1
|
Arthur L, Voulgaridou V, Papageorgiou G, Lu W, McDougall SR, Sboros V. Super-resolution ultrasound imaging of ischaemia flow: An in silico study. J Theor Biol 2025; 599:112018. [PMID: 39647660 DOI: 10.1016/j.jtbi.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Super-resolution ultrasound (SRU) is a new ultrasound imaging mode that promises to facilitate the detection of microvascular disease by providing new vascular bio-markers that are directly linked to microvascular pathophysiology, thereby augmenting current knowledge and potentially enabling new treatment. Such a capability can be developed through thorough understanding as articulated by means of mathematical models. In this study, a 2D numerical flow model is adopted for generating flow adaptation in response to ischaemia, in order to determine the ability of SRU to register the resulting flow perturbations. The flow model results demonstrate that variations in flow behaviour in response to locally induced ischaemia can be significant throughout the entire vascular bed. Measured velocities have variations that are dependent on the location of ischaemia, with median values ranging between 2-7 mms-1. Moreover, the distinction between healthy and ischaemic networks are recorded accurately in the SRU results showing excellent agreement between SRU maps and the model. Up to 7-fold spatial resolution improvement to conventional contrast ultrasound was achieved in microbubble localisation while the detection precision and recall was consistently above 98%. The microbubble tracking precision was of a similar accuracy, whereas the recall was reduced (77%) under varying ischaemic impacted flow. Further, regions with velocities up to 30 mms-1 are in excellent agreement with SRU maps, while at regions that include a proportion of higher velocities, the median velocity values are within 1.28%-3.32% of the ground-truth. In conclusion, SRU is a highly promising methodology for the direct measurement of microvascular flow dynamics and may provide a valuable tool for the understanding and subsequent modelling of behaviour in the vascular bed.
Collapse
Affiliation(s)
- Lachlan Arthur
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.
| | - Vasiliki Voulgaridou
- Translational Healthcare Technologies Team, Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, United Kingdom.
| | - Georgios Papageorgiou
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.
| | - Weiping Lu
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.
| | - Steven R McDougall
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.
| | - Vassilis Sboros
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.
| |
Collapse
|
2
|
Butler MB, Papageorgiou G, Kanoulas ED, Voulgaridou V, Wijkstra H, Mischi M, Mannaerts CK, McDougall S, Duncan WC, Lu W, Sboros V. Mapping of prostate cancer microvascular patterns using super-resolution ultrasound imaging. Eur Radiol Exp 2025; 9:25. [PMID: 39976631 PMCID: PMC11842657 DOI: 10.1186/s41747-025-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Super-resolution ultrasound imaging (SRUI) is a rapidly expanding field with the potential to impact cancer management. Image processing algorithms applied to contrast-enhanced ultrasound (CEUS) video data can track the path of the contrast agent and produce high-resolution maps of vascular networks. Our aim was to develop SRUI for mapping prostate vascular dynamics and to assess the feasibility of identifying vascular patterns associated with prostate cancer. METHODS Tracking algorithms for SRUI were developed using in silico data and validated in pre-clinical CEUS video collected from the sheep ovary. Algorithm performance was then assessed in a retrospective study of 54 image planes within 14 human prostates. CEUS data was collected for each plane, and regions of suspected cancer in each were identified from biopsy data. RESULTS Of three algorithms assessed, utilising vascular knowledge was found to be the most robust method. Regions of suspected cancer were associated with increased blood flow volume and speed while avascular regions were also identified. Ten scan planes had confirmed Gleason 7 cancer; of these 10 planes, 7 had distinct regions of fast and high-volume flow, while 6 had both avascular and high flow regions. The cancer-free planes had more consistent, low blood flow values across the plane. CONCLUSION SRUI can be used to identify imaging biomarkers associated with vascular architecture and dynamics. These multiparameter biomarkers may be useful in pinpointing regions of significant prostate cancer. RELEVANCE STATEMENT Super-resolution ultrasound imaging can generate microvascular maps of the prostate, revealing tissue patterns and presenting significant potential for the identification of multiple biomarkers associated with the localisation of prostate cancer. TRIAL REGISTRATION Retrospectively registered NCT02831920, date 5/7/2016 https://www. CLINICALTRIALS gov/study/NCT02831920 . KEY POINTS An algorithm was developed and tested in synthetic pre-clinical and clinical data. Maps of blood vessels were created using contrast-enhanced ultrasound imaging. Specific presentations of vasculature at regions of prostate cancer have been identified.
