1
|
Guo Z, Chen Y, Wang N, Xu Y, Zhao Q, Hou Z, Gao G, Kang Y, Zhan H. Ultrasonic-assisted MoS 2/GO/TiO 2 ceramic coatings: Enhancing anti-friction performance through dual-interface optimization. ULTRASONICS SONOCHEMISTRY 2025; 112:107180. [PMID: 39637676 PMCID: PMC11655693 DOI: 10.1016/j.ultsonch.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Ceramic coatings containing two-dimensional materials (2D materials) provide effective protection for light alloys during wear, significantly improving their anti-friction performance. MoS2 has proven highly effective in enhancing the anti-friction performance of ceramic coatings, particularly when synthesized via plasma electrolytic oxidation (PEO). However, dislocation pinning due to the incoherent interfaces in MoS2/TiO2 coatings tends to cause localized stress concentrations and brittle fracture, requiring effectively improve nanomechanical properties by optimizing interface design. To address these issues, this study used ultrasonic-assisted PEO to disperse graphene oxide (GO), which provided more possibility for in-situ synthesis MoS2, ultimately resulting in MoS2 with modified interlayer spacing. The change in interlayer spacing induced dislocation evolution at incoherent interface, leading to dual interface formation. At MoS2 (0.534 nm)/TiO2 interface: dislocation dipoles evolve to create considerable distortion, facilitating releasing shear stresses and inhibiting crack propagations. This process is followed by dislocation annihilation, keeping to stable interfacial bonding. Additionally, the others form strong dislocation pinning to obstruct dislocation slip and enhancing deformation resistance at MoS2 (0.227 nm)/TiO2 interface. The combined effects of dual interfacial enhancements resulted in a 90.0 % reduction in friction coefficients of the MoS2/GO/TiO2 coating compared to the traditional ceramic coating. This facile technique provides a new strategy to fabricate self-lubricating ceramic coatings on light alloys, while the introduction of ultrasound during PEO offers valuable guidance for applying ultrasound in the synthesis of 2D materials.
Collapse
Affiliation(s)
- Ziwei Guo
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, PR China
| | - Yongnan Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, PR China.
| | - Nan Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, PR China.
| | - Yiku Xu
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, PR China
| | - Qinyang Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, PR China
| | - Zhimin Hou
- Western Titanium Industry Co., Ltd., Xi'an 710016, PR China
| | - Guangrui Gao
- Xi'an Surface Material Protection Co., Ltd., Xi'an 710018, PR China
| | - Yan Kang
- Western Metal Materials Co., Ltd., Xi'an 710201, PR China
| | - Haifei Zhan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Cotrut CM, Blidisel A, Vranceanu DM, Vladescu (Dragomir) A, Ungureanu E, Pana I, Dinu M, Vitelaru C, Parau AC, Pruna V, Magurean MS, Titorencu I. Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings. Biomimetics (Basel) 2024; 9:704. [PMID: 39590276 PMCID: PMC11592108 DOI: 10.3390/biomimetics9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of coatings is to protect or enhance the functionality of the substrate material, irrespective of the field in which the material was designed. The use of coatings in medicine is rapidly expanding with the objective of enhancing the osseointegration ability of metallic materials such as titanium. The aim of this study was to obtain biomimetic hydroxyapatite (HAp)-based coatings on titanium by using the pulsed galvanostatic method. The morphology of the HAp-based coatings revealed the presence of very thin and wide plate-like crystals, grown perpendicular to the Ti substrate, while the chemical composition highlighted a Ca/P ratio of 1.66, which is close to that of stoichiometric HAp (1.67). The main phases and chemical bonds identified confirmed the presence of the HAp phase in the developed coatings. A roughness of 228 nm and a contact angle of approx. 17° were obtained for the HAp coatings, highlighting a hydrophilic character. In terms of biomineralization and electrochemical behavior, it was shown that the HAp coatings have significantly enhanced the titanium properties. Finally, the in vitro cell tests carried out with human mesenchymal stem cells showed that the Ti samples coated with HAp have increased cell viability, extracellular matrix, and Ca intracellular deposition when compared with the uncoated Ti, indicating the beneficial effect.
