1
|
Cui S, Shen K, Xiong S, Li X, Wang Y, Geng X, Lu Y. Low-Frequency Ultrasound Assisted in Improvement in Cell Development and Production of Parasporal Crystals from Bacillus thuringiensis HD1. INSECTS 2025; 16:507. [PMID: 40429220 DOI: 10.3390/insects16050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
Bacillus thuringiensis is widely utilized as a microbial insecticide due to its production of parasporal crystals during the spore-forming stage. However, lower fermentation efficiency coupled with elevated production costs limit its broad application. Low-frequency ultrasound (LFU) has been employed in the fermentation industry to enhance microbial growth and metabolism. In this study, the effect of LFU on the growth of B. thuringiensis HD1 and the yields of parasporal crystals was investigated. The maximum biomass accumulation of Bacillus thuringiensis and parasporal crystal production yield were achieved following low-frequency ultrasonic (LFU) treatment applied during the logarithmic growth phase (18 h of cultivation) under optimized parameters: a frequency of 40 kHz, a power output of 176 W, and an irradiation duration of 45 min. Under optimal conditions, LFU significantly increased the cell membrane permeability and secretory inositol, favoring cell growth and parasporal crystal production. FESEM/CLSM and TEM analyses visually displayed the changes in cell morphology. In addition, the germination rate of spores was increased after LFU treatment, which further confirmed the positive effect of LFU on the growth of B. thuringiensis. Compared to the control, parasporal crystals harvested under LFU exhibited significant modifications in their physicochemical characteristics; the particle size increased, the surface electronegativity intensified, and there was a morphological transition from spherical to cubic geometry. Importantly, the parasporal crystals exhibited strong insecticidal activity against S. zeamais adults, a typical stored-product insect pest, with an LC50 of 10.795 mg/g on day 14 and a Kt50 of 4.855 days at a concentration of 30 mg/g. These findings will provide new insights into the product development and application of B. thuringiensis in the future.
Collapse
Affiliation(s)
- Sufen Cui
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Kaihui Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Shiqi Xiong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Xiao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yue Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Xueqing Geng
- Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
2
|
He Z, Hou F, Du Y, Dai C, He R, Ma H. Accelerating maturation of Chinese rice wine by using a 20 L scale multi-sweeping-frequency mode ultrasonic reactor and its mechanism exploration. ULTRASONICS SONOCHEMISTRY 2025; 113:107229. [PMID: 39826485 PMCID: PMC11786094 DOI: 10.1016/j.ultsonch.2025.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
The formation of flavor in traditional Chinese rice wine requires a long aging process. To accelerate the maturation of rice wine, a 20 L scale multi-sweeping- frequency mode ultrasonic reactor was employed in this study to explore the promoting effects. Rice wines were subjected under 10 combined types of sonication treatments with 20/28/40 kHz in single/double/triple frequencies, and in fixed or sweeping modes, respectively. Then samples were aged in room temperature for up to 180 days. A 7.3 % increase of total esters content was observed in rice wine sample after treated by a fixed 40 kHz ultrasonication with 50 W/L intensity at 30 °C for 15 min, compared with the untreated sample. After sonication and stored for six months, 286.78 % increase of the volatile esters was found, compared to rice wine without ultrasoinc treatment and stored at same condition for same time. And the total volatile alcohol substances and total volatile aldehydes in rice wine decreased by 12.95 % and 67.46 %, while the total volatile acids increased by 17.11 %, respectively. The research results also demonstrated that ultrasonic induced free radicals accounted for the variations of rice wine properties. And the correlation between the acoustic cavitation and the flavor formation was also observed.
Collapse
Affiliation(s)
- Zhuofan He
- School of Electrical and Information Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Furong Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, Shandong 250131, China
| | - Yansheng Du
- School of Environmental and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
3
|
Rathnakumar K, Jain S, Awasti N, Vashisht P, Thorakkattu P, Ramesh B, Balakrishnan G, Sajith Babu K, Ramniwas S, Rustagi S, Pandiselvam R. Ultrasonic processing: effects on the physicochemical and microbiological aspects of dairy products. Crit Rev Biotechnol 2024; 44:1638-1652. [PMID: 38644353 DOI: 10.1080/07388551.2024.2332941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/23/2024]
Abstract
Dairy products that are contaminated by pathogenic microorganisms through unhygienic farm practices, improper transportation, and inadequate quality control can cause foodborne illness. Furthermore, inadequate storage conditions can increase the microflora of natural spoilage, leading to rapid deterioration. Ultrasound processing is a popular technology used to improve the quality of milk products using high-frequency sound waves. It can improve food safety and shelf life by modifying milk protein and fats without negatively affecting nutritional profile and sensory properties, such as taste, texture, and flavor. Ultrasound processing is effective in eliminating pathogenic microorganisms, such as Salmonella, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. However, the efficiency of processing is determined by the type of microorganism, pH, and temperature of the milk product, the frequency and intensity of the applied waves, as well as the sonication time. Ultrasound processing has been established to be a safe and environmentally friendly alternative to conventional heat-based processing technologies that lead to the degradation of milk quality. There are some disadvantages to using ultrasound processing, such as the initial high cost of setting it up, the production of free radicals, the deterioration of sensory properties, and the development of off-flavors with lengthened processing times. The aim of this review is to summarize current research in the field of ultrasound processing and discuss future directions.
