1
|
Xu G, Zhao J, Yao J, Xu Y, Yuan X, Pan S. Effects of aging on the fine structure, chain conformation, and morphology of Chenpi polysaccharides. Carbohydr Polym 2025; 349:122970. [PMID: 39643412 DOI: 10.1016/j.carbpol.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
The aging process endows Chenpi (Pericarpium Citri Reticulatae) with unique value and efficacy. This study investigated the dynamic changes in the fine structure, chain conformation, and morphology of water-soluble polysaccharides from Chenpi over time. In the initial storage period of Chenpi (1 year), Chenpi polysaccharides (CP) exhibited a triple-helical structure, with chains entangled and aggregated into rough spherical conformations. Galacturonic acid (GalA, 47.78 mol%) was the predominant monosaccharide. As aging progressed, the homogalacturonan (HG) regions gradually degraded, leading to decreases in molecular sizes (particle size, Mw, Mn, and Rg), a reduction in the degree of esterification, and a weakening of the semicrystalline structure. Consequently, arabinose (Ara) emerged as the main monosaccharide (41.38 mol%). Neutral sugars continuously enriched the rhamnogalacturonan (RG-I) side chains, forming highly branched single molecules that curled into spherical shapes. By 15 years, CP were fully degraded, adopting a compact molecular conformation with the triple-helix structure disappearing and sizes uniformly below 20 nm. However, AFM results indicated aggregation phenomena in 15-year CP. Additionally, CP viscosity decreased while thermal stability improved, reflecting the natural structural transformation of CP. This study provides scientific evidence supporting the application of Chenpi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jingyun Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xianghao Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
2
|
Guo H, Li D, Miao B, Feng K, Chen G, Gan R, Kang Z, Gao H. Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects. ULTRASONICS SONOCHEMISTRY 2025; 112:107215. [PMID: 39742686 PMCID: PMC11751549 DOI: 10.1016/j.ultsonch.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity. AP-Es (AP-E1, AP-E2, AP-E3) with different DE were prepared using mild ultrasound-assisted alkali de-esterification, followed by SAR analysis. Results revealed that AP-E3, with the lowest DE (5.08 ± 0.22 %), demonstrated a significant reduction in homogalacturonan (HG) domains and a corresponding increase in rhamnogalacturonan-I (RG-I) domains, which coincided with enhanced immunomodulatory effects. The molecular weights of AP-E1, AP-E2, and AP-E3 were determined to be 30.94 ± 0.83 kDa, 27.61 ± 0.65 kDa, and 22.17 ± 0.57 kDa, respectively. To further explore the underlying mechanism, transgenic zebrafish with fluorescent macrophages were utilized. A positive correlation was observed between AP-E3 concentration and the number of fluorescent microspheres engulfed by macrophages. Additionally, AP-E3 significantly upregulated the expression of key immune response genes (tnf-α, il-1β, il-6, cox-2, inos, and nf-κb) and restored the gut microbiota composition and abundance in chloramphenicol-induced immunocompromised zebrafish. Metabolomics analysis revealed that AP-E3 effectively restored metabolic homeostasis by activating multiple signaling pathways associated with signal transduction, immune regulation, and metabolism. These findings highlight the potential of low-esterified AP enriched with RG-I domains as a promising candidate for applications in immune modulation and gut health management.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China; Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China.
| | - Kanglin Feng
- Fruit and Vegetable Storage and Processing Research Center, Institute of Agricultural Products Processing, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guijing Chen
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu 610200, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Shen J, Huang W, You Y, Zhan J. Controlling strategies of methanol generation in fermented fruit wine: Pathways, advances, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70048. [PMID: 39495577 DOI: 10.1111/1541-4337.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Methanol is widely existed in fermented fruit wines (FFWs), and the concentration is excessive at times due to inappropriate fermentation conditions. Methanol is neurotoxic, and its metabolites of formaldehyde and formic acid can cause organic lesions and central respiratory system disorders. FFWs with unspecified methanol limits are often produced with reference to grape wine standards (250/400 mg/L). To clarify the causes of methanol production in FFWs and minimize the methanol content, this study summarizes the current process methods commonly applied for methanol reduction in FFWs and proposes novel potential controlling strategies from the perspective of raw materials (pectin, pectinase, and yeast), which are mainly the low esterification modification and removal of pectin, passivation of the pectinase activity, and the gene editing of yeast to target the secretion of pectinases and modulation of the glycine metabolic pathway. The modified raw materials combined with optimized fermentation processes will hopefully be able to improve the current situation of high methanol content in FFWs. Methanol detection technologies have been outlined and combined with machine learning that will potentially guide the production of low-methanol FFWs and the setting of methanol limits for specific FFW.