Collapse
Affiliation(s)
- Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alexandru Blidisel
- Hepato-Bilio-Pancreatic Surgery Center, University Clinic Surgical Semiology and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy, Sq. Eftimie Murgu No. 2, 300041 Timisoara, Romania
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Iulian Pana
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Mihaela Dinu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Catalin Vitelaru
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | | | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| |
Collapse
|
3
|
Balaei H, Ghasemi HM, Aghdam RM, Cheraghali B, Sohi MH. The effect of silver nanoparticles on biological and corrosion behavior of electrophoretically deposited hydroxyapatite film on Ti6Al4V. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:18. [PMID: 38526654 PMCID: PMC10963534 DOI: 10.1007/s10856-024-06784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.
Collapse
Affiliation(s)
- Hassan Balaei
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - H M Ghasemi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - B Cheraghali
- Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Heydarzadeh Sohi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Devi G.V. Y, Nagendra AH, Shenoy P. S, Chatterjee K, Venkatesan J. Fucoidan-Incorporated Composite Scaffold Stimulates Osteogenic Differentiation of Mesenchymal Stem Cells for Bone Tissue Engineering. Mar Drugs 2022; 20:589. [PMID: 36286414 PMCID: PMC9604642 DOI: 10.3390/md20100589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, millions of bone graft procedures are being performed by clinicians annually to treat the rising prevalence of bone defects. Here, the study designed a fucoidan from Sargassum ilicifolium incorporated in an osteo-inductive scaffold comprising calcium crosslinked sodium alginate-nano hydroxyapatite-nano graphene oxide (Alg-HA-GO-F), which tends to serve as a bone graft substitute. The physiochemical characterization that includes FT-IR, XRD, and TGA confirms the structural integration between the materials. The SEM and AFM reveal highly suitable surface properties, such as porosity and nanoscale roughness. The incorporation of GO enhanced the mechanical strength of the Alg-HA-GO-F. The findings demonstrate the slower degradation and improved protein adsorption in the fucoidan-loaded scaffolds. The slow and sustained release of fucoidan in PBS for 120 h provides the developed system with an added advantage. The apatite formation ability of Alg-HA-GO-F in the SBF solution predicts the scaffold's osteointegration and bone-bonding capability. In vitro studies using C3H10T1/2 revealed a 1.5X times greater cell proliferation in the fucoidan-loaded scaffold than in the control. Further, the results determined the augmented alkaline phosphatase and mineralization activity. The physical, structural, and enriching osteogenic potential results of Alg-HA-GO-F indicate that it can be a potential bone graft substitute for orthopedic applications.
Collapse
Affiliation(s)
- Yashaswini Devi G.V.
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Apoorva H Nagendra
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine and Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Departmental of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
5
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
6
|
Sun Y, Zhang X, Luo M, Hu W, Zheng L, Huang R, Greven J, Hildebrand F, Yuan F. Plasma Spray vs. Electrochemical Deposition: Toward a Better Osteogenic Effect of Hydroxyapatite Coatings on 3D-Printed Titanium Scaffolds. Front Bioeng Biotechnol 2021; 9:705774. [PMID: 34381765 PMCID: PMC8350575 DOI: 10.3389/fbioe.2021.705774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Surface modification of three-dimensional (3D)-printed titanium (Ti) scaffolds with hydroxyapatite (HA) has been a research hotspot in biomedical engineering. However, unlike HA coatings on a plain surface, 3D-printed Ti scaffolds have inherent porous structures that influence the characteristics of HA coatings and osteointegration. In the present study, HA coatings were successfully fabricated on 3D-printed Ti scaffolds using plasma spray and electrochemical deposition, named plasma sprayed HA (PSHA) and electrochemically deposited HA (EDHA), respectively. Compared to EDHA scaffolds, HA coatings on PSHA scaffolds were smooth and continuous. In vitro cell studies confirmed that PSHA scaffolds have better potential to promote bone mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation than EDHA scaffolds in the early and late stages. Moreover, in vivo studies showed that PSHA scaffolds were endowed with superior bone repair capacity. Although the EDHA technology is simpler and more controllable, its limitation due to the crystalline and HA structures needs to be improved in the future. Thus, we believe that plasma spray is a better choice for fabricating HA coatings on implanted scaffolds, which may become a promising method for treating bone defects.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mingran Luo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weifan Hu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruqi Huang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Johannes Greven
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Two-step strategy for constructing hierarchical pore structured chitosan–hydroxyapatite composite scaffolds for bone tissue engineering. Carbohydr Polym 2021; 260:117765. [DOI: 10.1016/j.carbpol.2021.117765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
|
8
|
Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. COATINGS 2021. [DOI: 10.3390/coatings11010110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.