Collapse
Affiliation(s)
| | - Surangna Jain
- Department of Food Science, University of TN, Knoxville, TN, USA
| | | | - Pranav Vashisht
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | | | | | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasargod, India
| |
Collapse
|
4
|
Manyatsi TS, Mousavi Khaneghah A, Gavahian M. The effects of ultrasound on probiotic functionality: an updated review. Crit Rev Food Sci Nutr 2024; 64:11643-11660. [PMID: 37565473 DOI: 10.1080/10408398.2023.2242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The effects of ultrasound (US) on probiotics, as health-promoting microbes, have attracted the attention of researchers in fermentation and healthy food production. This paper aims to review recent advances in the application of the US for enhancing probiotic cells' activity, elaborate on the mechanisms involved, explain how probiotic-related industries can benefit from this emerging food processing technology, and discuss the perspective of this innovative approach. Data showed that US could enhance fermentation, which is increasingly used to enrich agri-food products with probiotics. Among the probiotics, recent studies focused on Lactiplantibacillus plantarum, Lactobacillus brevis, Lactococcus lactis, Lactobacillus casei, Leuconostoc mesenteroides, Bifidobacteria. These bacteria proliferated in the log phase when treated with US at relatively low-intensities. Also, this non-thermal technology increased extracellular enzymes, mainly β-galactosidase, and effectively extracted antioxidants and bioactive compounds such as phenolics, flavonoids, and anthocyanins. Accordingly, better functional and physicochemical properties of prebiotic-based foods (e.g., fermented dairy products) can be expected after ultrasonication at appropriate conditions. Besides, the US improved fermentation efficiency by reducing the production time, making probiotics more viable with lower lactose content, more oligosaccharide, and reduced unpleasant taste. Also, US can enhance the rheological characteristics of probiotic-based food by altering the acidity. Optimizing US settings is suggested to preserve probiotics viability to achieve high-quality food production and contribute to food nutrition improvement and sustainable food manufacturing.
Collapse
Affiliation(s)
- Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| |
Collapse
|
5
|
Zhang X, Zheng Y, Zhou C, Cao J, Zhang Y, Wu Z, Pan D, Cai Z, Xia Q. Combining thermosonication microstress and pineapple peel extract addition to achieve quality and post-acidification control in yogurt fermentation. ULTRASONICS SONOCHEMISTRY 2024; 105:106857. [PMID: 38552299 PMCID: PMC10995858 DOI: 10.1016/j.ultsonch.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 μg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Yu H, Jiang L, Gao L, Zhang R, Zhang Y, Yuan S, Xie Y, Yao W. High-intensity ultrasound promoted the maturation of high-salt liquid-state soy sauce: A mean of enhancing quality attributes and sensory properties. Food Chem 2024; 438:138045. [PMID: 37992602 DOI: 10.1016/j.foodchem.2023.138045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
High-intensity ultrasound was used as a means to promote maturation of soy sauce. The optimal conditions for ultrasound treatment were 90℃ at an ultrasound intensity of 39.48 W/cm2 for 60 min. The total reducing sugars and soluble salt-free solids content was significantly increased after ultrasound-assisted maturation. The free amino acid content was significantly decreased, mainly due to the Maillard reaction (MR). The promoted MR produced several types of flavor compounds, including esters, pyrazines, and ketones, which imparted an attractive aroma to the maturated soy sauce. The proportion of peptides with a molecular weight of 1-5 kDa provided umami as an important flavor characteristic, and the content in the ultrasound-matured soy sauce (10.19 %) was significantly higher than that in the freshly prepared soy sauce (8.34 %) and the thermally treated sample (8.89 %). Ultrasound-assisted maturation would improve product quality and meanwhile, shorten the duration and reduce the cost for the soy sauce industry.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Lin Jiang
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Liyuan Gao
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Ruyue Zhang
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yilong Zhang