Collapse
Affiliation(s)
- Mairead B Butler
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK.
| | - Georgios Papageorgiou
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| | - Evangelos D Kanoulas
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| | - Vasiliki Voulgaridou
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| | - Hessel Wijkstra
- Eindhoven University of Technology, Electrical Engineering, Eindhoven, The Netherlands
| | - Massimo Mischi
- Eindhoven University of Technology, Electrical Engineering, Eindhoven, The Netherlands
| | | | - Steven McDougall
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| | - William Colin Duncan
- The Centre for Reproductive Health, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Weiping Lu
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| | - Vassilis Sboros
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Engineering and Physical Sciences, Edinburgh, EH14 4AS, UK
| |
Collapse
|
3
|
Arthur LJMB, Voulgaridou V, Butler MB, Papageorgiou G, Lu W, McDougall SR, Sboros V. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Phys Med Biol 2024; 69:235006. [PMID: 39536710 PMCID: PMC11583374 DOI: 10.1088/1361-6560/ad9231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,R = 0.85; GT,R = 0.82) and change in peak intensity,dIp(CEUS,R = 0.87; GT,R = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was>91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.
Collapse
Affiliation(s)
- Lachlan J M B Arthur
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vasiliki Voulgaridou
- Translational Healthcare Technologies Team, Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Mairead B Butler
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Georgios Papageorgiou
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Weiping Lu
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Steven R McDougall
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vassilis Sboros
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
4
|
Pinzón-Osorio CA, Machado MA, Camozzato JNB, Dos Santos Velho G, Dalto AGC, Rovani MT, de Oliveira FC, Bertolini M. Inter-software reliability and agreement for follicular and luteal morphometric and echotextural ultrasonographic parameters in beef cattle. Anim Reprod Sci 2024; 267:107518. [PMID: 38889613 DOI: 10.1016/j.anireprosci.2024.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
This study aimed to compare the inter-software and inter-observer reliability and agreement for the assessment of follicular and luteal morphometry and echotexture parameters in beef crossbreed females (3/8 Bos taurus indicus and 5/8 Bos taurus taurus). B-mode and color Doppler ultrasonographic ovarian images were obtained at specific time points of estradiol-progesterone-based protocols for timed artificial insemination (TAI). Sonograms were analyzed by two observers using a licensed (IASP1) and an open access (IASP2) software package. A total of 292 snap-shot sonograms were analyzed for morphometric parameters and 504 for echotexture parameters. inter-software reliability was judged moderate to excellent (ICC or CCC=0.73-0.98), whereas inter-observer reliability for morphometric parameters was deemed good to excellent (ICC or CCC=0.82-0.98). A small percentage (up to 10.95 %) of measured parameters fell outside the limits of inter-software and inter-observer agreement. For echotexture parameters, inter-software reliability varied widely (ICC or CCC=0.16-0.95) based on the size of regions of interest (ROI), while inter-observer reliability ranged from moderate to excellent (ICC or CCC= 0.71-0.97). The highest inter-software reliability for pixel value and heterogeneity value was observed for the corpus luteum (ICCs=0.81-0.95; P>0.05), followed by the peripheral follicular antrum (ICCs=0.75-0.78; P<0.05). However, lower reliability was determined for the follicular wall (ICCs=0.08-0.33; P<0.0001) and perifollicular stroma (ICCs=0.16-0.46; P<0.05). In conclusion, both software packages showed high reproducibility for morphometric measurements, while echotexture measurements were more challenging to replicate based on ROI sizes. Caution is advised when selecting ROI sizes for echotexture measurements in bovine ovaries.