Collapse
Affiliation(s)
- Ju Shen
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Fan H, Li R, Zhang Y, Xu X, Pan S, Liu F. Effect of H 2O 2/ascorbic acid degradation and gradient ethanol precipitation on the physicochemical properties and biological activities of pectin polysaccharides from Satsuma Mandarin. Int J Biol Macromol 2024; 280:135843. [PMID: 39306161 DOI: 10.1016/j.ijbiomac.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this work, three degraded polysaccharides (DMPP-40, DMPP-60, DMPP-80) were successfully obtained by H2O2/ascorbic acid degradation and gradient ethanol precipitation from Satsuma mandarin peel pectin (MPP), and their physicochemical properties, antioxidant and prebiotic activities were investigated. The molecular weight of MPP, DMPP-40, DMPP-60, DMPP-80 were determined to be 336.83 ± 10.57, 18.93 ± 0.54, 26.07 ± 0.83 and 8.71 ± 0.27 kDa, respectively. The ethanol concentration significantly affected the physicochemical properties of DMPPs. DMPP-60 showed the highest yield (69.07 %) and uronic acid content (64.85 %), DMPP-80 showed the lowest molecular weight (8.71 kDa), and the composition and proportion of monosaccharides of DMPPs were significantly different. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (1H NMR) confirmed that DMPPs exhibited similar functional groups, while X-ray diffraction (XRD) indicated that DMPP-40 possessed some crystallographic sequences. Scanning electron microscopy (SEM) images directly verified the fragmented structure and reduced surface area of DMPPs. Besides, the H2O2/ascorbic acid treatment could obviously reduce the apparent viscosity and thermal stability of MPP. Meanwhile, the results of bioactivity assay showed that DMPPs possessed better antioxidant activity and probiotics pro-proliferative effects compared with MPP. DMPP-80 could significantly inhibit lipopolysaccharides (LPS)-stimulated production of inflammatory factors (including nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-α and interleukin (IL)-1β) in RAW264.7 cells. Results suggest that the H2O2/ascorbic acid combined with gradient ethanol precipitation has potential applications in degradation and separation of MPP to improve its biological activities.
Collapse
Affiliation(s)
- Hekai Fan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong agricultural university, Wuhan, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Shi L, He Q, Li J, Liu Y, Cao Y, Liu Y, Sun C, Pan Y, Li X, Zhao X. Polysaccharides in fruits: Biological activities, structures, and structure-activity relationships and influencing factors-A review. Food Chem 2024; 451:139408. [PMID: 38735097 DOI: 10.1016/j.foodchem.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.
Collapse
Affiliation(s)
- Liting Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yunlin Cao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Chongde Sun
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Deng RX, Zheng YY, Liu DJ, Liu JY, Zhang MN, Xi GY, Song LL, Liu P. The effect of ultrasonic power on the physicochemical properties and antioxidant activities of frosted figs pectin. ULTRASONICS SONOCHEMISTRY 2024; 106:106883. [PMID: 38703594 PMCID: PMC11081804 DOI: 10.1016/j.ultsonch.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.
Collapse
Affiliation(s)
- Rui-Xue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yi-Ying Zheng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Dong-Jie Liu
- Ansteel Beijing Research Institute CO., LTD., Changping, Beijing 102209, China
| | - Jing-Yi Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Meng-Nan Zhang
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guang-Yuan Xi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lu-Lu Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| |
Collapse
|
7
|
Hao JW, Liu HS, Liu LY, Zhang QH. Citrus pectin protects mice from burn injury by modulating intestinal microbiota, GLP-1 secretion and immune response. Int Immunopharmacol 2024; 131:111912. [PMID: 38522140 DOI: 10.1016/j.intimp.2024.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Water-soluble rhamnogalacturonan-I enriched citrus pectin (WRP) has promising effect on antimicrobial defense. We aim to determine whether the modified acidic (A) or neutral (B) WRP solutions can improve intestinal microbial dysbiosis in burn-injured mice. Male Balb/c mice were gavaged with WRPs at 80, 160, 320 mg/kg. Body weight daily for 21 days before exposed to thermal injury of 15 % total body surface area and mortality was monitored. Mice with 80 mg/kg WRPs were also subjected to fecal DNAs and T cell metabonomics analysis, intestinal and plasma glucagon-like peptide 1 (GLP-1) detection, plasma defensin, immunoglobin and intestinal barrier examinations at 1 and 3d postburn (p.b.). Burn-induced mortality was only improved by low dose WRP-A (P = 0.039). Both WRPs could prevent the dysbiosis of gut microbiota in burn injury by reducing the expansion of inflammation-promoting bacteria. Both WRPs suppressed ileum GLP-1 production at 1d p.b. (P = 0.002) and plasma GLP-1 levels at 3d p.b. (P = 0.013). Plasma GLP-1 level correlated closely with ileum GLP-1 production (P = 0.019) but negatively with microbiota diversity at 1d p.b. (P = 0.003). Intestinal T cell number was increased by both WRPs in jejunum at 3d p.b. However, the exaggerated splenic T cell metabolism in burn injury was reversed by both WRPs at 1d p.b. The burn-increased plasma defensin β1 level was only reduced by WRP-B. Similarly, the intestinal barrier permeability was only rescued by WRP-B at 1d p.b. WRP-A rather than WRP-B could reduce burn-induced mortality in mice by suppressing intestinal GLP-1 secretion, restoring gut microbiota dysbiosis and improving adaptive immune response.
