1
|
Ma YR, Xu YQ, Guo W, Shi YL, Wu Y, Chen ZG. Combined ANFIS and numerical methods to reveal the mass transfer mechanism of ultrasound-enhanced extraction of proteins from millet. ULTRASONICS SONOCHEMISTRY 2024; 111:107153. [PMID: 39549670 PMCID: PMC11615138 DOI: 10.1016/j.ultsonch.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Millet protein, as a promising plant-based protein substitute source, is an excellent basis for essential amino acids compared to commonly consumed staple grains. Compared with the traditional extraction process, ultrasound has been used to enhance the extraction efficiency of various plant-based proteins. To reveal the mechanism of ultrasound-enhanced extraction of proteins, adaptive neuro-fuzzy inference system (ANFIS) algorithm and numerical simulation based on Fick's law were applied to illustrate the mass transfer behavior of millet proteins under different ultrasonic conditions including solid-liquid ratios (S/L ratios), pH and acoustic energy density levels (AED). The results showed that AED dominated the changes in effective diffusion coefficient (De), showing a positive correlation relationship (p < 0.05). Specifically, when the AED was 47.07 W/cm2, the De value increased by 95% compared to that of 23.47 W/cm2. Meanwhile, the ANFIS model successfully predicted protein yields across all investigated parameters, achieving a coefficient of determination (R2) greater than 0.97. This model also elucidated the interactions among four critical factors, among which pH and S/L ratios were the main factors affecting protein yield. Concerning the ultrasonic cavitation bubble dynamics, the bubble collapse efficiency enhanced with an increase in AED, and therefore high AED ultrasound can significantly enhance the cavitation effect. Additionally, the results of the yields and physical properties of millet protein also indicated that in contrast with the traditional extraction methods, the ultrasound impactfully improved extraction yield (by 165%), and combined with pH condition, it decreased the protein particle size (from 813.55 nm to 299.30 nm) without altering the molecular weight distribution. This study offers a novel perspective on the mechanism underlying ultrasound-enhanced protein extraction, drawing upon principles of ultrasonics and extraction processes. The insights gained can serve as a foundation for the food industry to upscale the extraction process, potentially enhancing efficiency and yield.
Collapse
Affiliation(s)
- Yan-Rong Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Qiang Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wen Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Lin Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhi-Gang Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Chaji S, Capaldi G, Gallina L, Grillo G, Boffa L, Cravotto G. Semi-industrial ultrasound-assisted extraction of grape-seed proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5689-5697. [PMID: 38372563 DOI: 10.1002/jsfa.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND To manage industrial waste in accordance with the circular bioeconomy concept it is sometimes necessary to handle grape seeds, an abundant by-product of the wine-making process. This study presents a process based on ultrasound technology for the extraction of grape-seed proteins, due to their nutritional and techno-functional properties. The protein content of extracts obtained under silent and lab-scale conditions was compared with that obtained under semi-industrial ultrasound conditions, and the chemical composition (carbohydrates, total phenols, and lipids) and the elemental profiles of the final, up-scaled downstream extracts were characterized. RESULTS This work found that the maximum amount of protein in the final product was 378.31 g.kg-1 of the extract. Chemical characterization revealed that each 1 kg of extract had an average content of 326.19 g gallic acid equivalent as total phenols, 162.57 g glucose equivalent as carbohydrates, and 382.76 g of lipophilic compounds. Furthermore, when the extract was checked for hazardous elements, none were found in levels that could be considered a risk for human health. CONCLUSION The proposed semi-industrial strategy has the potential to contribute greatly to the valorization of grape seeds through the preparation of a protein-rich extract that can be used as an alternative to synthetic wine stabilizers and for the development of novel food and nutraceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Salah Chaji
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giorgio Capaldi
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Lorenzo Gallina
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Luisa Boffa