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resource, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
7
|
Gholamhosseinpour A, Hashemi SMB, Safari F, Kerboua K. Impact of ultrasonicated Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactiplantibacillus plantarum AF1 on the safety and bioactive properties of stirred yoghurt during storage. ULTRASONICS SONOCHEMISTRY 2024; 102:106726. [PMID: 38113583 PMCID: PMC10772289 DOI: 10.1016/j.ultsonch.2023.106726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
In this study, the effects of ultrasonicated Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactiplantibacillus plantarum AF1 (100 W, 30 kHz, 3 min) on the safety and bioactive properties of stirred yoghurt during storage (4 °C for 21 days) were investigated. The results showed that sonicated cultures were more effective in reducing pathogens than untreated ones. The highest antioxidant activity (DPPH and ABTS), α-glucosidase and α-amylase inhibition capacity were found in yoghurt containing sonicated probiotic + sonicated yoghurt starter cultures (P + Y + ). The highest amount of peptides (12.4 mg/g) was found in P + Y + yoghurts at the end of the storage time. There were not significant differences between the exopolysaccharide content of P + Y+ (17.30 mg/L) and P + Y- (17.20 mg/L) yoghurts, although it was significantly (P ≤ 0.05) higher than the other samples. The use of ultrasonicated cultures could enhance the safety of stirred yoghurt and improve its functional and bioactive properties.
Collapse
Affiliation(s)
| | | | - Fatemeh Safari
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran
| | - Kaouther Kerboua
- National Higher School of Technology and Engineering, Department of Process and Energy Engineering, 23005 Annaba, Algeria
| |
Collapse
|
8
|
Dos Santos Rocha C, Magnani M, Jensen Klososki S, Aparecida Marcolino V, Dos Santos Lima M, Queiroz de Freitas M, Carla Feihrmann A, Eduardo Barão C, Colombo Pimentel T. High-intensity ultrasound influences the probiotic fermentation of Baru almond beverages and impacts the bioaccessibility of phenolics and fatty acids, sensory properties, and in vitro biological activity. Food Res Int 2023; 173:113372. [PMID: 37803712 DOI: 10.1016/j.foodres.2023.113372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
High-intensity ultrasound (HIUS, 20 kHz, 450 W, 6 min) was used as an alternative to the pasteurization of a water-soluble Baru almond extract (WSBAE). Then, probiotic fermented beverages (Lacticaseibacillus casei) were processed and evaluated during storage (7 °C, 28 days). Four formulations were prepared: RAW (untreated [no pasteurization or ultrasound] and unfermented WSBAE), PAST (pasteurized WSBAE fermented with probiotic), U-BEF (WSBAE added with probiotic, submitted to ultrasound, and fermented), and U-AFTER (WSBAE submitted to ultrasound, added with probiotic, and fermented). PAST and HIUS-treated beverages had similar microbiological quality. The PAST formulation showed decreased monounsaturated fatty acids, compromised health indices, and had the lowest consistency. U-AFTER showed higher concentrations of lactic and acetic acids, lower bioaccessibility for most phenolics and fatty acids, and reduced consumer acceptance. U-BEF had the fermentation time reduced by 13.64%, higher probiotic survival during storage and simulated gastrointestinal conditions, and higher bioaccessibility of phenolics and fatty acids during storage. Furthermore, it presented higher in vitro antidiabetic properties and improved consistency and stability. Finally, U-BEF had improved volatile compound composition, resulting in increased sensory acceptance and improved sensory properties. Our results indicate that the HIUS applied after probiotic addition may be a suitable alternative to pasteurization in the processing of fermented beverages, resulting in reduced fermentation times and improved technological, sensory, and biological properties.
Collapse
Affiliation(s)
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba (UFPB), Campus I, João Pessoa, Paraíba, Brazil
| | | | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Monica Queiroz de Freitas
- Universidade Federal Fluminense (UFF), Faculdade de Veterinaria, 24230-340 Niter oi, Rio de Janeiro, Brazil
| | | | | | - Tatiana Colombo Pimentel
- State University of Maringá (UEM), Maringá, Paraná, Brazil; Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil.