Collapse
|
9
|
Electrochemical/chemical synthesis of hydroxyapatite on glassy carbon electrode for electroanalytical determination of cysteine. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04856-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Electrodeposited Biocoatings, Their Properties and Fabrication Technologies: A Review. COATINGS 2020. [DOI: 10.3390/coatings10080782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coatings deposited under an electric field are applied for the surface modification of biomaterials. This review is aimed to characterize the state-of-art in this area with an emphasis on the advantages and disadvantages of used methods, process determinants, and properties of coatings. Over 170 articles, published mainly during the last ten years, were chosen, and reviewed as the most representative. The most recent developments of metallic, ceramic, polymer, and composite electrodeposited coatings are described focusing on their microstructure and properties. The direct cathodic electrodeposition, pulse cathodic deposition, electrophoretic deposition, plasma electrochemical oxidation in electrolytes rich in phosphates and calcium ions, electro-spark, and electro-discharge methods are characterized. The effects of electrolyte composition, potential and current, pH, and temperature are discussed. The review demonstrates that the most popular are direct and pulse cathodic electrodeposition and electrophoretic deposition. The research is mainly aimed to introduce new coatings rather than to investigate the effects of process parameters on the properties of deposits. So far tests aim to enhance bioactivity, mechanical strength and adhesion, antibacterial efficiency, and to a lesser extent the corrosion resistance.
Collapse
|
11
|
Sun J, Cai S, Li Q, Li Z, Xu G. UV-irradiation induced biological activity and antibacterial activity of ZnO coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110997. [PMID: 32994024 DOI: 10.1016/j.msec.2020.110997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
In order to improve the biological activity and antibacterial activity of magnesium alloy, the single zinc oxide (ZnO) coating was prepared on magnesium alloys using microwave aqueous synthesis method and followed heat treatment. Then, the coated magnesium alloys were irradiated with ultraviolet (UV) light for different time and subsequently immersed in simulated body fluids (SBF). The influences of UV-irradiated time on the morphology, composition, in vitro biological activity and antibacterial activity were investigated. The results indicated that the ability of the apatite formation on the ZnO coated magnesium alloys surface was significantly enhanced as UV irradiation time prolonged, and the bone-like apatite was formed after UV irradiation for 24 h and then immersing into SBF for 2 weeks, the newly formed apatite was dense and integrate, implying that UV irradiation could activate ZnO coating to improve the biological activity. Moreover, after immersing in SBF for 2 weeks, the antibacterial experiment results demonstrated that ZnO coated magnesium alloys with UV irradiation time of 24 h exhibited more effective antibacterial activity than those of naked magnesium alloys and ZnO coated magnesium alloys which were not irradiated by ultraviolet (UV) light. This work afforded a surface strategy for designing magnesium alloy implant with desirable osseointegration ability and antibacterial property simultaneously for orthopedic and dental applications.
