.3 dB at 0.62 mg/mL. In vivo experiments showed 47% enhancement of intratumoral vascularization detection after PLGA injection, significantly correlated (P < 0.0001) with preinjection intravascularization and tumoral volume. No toxicity was histologically observed. CONCLUSION The 3-microm PLGA microparticles provided significant enhancement in vitro and in vivo without any toxicity.
Collapse
Affiliation(s)
- Sonia Lavisse
- Département d'Imagerie et Laboratoire d'Imagerie du Petit Animal Laboratoire, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|