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Xie C, Du J, Xing C, Zhang X, Wang L, Chen H, Lin T. Improving the extraction efficiency and functional properties of wheat germ protein by ultrasound-assisted. CZECH JOURNAL OF FOOD SCIENCES 2023. [DOI: 10.17221/54/2022-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Wang Y, Liu J, Zhang Z, Meng X, Yang T, Shi W, He R, Ma H. Insights into Ultrasonication Treatment on the Characteristics of Cereal Proteins: Functionality, Conformational and Physicochemical Characteristics. Foods 2023; 12:foods12050971. [PMID: 36900488 PMCID: PMC10000784 DOI: 10.3390/foods12050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND It would be impossible to imagine a country where cereals and their byproducts were not at the peak of foodstuff systems as a source of food, fertilizer, or for fiber and fuel production. Moreover, the production of cereal proteins (CPs) has recently attracted the scientific community's interest due to the increasing demands for physical wellbeing and animal health. However, the nutritional and technological enhancements of CPs are needed to ameliorate their functional and structural properties. Ultrasonic technology is an emerging nonthermal method to change the functionality and conformational characteristics of CPs. Scope and approach: This article briefly discusses the effects of ultrasonication on the characteristics of CPs. The effects of ultrasonication on the solubility, emulsibility, foamability, surface-hydrophobicity, particle-size, conformational-structure, microstructural, enzymatic-hydrolysis, and digestive properties are summarized. CONCLUSIONS The results demonstrate that ultrasonication could be used to enhance the characteristics of CPs. Proper ultrasonic treatment could improve functionalities such as solubility, emulsibility, and foamability, and is a good method for altering protein structures (including surface hydrophobicity, sulfhydryl and disulfide bonds, particle size, secondary and tertiary structures, and microstructure). In addition, ultrasonic treatment could effectively promote the enzymolytic efficiency of CPs. Furthermore, the in vitro digestibility was enhanced after suitable sonication treatment. Therefore, ultrasonication technology is a useful method to modify cereal protein functionality and structure for the food industry.
Collapse
Affiliation(s)
- Yang Wang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiarui Liu
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhaoli Zhang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Correspondence: (Z.Z.); (R.H.); Tel.: +86-(511)-8878-0174 (R.H.)
| | - Xiangren Meng
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Tingxuan Yang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wangbin Shi
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (Z.Z.); (R.H.); Tel.: +86-(511)-8878-0174 (R.H.)
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Zheng L, Regenstein JM, Wang Z, Zhang H, Zhou L. Reconstituted rice protein:The raw materials, techniques and challenges. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Zhao L, Cheng X, Song X, Ouyang D, Wang J, Wu Q, Jia J. Ultrasonic assisted extraction of mulberry leaf protein: kinetic model, structural and functional properties, in vitro digestion. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Simultaneous vacuum-ultrasonic assisted extraction of bioactive compounds from lotus leaf. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Dabbour M, Jiang H, Mintah BK, Wahia H, He R. Ultrasonic-assisted protein extraction from sunflower meal: Kinetic modeling, functional, and structural traits. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Bu D, Tu ZC, Wang H, Hu YM, Sun Q, Liu GX. Insight into the mechanism of d-allose in reducing the allergenicity and digestibility of ultrasound-pretreated α-lactalbumin by high-resolution mass spectrometry. Food Chem 2021; 374:131616. [PMID: 34815116 DOI: 10.1016/j.foodchem.2021.131616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of d-allose in reducing the allergenicity and digestibility of ultrasound-pretreated α-lactalbumin (α-LA) was studied. The intensity reduction and peak red shift occurred in fluorescence spectra of glycated samples. Enzyme-linked immunosorbent assay and basophil degranulation analysis showed that d-allose significantly reduced the allergenicity of α-LA, and ultrasound-pretreated α-LA showed the lowest allergenicity after glycation. Compared with α-LA, the degree of hydrolysis decreased in glycated samples. Size-exclusion high-performance liquid chromatography showed that the glycated α-LA was resistant to digestive enzymes. The glycated sites and average degree of substitution per peptide molecule were determined using LC Orbitrap MS/MS. These results suggested that the masking of linear allergenic epitopes by glycation could reduce the allergenicity. Therefore, the combination of ultrasound pretreatment and glycation is a potential method to reduce protein allergenicity in food processing and provides a useful approach for the application of rare sugars in food processing.