Collapse
Affiliation(s)
- Jin'e Sun
- Tianjin College, Beijing University of Science and Technology, Tianjin 301800, China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Qianqian Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
12
|
Manufacture and characteristics of HA-Electrodeposited polylactic acid/polyvinyl alcohol biodegradable braided scaffolds. J Mech Behav Biomed Mater 2020; 103:103555. [PMID: 32090949 DOI: 10.1016/j.jmbbm.2019.103555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
This study proposes the braided bone scaffolds. First, biologically degradable polylactic acid (PLA) filaments and polyvinyl alcohol (PVA) filaments are plied into composite yarns using a doubling and twisting machine. The composite yarns are tested to determine the optimal mechanical properties and a stabilized morphology. The PLA/PVA composite yarns are then braided into bone scaffolds, during which the optimal braiding process parameters and yarn ratio are determined. Based on the surface observation and tensile strength, a gear ratio of 45:45 provides the tubular braids with an optimal morphology and porosity that meet the biological requirements. When the PLA/PVA ratio is 3:1, the braids exhibit the maximum tensile properties and the most stable space structure. Furthermore, to make the braids a bioactive material with surface active sites, the braids are coated with hydroxyapatite (HA) by electrodeposition. The resulting HA-electrodeposited bone scaffolds are tested by in vitro biological experiments using a scanning electronic microscope (SEM), energy dispersive x-ray analysis(EDAX), X-ray Diffraction(XRD), and Fourier transform infrared spectroscopy(FT-IR), thereby examining their characteristics and microstructure. Results suggest that HA is electrodeposited over the bone scaffolds successfully. The immersion in simulated body fluid (SBF) is proven to contribute a good in vitro bioactivity to bone scaffolds. As a result, bone scaffolds are a good candidate for the application in the cancellous bone repairing field.
Collapse
|
13
|
Li TT, Ling L, Lin MC, Jiang Q, Lin Q, Lou CW, Lin JH. Effects of ultrasonic treatment and current density on the properties of hydroxyapatite coating via electrodeposition and its in vitro biomineralization behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110062. [DOI: 10.1016/j.msec.2019.110062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
|
14
|
Electrochemical Studies on CaP Electrodeposition on Three Dimensional Surfaces of Selective Laser Melted Titanium Scaffold. COATINGS 2019. [DOI: 10.3390/coatings9100667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, calcium phosphate (CaP) coating was electrodeposited on the three dimensional surface of SLM-Ti scaffolds. The in situ measurement showed that the potential variation within 5 mm thickness porous selective laser melting (SLM)-Ti samples was about 80 mV as a result of the low conductivity of CaP coatings. SEM observation results revealed that the coating morphology depended on the distance between the surface position of porous SLM-Ti electrode and the auxiliary electrode. Based on the compared electrochemical experiments, it was found that the top and the bottom surfaces of SLM-Ti scaffolds exhibited continuous nucleation and instantaneous nucleation behavior respectively. The Electrochemical impedance spectroscopy (EIS) results also revealed that the electrodeposition processes at different depth of SLM-Ti scaffolds were not synchronized. These differences were ultimately caused by the non-uniform distribution of the potential and the current inside porous SLM-Ti electrodes. The present work provides a basic research method for studying the mechanism of the electrochemical process on three dimensional surfaces of SLM-Ti scaffolds.
Collapse
|
15
|
Galvão RA, Santa-Cruz LAD, Barreto PB, Horta MKDS, Andrade AMHD, Moura FJ, Aguilar MS, Peripolli SB, Campos JBD, Arruda IRDS, Machado G. Electrochemical single-step obtention and characterization of a biomimetic TiO2-HA NTs covered by chitosan. JOURNAL OF MATERIALS RESEARCH 2019; 34:1868-1878. [DOI: 10.1557/jmr.2019.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Collapse
|
16
|
Li TT, Ling L, Lin MC, Jiang Q, Lin Q, Lin JH, Lou CW. Properties and Mechanism of Hydroxyapatite Coating Prepared by Electrodeposition on a Braid for Biodegradable Bone Scaffolds. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E679. [PMID: 31052501 PMCID: PMC6567105 DOI: 10.3390/nano9050679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (HA) coating is successfully prepared by electrodeposition on the surface of polyvinyl alcohol (PVA)/polylactic acid (PLA) braid which serves as a potential biodegradable bone scaffold. The surface morphology, element composition, crystallinity and chemical bonds of HA coatings at various deposition times (60, 75, 90, 105 and 120 min) are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Average Surface roughness (Ra) of HA coating is observed by confocal microscopy. The results reveal that the typical characteristic peaks of the FTIR spectrum confirm that HA coating is successfully prepared on the rugged surface of the PVA/PLA braid. The XRD results indicate that the crystallinity of HA can be improved by increasing deposition time. In the 90 min-deposition, hydroxyapatite has a dense and uniform coating morphology, Ca/P ratio of 1.7, roughness of 0.725 μm, which shows the best electrodeposition performance. The formation mechanism of granular and plate-like hydroxyapatite crystals is explained by the structural characteristics of a hydroxyapatite unit cell. This study provides a foundation for a bone scaffold braided by biodegradable fibers.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Lei Ling
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Mei-Chen Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
| | - Qian Jiang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Qi Lin
- Fujian Engineering Research Center of New Chinese Lacquer Material, Minjiang University, Fuzhou 350108, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
- Ocean College, Minjiang University, Fuzhou 350108, China.