| |
Collapse
|
9
|
Dai C, Shu Z, Xu X, Yan P, Dabbour M, Kumah Mintah B, Huang L, He R, Ma H. Enhancing the growth of thermophilic Bacillus licheniformis YYC4 by low-intensity fixed-frequency continuous ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106611. [PMID: 37757602 PMCID: PMC10550775 DOI: 10.1016/j.ultsonch.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The effect of low-intensity fixed-frequency continuous ultrasound (LIFFCU) on the growth of Bacillus licheniformis YYC4 was investigated. The changes in morphology and activity of the organism, contributing to the growth were also explored. Compared with the control, a significant increase (48.95%) in the biomass of B. licheniformis YYC4 (at the logarithmic metaphase) was observed following the LIFFCU (28 kHz, 1.5 h and 120 W (equivalent to power density of 40 W/L)) treatment. SEM images showed that ultrasonication caused sonoporation, resulting in increased membrane permeability, evidenced by increase in cellular membrane potential, electrical conductivity of the culture, extracellular protein and nucleic acid, and intracellular Ca2+ content. Furthermore, LIFFCU action remarkably increased the extracellular protease activity, volatile components of the culture medium, microbial metabolic activity, and spore germination of the strain. Therefore, LIFFCU could be used to efficiently promote the growth of targeted microorganisms.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Xing Y, Aweya JJ, Jin R, Lin R, Weng W, Zhang Y, Deng S, Yang S. Low-intensity ultrasound combines synergistically with Lacticaseibacillus paracasei fermentation to enhance chitin extraction from crab shells. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Combined Effect of Ultrasound Treatment and a Mix of Krebs Cycle Acids on the Metabolic Processes in Saccharomyces cerevisiae. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article describes the effect of organic acids and ultrasound on the physiological and biochemical properties of yeast, which was used to obtain biologically active peptides. The research featured brewer’s yeast S. cerevisiae W-34/70 cultivated in 11% beer wort. A mix of Krebs cycle acids served as an activator. It included succinic, malic, fumaric, citric, and oxaloacetic acids (1:1:1:1:1). The concentration of the Krebs cycle acids was 1 × 10−10 M/L at 1% to the suspension volume. The ultrasound treatment had an intensity of 10 W/m2 and lasted 3–10 min. The combined effect increased the fermentation activity of the yeast by 98%. The activity of individual biocatalysts of constructive and energy metabolism rose by 108–330%, while that of proteolysis enzymes increased by 15% in comparison with the samples exposed to individual factors. The stimulation increased the rate of amine nitrogen consumption by the yeast. The amount of accumulated amino acids was larger by 80% than in the control, and that of protein larger by 7%. The maximal content of the synthesized protein was reached 1–2 h earlier. The combination of chemical and physical factors intensified the biosynthesis of protein and its intermediates during yeast processing, thus facilitating the subsequent extraction of biologically valuable components.
Collapse
|
12
|
Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. FERMENTATION 2023. [DOI: 10.3390/fermentation9010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The growth pattern of probiotics can be modified by changing their nutritional factors and their physiological stage. Meanwhile, high intensity ultrasound (HIUS) can be employed to increase probiotics’ biomass. The one-factor-at-a-time (OFAT) approach was employed to investigate the influence of the growth medium (MRS broth, whole milk, and skim milk), culture age (1 day and 7 days old) and ultrasound parameters (time and amplitude) on the kinetic parameters of L. acidophilus. The oldest culture (7 days) had a greater lag phase and time to reach the end of the sigmoidal curve (Tmax) (p < 0.05) as well as a lower rate (maximum growth potential μmax) compared to the youngest culture (1 day). Regarding the growth medium, skim milk presented the greatest L. acidophilus counts (p < 0.05). Meanwhile, sonication times (60 and 90 s) change µmax and Tmax. When 30% amplitude was applied, a greater μmax and a smaller Tmax were observed (p < 0.05). It can be concluded that the growth medium, culture age, and ultrasound parameters (time and amplitude) influence the kinetic parameters of L. acidophilus. Results from this study could be used in the design and optimization of processes to improve the growth of the probiotic L. acidophilus at industrial scale.
Collapse
|
13
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
14
|
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Ultrasonic stimulation of milk fermentation: effects on degradation of pesticides and physiochemical, antioxidant, and flavor properties of yogurt. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6612-6622. [PMID: 35596658 DOI: 10.1002/jsfa.12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Zhang X, Zheng Y, Kumar Awasthi M, Zhou C, Barba FJ, Cai Z, Liu L, Rene ER, Pan D, Cao J, Sindhu R, Xia Q. Strategic thermosonication-mediated modulation of lactic acid bacteria acidification kinetics for enhanced (post)-fermentation performance. BIORESOURCE TECHNOLOGY 2022; 361:127739. [PMID: 35940323 DOI: 10.1016/j.biortech.2022.127739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau.