Collapse
Affiliation(s)
- Dan Bu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guang-Xian Liu
- Jiangxi Academy of Agricultural Sciences, Nanchang 330299, China.
| |
Collapse
|
11
|
Tang SQ, Du QH, Fu Z. Ultrasonic treatment on physicochemical properties of water-soluble protein from Moringa oleifera seed. ULTRASONICS SONOCHEMISTRY 2021; 71:105357. [PMID: 33059227 PMCID: PMC7786636 DOI: 10.1016/j.ultsonch.2020.105357] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 05/02/2023]
Abstract
Effect of ultrasonic power on the structure and functional properties of water-soluble protein extracted from defatted Moringa oleifera seed were explored. The results showed that ultrasonic treatment could reduce β-sheet and β-turn content of water-soluble protein from Moringa oleifera seed (MOWP) and increase the content of random coil and α-helix. Changes in intrinsic fluorescence spectra, surface hydrophobicity (H0) and thermal behaviors indicated that ultrasonic had significant effect on the tertiary structure of MOWP. The results of SEM and SDS-PAGE showed that the MOWP was aggregated but not significantly degraded by ultrasound. The solubility, foaming properties and emulsifying properties of MOWP increased firstly and then decreased with the increase of ultrasonic power. Ultrasonic treatment altered the functional properties of MOWP, which might be attributed to the exposure of hydrophilic group and the change of and secondary and tertiary structure.
Collapse
Affiliation(s)
- Shi-Qi Tang
- Institute of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China
| | - Qiu-Han Du
- Institute of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering, Guangxi University, 53004 Nanning, China.
| |
Collapse
|
12
|
Fan Y, Li Z, Liu L, Xi J. Combination of liquid-phase pulsed discharge and ultrasonic for saponins extraction from lychee seeds. ULTRASONICS SONOCHEMISTRY 2020; 69:105264. [PMID: 32711372 DOI: 10.1016/j.ultsonch.2020.105264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
A skillfully combined method of liquid-phase pulsed discharge and ultrasonic (LPDU) had been developed for saponins extraction from lychee seeds. Single factor and response surface methods were used to optimize the system, respectively. The optimized conditions included 30% aqueous ethanol, 62.66 mL/g ratio of liquid to solid, 3 mm centre hole diameter of hollow electrode, 123 mL/min flow velocity, length of serpentine pipe of 15 cm, 276 W ultrasonic power, 47 °C ultrasonic temperature, and discharge voltage was fixed at 14 kV. Under these conditions, it obtained a maximum saponins yield of 51.30 ± 0.08 mg/g with 10 min, which was higher than those of LPD (42.33 ± 0.98 mg/g) with 24 min, ultrasonic assisted extraction (UAE) (41.80 ± 1.31 mg/g) with 30 min and maceration (38.72 ± 1.13 mg/g) with 180 min. Meanwhile, the energy consumption of LPDU was 7560 kJ/kg, which was notably lower than those of LPD (8820 kJ/kg), UAE (25875 kJ/kg) and maceration (10248 kJ/kg). We found that the saponin constituents of LPDU were similar to LPD, UAE, ME by HPLC content detection method, and found that LPDU had the highest degree of tissue damage after scanning electron microscope (SEM) comparison, which verified the reason for its high extraction efficiency. The results showed that LPDU was an effective technology for saponins extraction, which may be potentially applied in cosmetics, medicines and food chemistry.
Collapse
Affiliation(s)
- Yang Fan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zongming Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Silventoinen P, Sozer N. Impact of Ultrasound Treatment and pH-Shifting on Physicochemical Properties of Protein-Enriched Barley Fraction and Barley Protein Isolate. Foods 2020; 9:foods9081055. [PMID: 32759869 PMCID: PMC7466219 DOI: 10.3390/foods9081055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Ultrasonication alone or in combination with a pH-shifting method could be applied as means for improving the techno-functional properties and performance of barley protein ingredients in liquid food matrix. Ultrasound technology was utilised with and without pH-shifting to 3, 7 and 9 aiming at investigating their impact on primary protein structure, protein solubility, particle size and colloidal stability of an air-classified protein-enriched barley fraction and a barley protein isolate. Shifting the pH of sample dispersion to 9 followed by neutralisation to pH 7 improved protein solubility and colloidal stability of the isolate whereas it had less impact on the protein-enriched fraction. Ultrasound treatment improved both protein solubility and colloidal stability of the protein-enriched fraction at alkaline pH and particle size reduction by ultrasonication was observed at all the studied pH-values. For protein isolate, ultrasonication improved protein solubility at all pH-values and colloidal stability was improved at acidic and neutral pH whereas the sample was inherently stable at alkaline pH. The protein profiles of both ingredients remained unaffected by ultrasound treatment. The results suggest adopting ultrasonication as a promising tool for improving applicability of barley protein ingredients in liquid food systems.