- College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
- Department of Fashion Design, Asia University, Taichung 41354, Taiwan.
| | - Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- Ocean College, Minjiang University, Fuzhou 350108, China.
- College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
17
|
Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: Biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 2018; 90:575-586. [PMID: 30476807 DOI: 10.1016/j.jmbbm.2018.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
In this work, graphene oxide (GO) reinforcement was used to improve the strength and fracture toughness of the calcium phosphate (CaP) coating applied on the anodized titanium using pulse electrodeposition. Based on the results, the CaP coating consisted of mixed phases of octa-calcium phosphate (OCP), dicalcium phosphate dehydrate (DCPD) and hydroxyapatite (HAp); however, compositing of this coating with GO caused deposition of the pure HAp phase. Moreover, the nanohardness and Young's modulus of the CaP-GO coating increased over 52% and 41%, respectively, as compared to those measured for the GO-free coating. An improvement of about 16% in the adhesion strength of the CaP coating composited with GO to the anodized titanium was also arisen from improving integrity, crystallinity and decreasing the Young's modulus mismatch of this coating with titanium substrate. Finally, uniformity in the microstructure and more biostability of the CaP-GO coating led to its better protection against the corrosion of anodized titanium.
Collapse
|
18
|
Li R, Wang JJ, Zhang Z, Awasthi MK, Du D, Dang P, Huang Q, Zhang Y, Wang L. Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:526-536. [PMID: 29908511 DOI: 10.1016/j.scitotenv.2018.06.092] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Metal oxide-Carbon composites have been developed tailoring towards specific functionalities for removing pollutants from contaminated environmental systems. In this study, we synthesized a novel CaO-MgO hybrid carbon composite for removal of phosphate and humate by co-pyrolysis of dolomite and sawdust at various temperatures. Increasing of pyrolysis temperature to 900 °C generated a composite rich in carbon, CaO and MgO particles. Phosphate and humate can be removed efficiently by the synthesized composite with the initial solution in the range of pH 3.0-11.0. The phosphate adsorption was best fitted by pseudo-second-order kinetic model, while the humate adsorption followed the pseudo-second-order and the intra-particle diffusion kinetic models. The maximum adsorption capabilities quantified by the Langmuir isotherm model were up to 207 mg phosphorus (or 621 mg phosphate) and 469 mg humate per one-gram composite used, respectively. Characterization of composites after adsorption revealed the contributions of phosphate crystal deposition and electrostatic attraction on the phosphate uptake and involvement of π - π interaction in the humate adsorption. The prepared composite has great potential for recovering phosphorus from wastewater, and the phosphate sorbed composite can be employed as a promising phosphorus slow-releasing fertilizer for improving plant growth.
Collapse
Affiliation(s)
- Ronghua Li
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China; School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803, USA
| | - Jim J Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803, USA.
| | - Zengqiang Zhang
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| | - Mukesh Kumar Awasthi
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Dan Du
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| | - Pengfei Dang
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| | - Qian Huang
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| | - Yichen Zhang
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Environment and Natural Resources, Northwest A&F University, Yangling 712100, China
| |
Collapse
|