Collapse
Affiliation(s)
- César Augusto Pinzón-Osorio
- Embryology and Reproductive Technology Lab, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Julia Nobre Blank Camozzato
- Embryology and Reproductive Technology Lab, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Research Group "Fisiopatologia e Biotécnicas da Reprodução Animal" (FiBRA), Large Ruminant Sector, Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriella Dos Santos Velho
- Research Group "Fisiopatologia e Biotécnicas da Reprodução Animal" (FiBRA), Large Ruminant Sector, Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Gustavo Cabrera Dalto
- Research Group "Fisiopatologia e Biotécnicas da Reprodução Animal" (FiBRA), Large Ruminant Sector, Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Monique Tomazele Rovani
- Research Group "Fisiopatologia e Biotécnicas da Reprodução Animal" (FiBRA), Large Ruminant Sector, Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Caetano de Oliveira
- Embryology and Reproductive Technology Lab, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Research Group "Fisiopatologia e Biotécnicas da Reprodução Animal" (FiBRA), Large Ruminant Sector, Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Bertolini
- Embryology and Reproductive Technology Lab, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Butler M, Perperidis A, Zahra JLM, Silva N, Averkiou M, Duncan WC, McNeilly A, Sboros V. Differentiation of Vascular Characteristics Using Contrast-Enhanced Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2444-2455. [PMID: 31208880 DOI: 10.1016/j.ultrasmedbio.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 05/09/2023]
Abstract
Ultrasound contrast imaging has been used to assess tumour growth and regression by assessing the flow through the macro- and micro-vasculature. Our aim was to differentiate the blood kinetics of vessels such as veins, arteries and microvasculature within the limits of the spatial resolution of contrast-enhanced ultrasound imaging. The highly vascularised ovine ovary was used as a biological model. Perfusion of the ovary with SonoVue was recorded with a Philips iU22 scanner in contrast imaging mode. One ewe was treated with prostaglandin to induce vascular regression. Time-intensity curves (TIC) for different regions of interest were obtained, a lognormal model was fitted and flow parameters calculated. Parametric maps of the whole imaging plane were generated for 2 × 2 pixel regions of interest. Further analysis of TICs from selected locations helped specify parameters associated with differentiation into four categories of vessels (arteries, veins, medium-sized vessels and micro-vessels). Time-dependent parameters were associated with large veins, whereas intensity-dependent parameters were associated with large arteries. Further development may enable automation of the technique as an efficient way of monitoring vessel distributions in a clinical setting using currently available scanners.
Collapse
Affiliation(s)
- Mairead Butler
- Heriot-Watt University, Institute of Biochemistry, Biological Physics and Bio Engineering, Riccarton, Edinburgh, UK.
| | - Antonios Perperidis
- Heriot-Watt University, Institute of Signals, Sensors and Systems, Riccarton, Edinburgh, UK
| | | | - Nadia Silva
- Centre for Marine Sciences, University of Algarve Faro, Portugal
| | - Michalakis Averkiou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Colin Duncan
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Alan McNeilly
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Vassilis Sboros
- Heriot-Watt University, Institute of Biochemistry, Biological Physics and Bio Engineering, Riccarton, Edinburgh, UK
| |
Collapse
|
6
|
Kanoulas E, Butler M, Rowley C, Voulgaridou V, Diamantis K, Duncan WC, McNeilly A, Averkiou M, Wijkstra H, Mischi M, Wilson RS, Lu W, Sboros V. Super-Resolution Contrast-Enhanced Ultrasound Methodology for the Identification of In Vivo Vascular Dynamics in 2D. Invest Radiol 2019; 54:500-516. [PMID: 31058661 PMCID: PMC6661242 DOI: 10.1097/rli.0000000000000565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to provide an ultrasound-based super-resolution methodology that can be implemented using clinical 2-dimensional ultrasound equipment and standard contrast-enhanced ultrasound modes. In addition, the aim is to achieve this for true-to-life patient imaging conditions, including realistic examination times of a few minutes and adequate image penetration depths that can be used to scan entire organs without sacrificing current super-resolution ultrasound imaging performance. METHODS Standard contrast-enhanced ultrasound was