| |
Collapse
|
16
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
17
|
Synergistic Effects and Mechanisms of Ultrasound-Assisted Pretreatments on the Release of Yak (Bos grunniens) Bone Collagen–Derived Osteogenic Peptides in Enzymatic Hydrolysis. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02841-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Ultrasonication as an emerging technology for processing of animal derived foods: A focus on in vitro protein digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
20
|
Balthazar CF, Guimarães JF, Coutinho NM, Pimentel TC, Ranadheera CS, Santillo A, Albenzio M, Cruz AG, Sant'Ana AS. The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Compr Rev Food Sci Food Saf 2022; 21:2560-2586. [PMID: 35470949 DOI: 10.1111/1541-4337.12962] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
Abstract
This review was the first to gather literature about the effect of emerging technologies on probiotic, prebiotic, and postbiotic products. Applying emerging technologies to probiotic products can increase probiotic survival and improve probiotic properties (cholesterol attachment, adhesion to Caco-2 cells, increase angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antimicrobial activities, and decrease systolic blood pressure). Furthermore, it can optimize the fermentation process, produce or maintain compounds of interest (bacteriocin, oligosaccharides, peptides, phenolic compounds, flavonoids), improve bioactivity (vitamin, aglycones, calcium), and sensory characteristics. Applying emerging technologies to prebiotic products did not result in prebiotic degradation. Still, it contributed to higher concentrations of bioactive compounds (citric and ascorbic acids, anthocyanin, polyphenols, flavonoids) and health properties (antioxidant activity and inhibition of ACE, α-amylase, and α-glucosidase). Emerging technologies may also be applied to obtain postbiotics with increased health effects. In this way, current studies suggest that emerging food processing technologies enhance the efficiency of probiotics and prebiotics in food. The information provided may help food industries to choose a more suitable technology to process their products and provide a basis for the most used process parameters. Furthermore, the current gaps are discussed. Emerging technologies may be used to process food products resulting in increased probiotic functionality, prebiotic stability, and higher concentrations of bioactive compounds. In addition, they can be used to obtain postbiotic products with improved health effects compared to the conventional heat treatment.
Collapse
Affiliation(s)
- Celso F Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Jonas F Guimarães
- Department of Food Science and Technology, School of Veterinary, Federal Fluminense University, Rio de Janeiro, Niteroi, Brazil
| | - Nathália M Coutinho
- Department of Food Science and Technology, School of Veterinary, Federal Fluminense University, Rio de Janeiro, Niteroi, Brazil
| | - Tatiana C Pimentel
- Federal Institute of Paraná, Campus Paranavaí, Paranavaí, Paraná, Brazil
| | - C Senaka Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Antonella Santillo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia (UNIFG), Foggia, Italy
| | - Marzia Albenzio
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia (UNIFG), Foggia, Italy
| | - Adriano G Cruz
- Department of Food, Federal Institute of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
21
|
Chen J, Zhai W, Li Y, Guo Y, Zhu Y, Lei G, Li J. Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation: A mechanistic investigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|
24
|
Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Zhang Y, Chen Z, Sun P, Xu Q, Chen N. Effect of low-level ultrasound treatment on the production of L-leucine by Corynebacterium glutamicum in fed-batch culture. Bioengineered 2021; 12:1078-1090. [PMID: 33775210 PMCID: PMC8806274 DOI: 10.1080/21655979.2021.1906028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
Various process intensification methods were proposed to improve the yield, quality, and safety of fermented products. Here, we report the enhancement of L-leucine production by Corynebacterium glutamicum CP using ultrasound-assisted fed-batch fermentation. Response surface methodology was employed to optimize the sonication conditions. At an ultrasonic power density of 94 W/L, frequency of 25 kHz, interval of 31 min, and duration of 37 s, C. glutamicum CP produced 52.89 g/L of L-leucine in 44 h, representing a 21.6% increase compared with the control. The production performance of L-leucine was also improved under ultrasonic treatment. Moreover, the effects of ultrasound treatment on the fermentation performance of L-leucine were studied in terms of cell morphology, cell membrane permeability, and enzyme activity. The results indicate that ultrasonication is an efficient method for the intensification of L-leucine production by C. glutamicum CP.