Collapse
Affiliation(s)
- Ji-Wei Hao
- Trauma Repair and Tissue Regeneration Center, Department of Medical Innovation Study, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China
| | - Hong-Sheng Liu
- Department of Emergency, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Ling-Ying Liu
- Department of Medical Nutrition, Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, People's Republic of China
| | - Qing-Hong Zhang
- Trauma Repair and Tissue Regeneration Center, Department of Medical Innovation Study, Chinese People's Liberation Army General Hospital, Beijing 100853, People's Republic of China.
| |
Collapse
|
8
|
Yang Z, Zhang Y, Jin G, Lei D, Liu Y. Insights into the impact of modification methods on the structural characteristics and health functions of pectin: A comprehensive review. Int J Biol Macromol 2024; 261:129851. [PMID: 38307429 DOI: 10.1016/j.ijbiomac.2024.129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Pectin is a complex polysaccharide that is widely present in plant cells and has multiple physiological functions. However, most pectin exists in the form of protopectin, which has a large molecular weight and cannot be fully absorbed and utilized in the human gut to exert its effects. The significant differences in the structure of different sources of pectin also limited their application in the food and medical fields. In order to achieve greater development and utilization of pectin functions, this paper reviewed several commonly used methods for pectin modification from physical, chemical, and biological perspectives, and elaborated on the relationship between these modification methods and the structure and functional properties of pectin. At the same time, the functional characteristics of modified pectin and its application in medical health, such as regulating intestinal health, anticancer, anti-inflammatory, and drug transport, were reviewed, so as to provide a theoretical basis for targeted modification of pectin and the development of new modified pectin products.
Collapse
Affiliation(s)
- Ziyi Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoxuan Jin
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Dengwen Lei
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Condezo-Hoyos L, Cortés-Avendaño P, Lama-Quispe S, Calizaya-Milla YE, Méndez-Albiñana P, Villamiel M. Structural, chemical and technofunctional properties pectin modification by green and novel intermediate frequency ultrasound procedure. ULTRASONICS SONOCHEMISTRY 2024; 102:106743. [PMID: 38150956 PMCID: PMC10765486 DOI: 10.1016/j.ultsonch.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The impact of intermediate frequency ultrasound (IFUS, 582, 864 and 1144 kHz), mode of operation (continue and pulsed) and ascorbic acid (Aa) addition on the structural, chemical and technofunctional properties of commercial citrus high methoxyl-grade pectin (HMP) was investigated. The chemical dosimetry of IFUS, monitored by the triiodide formation rate (I3-), demonstrated that the pulsed ratio (1900 ms on/100 ms off) at the three frequencies was similar to that of continue mode but IFUS1144 kHz produced more acoustic streaming demonstrated by the height liquid measured using image analysis. In presence of Aa, HMP presented higher fragmentation than in its absence. IFUS did not give rise any changes in the main functional groups of the HMP. In general, a reduction in molecular weight was observed, being the presence of Aa the most influencing factor. Regarding monosaccharides, IFUS modified the structure of homogalacturonan and rhamnogalacturonan-I and increased of GalA contents of the HMP in presence of Aa at the above three frequencies. A reducing of the consistency index (k) and increasing of the flow index (n) of HMP were showed by IFUS frequency and Aa addition. The emulsifying activity and stability index were increased for HMP treated by IFUS in continue mode at all frequencies and in presence of Aa. The results presented in this research shown the effectiveness of IFUS as tool to modify pectin into different structures with different functionalities.
Collapse
Affiliation(s)
- Luis Condezo-Hoyos
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú; Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru.