used along with bolus or infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble (MB) suspensions. An image analysis methodology, translated from light microscopy algorithms, was developed for use with ultrasound contrast imaging video data. New features that are tailored for ultrasound contrast image data were developed for MB detection and segmentation, so that the algorithm can deal with single and overlapping MBs. The method was tested initially on synthetic data, then with a simple microvessel phantom, and then with in vivo ultrasound contrast video loops from sheep ovaries. Tracks detailing the vascular structure and corresponding velocity map of the sheep ovary were reconstructed. Images acquired from light microscopy, optical projection tomography, and optical coherence tomography were compared with the vasculature network that was revealed in the ultrasound contrast data. The final method was applied to clinical prostate data as a proof of principle. RESULTS Features of the ovary identified in optical modalities mentioned previously were also identified in the ultrasound super-resolution density maps. Follicular areas, follicle wall, vessel diameter, and tissue dimensions were very similar. An approximately 8.5-fold resolution gain was demonstrated in vessel width, as vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best agreement was found between ultrasound measurements and optical coherence tomography with 10% difference in the measured vessel widths, whereas ex vivo microscopy measurements were significantly lower by 43% on average. The results were mostly achieved using video loops of under 2-minute duration that included respiratory motion. A feasibility study on a human prostate showed good agreement between density and velocity ultrasound maps with the histological evaluation of the location of a tumor. CONCLUSIONS The feasibility of a 2-dimensional contrast-enhanced ultrasound-based super-resolution method was demonstrated using in vitro, synthetic and in vivo animal data. The method reduces the examination times to a few minutes using state-of-the-art ultrasound equipment and can provide super-resolution maps for an entire prostate with similar resolution to that achieved in other studies.
Collapse
Affiliation(s)
- Evangelos Kanoulas
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Mairead Butler
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Caitlin Rowley
- Department of Physics, Heriot-Watt University, Riccarton
| | - Vasiliki Voulgaridou
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | | | - William Colin Duncan
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan McNeilly
- Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Rhodri Simon Wilson
- **Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Weiping Lu
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| | - Vassilis Sboros
- From the Institute of Biochemistry, Biological Physics, and Bio Engineering, and
| |
Collapse
|
7
|
|
8
|
Vanderperren K, Stock E, Pardon B, Saunders J. Contrast-enhanced ultrasound in sheep. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Sboros V. The ovine corpus luteum angiogenesis model: a tool for developing imaging technology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4280-2. [PMID: 25570938 DOI: 10.1109/embc.2014.6944570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Robust tools for the quantitation of perfusion are not fully developed using contrast enhanced ultrasound (CEUS). The ovine corpus luteum (CL) is a transient gland in the ovary that is formed to produce the hormone progesterone essential for maintenance of pregnancy. Importantly, it has a dense microvascular network with predictable and well-regulated angiogenic mechanisms. In a number of different experiments it was shown that this property may be used to investigate and refine imaging methodology. Using a Philips iU22 ultrasound scanner (Philips Medical Systems Corp, Seattle, WA) in contrast imaging mode it was shown that a highly controlled experiment may produce high levels of reproducibility in the transit of contrast with standard uncertainty below 10%. Also, compartmental kinetics models were tested. The use of prostaglandin F2alpha promotes an intense anti-angiogenesis, allowing monitoring with CEUS prior to and following the demise of the CL microvasculature within 24 hours. Finally, the robust angiogenic property of the CL during the oestrous cycle allows further refinement of CEUS in vivo. In conclusion, the CL offers an attractive changing vascular bed for assessing existing and developing new clinically relevant perfusion imaging methodology.