Collapse
Affiliation(s)
- Yufu Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zhichao Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Pengjie Sun
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, PR China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|
26
|
Advances and innovations associated with the use of acoustic energy in food processing: An updated review. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Wang Y, Xu K, Lu F, Wang Y, Ouyang N, Ma H. Application of ultrasound technology in the field of solid-state fermentation: increasing peptide yield through ultrasound-treated bacterial strain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5348-5358. [PMID: 33650220 DOI: 10.1002/jsfa.11183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The increase of peptide yield contributed to reducing the usage of antibiotics in solid-state fermented feed. Ultrasound technology is used in the field of liquid-state fermentation to improve yield of fermented products but has not been utilized in the field of solid-state fermentation (SSF). The main objective of this study was to investigate the feasibility of improving peptide yield in SSF products through ultrasound-treated bacterial strain. RESULTS The highest peptides content in soybean meal SSF products reached 153.28 mg g-1 , which increased by 15.05% compared with the control. This content value was acquired through treating the bacteria of Bacillus amyloliquefaciens by ultrasound before inoculating into soybean meal under the optimized mode and parameters (simultaneous dual-frequency ultrasound mode, frequency combination of 40/60 kHz, total power density of 40 W L-1 , time of 20 min, pulse-on and pulse-off times of 40 and 60 s, delayed inoculation time of 0 h). Fermenting with ultrasound-treated bacterial strain can effectively increase peptide yield, biomass and protease activity of soybean meal fermented products during the SSF prophase. After treating by ultrasound, the latent phase and logarithmic phase of the bacterial strain shortened by 1 and 3 h while the generation time reduced by 23.64%. In qualitative test of protease activity, diameter ratio (DR) value of ultrasound-treated bacterial cells enlarged by 12.0% compared with the control. CONCLUSION Peptide yield of soybean meal SSF products can be improved through ultrasound-treated bacterial inoculum, which attributed to the promoting effect of ultrasound treatment on growth activity and protease production capability of bacterial cells. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kangkang Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yining Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ningning Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Wang Y, Xu K, Lu F, Wang Y, Ouyang N, Ma H. Increasing peptide yield of soybean meal solid-state fermentation of ultrasound-treated Bacillus amyloliquefaciens. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: A review. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
He R, Ren W, Xiang J, Dabbour M, Kumah Mintah B, Li Y, Ma H. Fermentation of Saccharomyces cerevisiae in a 7.5 L ultrasound-enhanced fermenter: Effect of sonication conditions on ethanol production, intracellular Ca 2+ concentration and key regulating enzyme activity in glycolysis. ULTRASONICS SONOCHEMISTRY 2021; 76:105624. [PMID: 34126524 PMCID: PMC8209745 DOI: 10.1016/j.ultsonch.2021.105624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 05/08/2023]
Abstract
In this study, the effect of sonication on the fermentation process of a single-celled fungus was examined. During the experiment, Saccharomyces cerevisiae (S. cerevisiae) was used as the starting strain for ethanol fermentation (batch fermentation) in a 7.5 L automated fermentation tank. The fermentation tank connected with a six-frequency ultrasonic equipment. Non-sonication treatment was set up as the control. Sonication treatment with power density of 280 W/L and 48 h of treatment time were set up as trial groups for investigating the influence of different ultrasound frequency including 20, 23, 25, 28, 33 and 40 kHz on the changes in dry cell-weight, glucose consumption rate, and ethanol yield. The results showed that the dry cell-weight, glucose consumption rate, and ethanol content reached the best results under the ultrasonic condition of 28 kHz ultrasound frequency in comparison with other ultrasound frequency. The dry cell-weight and ethanol content of the 28 kHz ultrasonic treatment group increased by 17.30% and 30.79%, respectively in comparison with the control group The residual sugar content dropped to a lower level within 24 h, which was consistent with the change in ethanol production. Besides, the results found that the glucose consumption rate increased compared to the control. It indicated that ultrasound accelerated glucose consumption contributed to increase the rate of ethanol output. In order to explore the mechanism of sonication enhanced the content of ethanol output by S. cerevisiae, the morphology, permeability of S. cerevisiae and key enzyme activities of ethanol synthesis were investigated before and after sonication treatment. The results showed that after sonication treatment, the extracellular nucleic acid protein content and intracellular Ca2+ concentration increased significantly. The morphology of S. cerevisiae was observed by SEM and found that the surface of the strain had wrinkles and depressions after ultrasonic treatment. furthermore after sonication treatment, the activities of three key enzymes which catalyze three irreversible reactions in glycolysis metabolism, namely, hexokinase, phosphofructokinase and pyruvate kinase increased by 59.02%, 109.05% and 87.27%, respectively. In a word, low-intensity ultrasound enhance the rate of ethanol output by S. cerevisiae might due to enhancing the growth and cell permeability of strains, and increasing the activities of three key enzymes of ethanol biosynthesis.