Collapse
|
14
|
Golly MK, Ma H, Yuqing D, Dandan L, Quaisie J, Tuli JA, Mintah BK, Dzah CS, Agordoh PD. Effect of multi-frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from Walnut (Juglans regia L.) meal. J Food Biochem 2020; 44:e13210. [PMID: 32236979 DOI: 10.1111/jfbc.13210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
This study evaluated the effects of ultrasound treatment on walnut meal protein (WMP) extraction and techno-functional properties. The Box-Behnken Design (BBD) was adopted for the optimization of the traditional and ultrasound-assisted extraction (UAE) processes. Standard protocols were used to assay the techno-functional characteristics. The extraction models' statistical results exhibited adequacy with the least desirability index of 95.8%. The UAE enhanced the WMP extraction yield, purity, and chemical score by 30.15%, 16.27%, and 9.74%, respectively, while reducing the extraction time by 25% over the control. The emulsion and foam stabilities and bulk density increased by 34.5%, 39.8%, and 6.1%, respectively, over the control. The α-helix decreased while β-sheet, β-turns and random coil secondary structure components increased significantly (p < .05) by 95.76%, 101.3%, 105.1%, and 85.7% correspondingly. The dual-frequency combination (20/40 kHz/kHz) was the best frequency mode. WMP could serve as a functional additive in manufactured foods as texture and flavor enhancer. PRACTICAL APPLICATIONS: Walnut meal protein (WMP) has a well-balanced amino acid profile and its economic use could be practically increased as a food ingredient by ultrasound-assisted extraction. By this technique, WMP could be employed for the development of enhanced food ingredients rather than being discarded as animal feed. This study showed a positive effect of ultrasonic-assisted alkaline pretreatment on WMP extraction, functionality and structure characteristics. In addition to process improvement, ultrasound is energy efficient and environmentally friendly. Therefore, the applicability of this technique to improve the functionality of plant proteins from industrial by-products to be included in food products is promising.
Collapse
Affiliation(s)
- Moses Kwaku Golly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Faculty of Applied Sciences and Technology, Sunyani Technical University, Sunyani, Ghana
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Liu Dandan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jamila Akter Tuli
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Benjamin Kumah Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Courage Sedem Dzah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Percival Delali Agordoh
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
15
|
Golly MK, Ma H, Yuqing D, Wu P, Dabbour M, Sarpong F, Farooq M. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. J Food Biochem 2019; 43:e12948. [PMID: 31368548 DOI: 10.1111/jfbc.12948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
To improve the utility of walnut meal protein, influences of ultrasonication on the kinetic and thermodynamic constraints of enzyme (trypsin) hydrolysis were assessed using a multi-frequency counter current S-type ultrasound machine. Results revealed that both the ultrasonication treatment and control hydrolysis obeyed the first-order kinetics within the study constraints. After 90 min hydrolysis time, the uppermost percentage conversion rate (57.5%) of substrate to product and the percentage increase (25.42%) in hydrolyzed protein concentration were obtained at 323 K and 10% substrate concentration, respectively. The Michaelis constant (KM ) in ultrasonic enzymolysis declined by 58.66% over the control. The reaction rate coefficient (k) for the proteolysis improved by 84.75%, 52.43%, 48.25%, and 37.79% at 219, 303, 313, and 323 K, correspondingly. Generally, the bond energy (Ea ), enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy (ΔG) were reduced by the ultrasound pretreatment with 36.61%, 28.05%, 18.22%, and 5.24%, respectively. PRACTICAL APPLICATIONS: Walnut meal protein has a well-balanced amino acid profile and its economic utilization could be increased practicably as a food ingredient via production of hydrolysates/peptides for the production of improved food ingredients instead of being cast off as animal feed. This study demonstrated a positive bearing of ultrasonication-assisted alkaline pretreatment on proteolytic reaction characteristics and its energy efficiency for walnut meal protein, which makes this technique applicable to the enhancement of plant proteins for inclusion in food products, especially tree nut and oil seed waste products from the oil industry.
Collapse
Affiliation(s)
- Moses Kwaku Golly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.,Faculty of Applied Sciences and Technology, Sunyani Technical University, P. O. Box 206, Sunyani, Ghana
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.,Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Ping Wu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.,Faculty of Agriculture, Department of Agricultural and Biosystems Engineering, Benha University, Benha, Egypt
| | - Frederick Sarpong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Muhammad Farooq
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|