Collapse
|
10
|
Perperidis A, Thomas D, Averkiou M, Duncan C, McNeilly A, Butler M, Sboros V. Automatic dissociation between microvasculature and larger vessels for ultrasound contrast imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5076-9. [PMID: 25571134 DOI: 10.1109/embc.2014.6944766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microvasculature density (MVD) provides an established biomarker for the prognosis of numerous diseases associated with abnormal microvascular networks. The accurate, robust and timely assessment of MVD changes facilitates disease detection, treatment monitoring and patient stratification. Nevertheless, the current gold standard (PET) for MVD quantification is not used in clinical practice due to its high costs and potential health hazards. Contrast Enhanced Ultrasound (CEUS) imaging can provide an attractive alternative. However, the limited dissociation between larger vessels and microvasculature in the imaged tissues limits the accuracy and robustness of CEUS. This study proposed a novel, and fully automatic technique that dissociates larger vessels from microvasculature in CEUS imaged tissues. The ovine Corpus Luteum (CL) was used as an in vivo model for the development and assessment of the proposed technique.
Collapse
|
11
|
Connolly F, Rae MT, Butler M, Klibanov AL, Sboros V, McNeilly AS, Duncan WC. The local effects of ovarian diathermy in an ovine model of polycystic ovary syndrome. PLoS One 2014; 9:e111280. [PMID: 25343339 PMCID: PMC4208840 DOI: 10.1371/journal.pone.0111280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023] Open
Abstract
In order to develop a medical alternative to surgical ovarian diathermy (OD) in polycystic ovary syndrome (PCOS) more mechanistic information is required about OD. We therefore studied the cellular, molecular and vascular effects of diathermy on the ovary using an established ovine model of PCOS. Pregnant sheep were treated twice weekly with testosterone propionate (100 mg) from day 30–100 gestation. Their female offspring (n = 12) were studied during their second breeding season when the PCOS-like phenotype, with anovulation, is fully manifest. In one group (n = 4) one ovary underwent diathermy and it was collected and compared to the contralateral ovary after 24 hours. In another group a treatment PCOS cohort underwent diathermy (n = 4) and the ovaries were collected and compared to the control PCOS cohort (n = 4) after 5 weeks. Ovarian vascular indices were measured using contrast-enhanced ultrasound and colour Doppler before, immediately after, 24 hours and five weeks after diathermy. Antral follicles were assessed by immunohistochemistry and ovarian stromal gene expression by quantitative RT-PCR 24 hours and 5 weeks after diathermy. Diathermy increased follicular atresia (P<0.05) and reduced antral follicle numbers after 5 weeks (P<0.05). There was an increase in stromal CCL2 expression 24 hours after diathermy (P<0.01) but no alteration in inflammatory indices at 5 weeks. Immediately after diathermy there was increased microbubble transit time in the ovarian microvasculature (P = 0.05) but this was not seen at 24 hours. However 24 hours after diathermy there was a reduction in the stromal Doppler blood flow signal (P<0.05) and an increased ovarian resistance index (P<0.05) both of which persisted at 5 weeks (P<0.01; P<0.05). In the ovine model of PCOS, OD causes a sustained reduction in ovarian stromal blood flow with an increased ovarian artery resistance index associated with atresia of antral follicles.