Collapse
Affiliation(s)
- Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Wenbin Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiahui Xiang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yihe Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; College of Grain Engineering, Food & Drug, Jiangsu Vocational College of Finance & Economics, 8 Meicheng East Road, Huaian, Jiangsu 223001, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
31
|
Wang H, Tao Y, Li Y, Wu S, Li D, Liu X, Han Y, Manickam S, Show PL. Application of ultrasonication at different microbial growth stages during apple juice fermentation by Lactobacillus plantarum: Investigation on the metabolic response. ULTRASONICS SONOCHEMISTRY 2021; 73:105486. [PMID: 33639530 PMCID: PMC7921625 DOI: 10.1016/j.ultsonch.2021.105486] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 05/02/2023]
Abstract
In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yiting Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shasha Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuwei Liu
- INRAE, UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), F-84000 Avignon, France
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
33
|
Umego EC, He R, Huang G, Dai C, Ma H. Ultrasound‐assisted fermentation: Mechanisms, technologies, and challenges. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ekene Christopher Umego
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Technology University of Nigeria Enugu Nigeria
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Guoping Huang
- Institute of Life Sciences Jiangsu University Zhenjiang China
| | - Chuanhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| |
Collapse
|
34
|
Yu Z, Su Y, Zhang Y, Zhu P, Mei Z, Zhou X, Yu H. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chem 2021; 357:129805. [PMID: 33915466 DOI: 10.1016/j.foodchem.2021.129805] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
Conventional food fermentation is time-consuming, and maturation of fermented foods normally requires a huge space for long-term storage. Ultrasound is a technology that emerged in the food industry to improve the efficacy of food fermentation and presents great potentials in maturation of fermented foods to produce fermented foods with high quality. Proliferation of microorganisms was observed along with promoted enzyme activities and metabolic performance when treated by a short-term ultrasonication (<30 min) at a relatively low-power (≤100 W). Additionally, ultrasound at a high-power level (≥100 W) was highlighted to promote the maturation of fermented foods through promoting Maillard reaction, oxidation, esterification, and proteolysis. As a result of promoted fermentation and maturation, texture, color, flavor and taste of fermented foods were improved. All the reviewed studies have indicated that ultrasound at the proper conditions would be a promising technique to produce fermented foods with high-quality.
Collapse
Affiliation(s)
- Zhou Yu
- School of Biology, Food and Environment, Hefei University, 99 Jinxiu Avenue, Hefei 230022, Anhui, China
| | - Ying Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yilong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Peiyi Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Zilun Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Xinning Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
35
|
A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Zhu Y, Zhao X, Zhang X, Liu H, Ao Q. Amino acid, structure and antioxidant properties of
Haematococcus pluvialis
protein hydrolysates produced by different proteases. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) 11 Fucheng Road 100048 Beijing China
| | - Xiaoyan Zhao
- Department of Food Science and Nutrition, Culinary Institute University of Jinan No. 13 Shungeng Road 250022 Jinan China
| | - Xiaowei Zhang
- Department of Food Science and Nutrition, Culinary Institute University of Jinan No. 13 Shungeng Road 250022 Jinan China
| | - Hongkai Liu
- Department of Food Science and Nutrition, Culinary Institute University of Jinan No. 13 Shungeng Road 250022 Jinan China
| | - Qiang Ao
- Department of Tissue Engineering China Medical University 77 Puhe Road 110122 Shenyang China
| |
Collapse
|
37
|
Jiang Y, Li J, Zhao H, Zhao R, Xu Y, Lyu X. Preparation of grape seed polypeptide and its calcium chelate with determination of calcium bioaccessibility and structural characterisation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuhan Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Huan Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Runtian Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Yi Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoling Lyu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety Ministry of Education College of Food Science and Engineering Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
38
|
Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buffalo-milk-based dairy products provide various health benefits to humans since buffalo milk serves as a rich source of protein, fat, lactose, calcium, iron, phosphorus, vitamin A and natural antioxidants. Dairy products such as Meekiri, Dadih, Dadi and Lassie, which are derived from Artisanal fermentation of buffalo milk, have been consumed for many years. Probiotic potentials of indigenous microflora in fermented buffalo milk have been well documented. Incorporation of certain probiotics into the buffalo-milk-based dairy products conferred vital health benefits to the consumers, although is not a common practice. However, several challenges are associated with incorporating probiotics into buffalo-milk-based dairy products. The viability of probiotic bacteria can be reduced due to processing and environmental stress during storage. Further, incompatibility of probiotics with traditional starter cultures and high acidity of fermented dairy products may lead to poor viability of probiotics. The weak acidifying performance of probiotics may affect the organoleptic quality of fermented dairy products. Besides these challenges, several innovative technologies such as the use of microencapsulated probiotics, ultrasonication, the inclusion of prebiotics, use of appropriate packaging and optimal storage conditions have been reported, promising stability and viability of probiotics in buffalo-milk-based fermented dairy products.