Collapse
Affiliation(s)
- Fiona Connolly
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael T. Rae
- School of Health, Life and Social Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Mairead Butler
- Institute of Biophysics, Biochemistry and Bio-Engineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Alexander L. Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Vassilis Sboros
- Institute of Biophysics, Biochemistry and Bio-Engineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Alan S. McNeilly
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - W. Colin Duncan
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Grazul-Bilska AT, Borowicz PP, Reynolds LP, Redmer DA. Vascular perfusion with fluorescent labeled lectin to study ovarian functions. Acta Histochem 2013; 115:893-8. [PMID: 23622682 DOI: 10.1016/j.acthis.2013.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
The aim of this study was to optimize a method to visualize tissue vascularity by perfusing the local vascular bed with a fluorescently labeled lectin, combined with immunofluorescent labeling of selected vascular/tissue markers. Ovaries with the pedicle were obtained from adult non-pregnant ewes. Immediately after collection, the ovarian artery was perfused with phosphate buffered saline (PBS) to remove blood cells, followed by perfusion with PBS containing fluorescently labeled Griffonia (Bandeiraea) simplicifolia (BS1) lectin. Then, half of ovary was fixed in formalin and another half in Carnoy's fixative. BS1 was detected in blood vessels in ovaries fixed in formalin, but not in Carnoy's fixative. Formalin fixed tissue was used for immunofluorescence staining of two markers of tissue function and/or structure, Ki67 and smooth muscle cell actin (SMCA). Ki67 was detected in granulosa and theca cells, luteal and stromal tissue, and a portion of Ki67 staining was co-localized with blood vessels. SMCA was detected in pericytes within the capillary system, in blood vessels in all ovarian compartments, and in the stroma. Thus, blood vessel perfusion with fluorescently labeled lectin combined with immunohistochemistry, microscopy, and imaging techniques provide an excellent tool to study angiogenesis, vascular architecture, and organ structures and function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | |
Collapse
|
13
|
Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev 2013; 25:362-71. [PMID: 22951108 DOI: 10.1071/rd12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
The ovary is a key tissue in the study of physiological neo-vascularisation in the adult and its study has highlighted important molecules involved in the regulation of angiogenesis in vivo. These include vascular endothelial growth factor, delta-like ligand 4, thrombospondin-1, prokineticin-1 and prostaglandin E2. Targeting these molecular pathways has therapeutic potential and their manipulation has an increasing preclinical and clinical role in the management of the pathological ovary. Targeting angiogenic pathways has utility in the promotion of ovarian angiogenesis to improve tissue and follicle survival and function as well as the prevention and management of ovarian hyperstimulation syndrome. There is a theoretical possibility that targeting angiogenesis may improve the function of the polycystic ovary and a real role for targeting angiogenesis in ovarian cancer.
Collapse
Affiliation(s)
- W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
14
|
Polisca A, Zelli R, Troisi A, Orlandi R, Brecchia G, Boiti C. Power and pulsed Doppler evaluation of ovarian hemodynamic changes during diestrus in pregnant and nonpregnant bitches. Theriogenology 2013; 79:219-24. [DOI: 10.1016/j.theriogenology.2012.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/05/2012] [Accepted: 08/10/2012] [Indexed: 11/15/2022]
|
15
|
Hastings JM, Morris KD, Allan D, Wilson H, Millar RP, Fraser HM, Moran CM. Contrast imaging ultrasound detects abnormalities in the marmoset ovary. Am J Primatol 2012; 74:1088-96. [PMID: 22890799 DOI: 10.1002/ajp.22063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/17/2022]
Abstract
The development of a functional vascular tree within the primate ovary is critical for reproductive health. To determine the efficacy of contrast agents to image the microvascular environment within the primate ovary, contrast ultrasonography was performed in six reproductive-aged female common marmosets (Callithrix jacchus) during the late luteal phase of the cycle, following injection of Sonovue™. Regions of interest (ROIs), representing the corpus luteum (CL) and noncorpus luteum ovarian tissue (NCLOT), were selected during gray-scale B-mode ultrasound imaging. The magnitude of backscatter intensity of CL and NCLOT ROIs were calculated in XnView, post hoc: subsequent gamma-variate modeling was implemented in Matlab to determine perfusion parameters. Histological analysis of these ovaries revealed a total of 11 CL, nine of which were identified during contrast ultrasonography. The median enhancement ratio was significantly increased in the CL (5.54AU; 95% CI -2.21-68.71) compared to the NCLOT (2.82AU; 95% CI 2.73-15.06; P < 0.05). There was no difference in time parameters between the CL and NCLOT. An additional avascular ROI was identified in the ovary of Animal 5, both histologically and by ultrasonography. This cystic ROI displayed a markedly lower enhancement ratio (0.79AU) and higher time parameters than mean CL and NCLOT, including time to peak and time to wash out. These data demonstrate, for the first time, the ability of commercially available contrast agents, to differentiate structures within the nonhuman primate ovary. Contrast-enhanced ultrasonography has a promising future in reproductive medicine.
Collapse
Affiliation(s)
- J M Hastings
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|