Collapse
|
39
|
Chávez-Martínez A, Reyes-Villagrana RA, Rentería-Monterrubio AL, Sánchez-Vega R, Tirado-Gallegos JM, Bolivar-Jacobo NA. Low and High-Intensity Ultrasound in Dairy Products: Applications and Effects on Physicochemical and Microbiological Quality. Foods 2020; 9:E1688. [PMID: 33218106 PMCID: PMC7698897 DOI: 10.3390/foods9111688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Milk and dairy products have a major role in human nutrition, as they contribute essential nutrients for child development. The nutritional properties of dairy products are maintained despite applying traditional processing techniques. Nowadays, so-called emerging technologies have also been implemented for food manufacture and preservation purposes. Low- and high-intensity ultrasounds are among these technologies. Low-intensity ultrasounds have been used to determine, analyze and characterize the physical characteristics of foods, while high-intensity ultrasounds are applied to accelerate particular biological, physical and chemical processes during food product handling and transformation. The objective of this review is to explain the phenomenology of ultrasounds and to detail the differences between low and high-intensity ultrasounds, as well as to present the advantages and disadvantages of each one in terms of the processing, quality and preservation of milk and dairy products. Additionally, it reviews the rheological, physicochemical and microbiological applications in dairy products, such as raw milk, cream, yogurt, butter, ice cream and cheese. Finally, it explains some methodologies for the generation of emulsions, homogenates, crystallization, etc. Currently, low and high-intensity ultrasounds are an active field of study, and they might be promising tools in the dairy industry.
Collapse
Affiliation(s)
- América Chávez-Martínez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R, Almada km 1, Chihuahua C.P. 31453, Mexico; (A.L.R.-M.); (R.S.-V.); (J.M.T.-G.); (N.A.B.-J.)
| | - Raúl Alberto Reyes-Villagrana
- Catedrático CONACYT, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Mexico City C.P. 03940, Mexico
| | - Ana Luisa Rentería-Monterrubio
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R, Almada km 1, Chihuahua C.P. 31453, Mexico; (A.L.R.-M.); (R.S.-V.); (J.M.T.-G.); (N.A.B.-J.)
| | - Rogelio Sánchez-Vega
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R, Almada km 1, Chihuahua C.P. 31453, Mexico; (A.L.R.-M.); (R.S.-V.); (J.M.T.-G.); (N.A.B.-J.)
| | - Juan Manuel Tirado-Gallegos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R, Almada km 1, Chihuahua C.P. 31453, Mexico; (A.L.R.-M.); (R.S.-V.); (J.M.T.-G.); (N.A.B.-J.)
| | - Norma Angélica Bolivar-Jacobo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R, Almada km 1, Chihuahua C.P. 31453, Mexico; (A.L.R.-M.); (R.S.-V.); (J.M.T.-G.); (N.A.B.-J.)
| |
Collapse
|
40
|
Gholamhosseinpour A, Hashemi SMB, Raoufi Jahromi L, Sourki AH. Conventional heating, ultrasound and microwave treatments of milk: Fermentation efficiency and biological activities. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
42
|
Akdeniz V, Akalın AS. Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Crit Rev Food Sci Nutr 2020; 62:889-904. [DOI: 10.1080/10408398.2020.1830027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vildan Akdeniz
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Ayşe Sibel Akalın
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
43
|
Yang Y, Xiang J, Zhang Z, Umego EC, Huang G, He R, Ma H. Stimulation of in situ low intensity ultrasound on batch fermentation of
Saccharomyces cerevisiae
to enhance the
GSH
yield. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao Yang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Jiahui Xiang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
- Institute of Applied Chemistry and Biological Engineering Weifang Engineering Vocational College Qingzhou Shandong China
| | - Ekene Christopher Umego
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Department of Food Science and Technology University of Nigeria Nsukka Enugu State Nigeria
| | - Guoping Huang
- Institute of Life Science Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
44
|
Stimulatory effects of low intensity ultrasound on the growth kinetics and metabolic activity of Lactococcus lactis subsp. Lactis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Sterilization of Bacillus tequilensis isolated from aerogenic vinegar by intense pulsed light. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Hashemi SMB, Gholamhosseinpour A. Fermentation of Chortan (heated strained yoghurt) by
Lactobacillus helveticus
: sonication treatment and biological activities. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Aliakbar Gholamhosseinpour
- Department of Food Science and Technology Faculty of Agriculture Jahrom University Jahrom Fars Province74135111Iran
| |
Collapse
|