| | - Paola Cortés-Avendaño
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Sebastián Lama-Quispe
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Yaquelin E Calizaya-Milla
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú
| | - Pablo Méndez-Albiñana
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid 28029 Madrid, España
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Yang Z, Wang J, Chen H, Meng H, Guo X, Yu S. Effect of localized electrochemical pH and temperature synergistic modification on the structural and antibacterial properties of pectin/polyvinyl alcohol/zinc oxide nanorod films. Int J Biol Macromol 2023; 253:126703. [PMID: 37673139 DOI: 10.1016/j.ijbiomac.2023.126703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Two low-methoxy pectins (LMPs) were obtained by local electrochemical pH modification using an H-type double-layer water bath sealed electrochemical cell at the voltage of 180 V for 3 h. The weight-average molecular weight (Mw) of citrus peel pectin (CPP) prepared in the anodic part at room temperature (CPP-A5/RT) and in the cathodic part at 5 °C (CPP-C5/RT) were 346 kDa and 328 kDa, respectively, and the degrees of methylation (DM) were 36.8 % and 11.9 %. Moreover, the second-order kinetic model was most appropriate for the degradation processes, as free radicals were generated in the anodic part and β-elimination occurred in the cathodic part. Subsequently, CPP-A5/RT and CPP-C5/RT were utilized to fabricate food packaging film blending with polyvinyl alcohol (PVA), bcZnO (ZnO coupled with bentonite and colophony) nanorods, and Ca2+ ions by casting method. Then the prepared films were studied for their ability to maintain the freshness of strawberries. The addition of Ca2+ ions and bcZnO nanorods increased the thickness, water contact angle (WCA), and mechanical properties of the composite films, while decreased water vapor permeability (WVP). Therefore, the CPP-based films, supplemented with bcZnO nanorods and crosslinked with Ca2+ ions by "egg-box" model, can serve as an antibacterial food packaging material for food preservation.
Collapse
Affiliation(s)
- Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
11
|
Yue Y, Wang B, Xi W, Liu X, Tang S, Tan X, Li G, Huang L, Liu Y, Bai J. Modification methods, biological activities and applications of pectin: A review. Int J Biol Macromol 2023; 253:127523. [PMID: 37866576 DOI: 10.1016/j.ijbiomac.2023.127523] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Pectin is a complex and functionally rich natural plant polysaccharide that is widely used in food, medical, and cosmetic industries. It can be modified to improve its properties and expand its applications. Modification methods for natural pectin can be divided into physical, chemical, enzymatic, and compound methods. Different modification methods can result in modified pectins (MPs) exhibiting different physicochemical properties and biological activities. The objectives of this paper were to review the various pectin modification methods explored over the last decade, compare their differences, summarize the impact of different modification methods on the biological activity and physicochemical properties of pectin, and describe the applications of MPs in food and pharmaceutical fields. Finally, suggestions and perspectives for the development of MPs are discussed. This review offers a theoretical reference for the rational and efficient processing of pectin and the expansion of its applications.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; College of Food, Shihezi University, Shihezi 832003, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan 250000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; College of Food, Shihezi University, Shihezi 832003, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Ya Liu
- College of Food, Shihezi University, Shihezi 832003, China.
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
12
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
13
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
14
|
Yao W, Yong J, Lv B, Guo S, You L, Cheung PCK, Kulikouskaya VI. Enhanced In Vitro Anti-Photoaging Effect of Degraded Seaweed Polysaccharides by UV/H 2O 2 Treatment. Mar Drugs 2023; 21:430. [PMID: 37623711 PMCID: PMC10455735 DOI: 10.3390/md21080430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jiayu Yong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bingxue Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Siyu Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Viktoryia I. Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 Skaryna Str., 220141 Minsk, Belarus;
| |
Collapse
|
15
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
16
|
Feng S, Yi J, Ma Y, Bi J. Study on the ice crystals growth under pectin gels with different crosslinking strengths by modulating the degree of amidation in HG domain. Food Chem 2023; 428:136758. [PMID: 37413836 DOI: 10.1016/j.foodchem.2023.136758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The ice crystal morphology formed under a series of amidated pectin gels with various crosslink strengths were investigated. The results showed that as the degree of amidation (DA) increased, pectin chains exhibited shorter homogalacturonan (HG) regions. Highly amidated pectin exhibited a faster gelation rate and a stronger gel micro-network via hydrogen bonds. Based on cryogenic scanning electron microscopy (cryo-SEM), smaller ice crystals were formed in frozen gel with low DA, suggesting that a weaker cross-linked gel micro-network was more effective at inhibiting crystallization. After sublimation, lyophilized gel scaffolds with high crosslink strength displayed less number of pores, high porosity, lower specific surface area, and greater mechanical strength. This study is expected to confirm that the microstructure and mechanical properties of freeze-dried pectin porous materials could be regulated by changing the crosslink strength of pectin chains, which is achieved by increasing the degree of amidation in the HG domains.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
17
|
Yang Z, Meng H, Wang J, Chen H, Guo X, Yu S. Effect of different NaCl concentration on the structure-function relationship of citrus peel pectins modified by electrochemistry. Int J Biol Macromol 2023:125147. [PMID: 37268072 DOI: 10.1016/j.ijbiomac.2023.125147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
In this study, the modified citrus peel pectins (CPPs) were successfully produced by electrochemistry with varying NaCl concentrations of 0, 0.01 % and 0.1 % w/v using an H-type cell at 40 mA current. After 4 h, the pH and oxidation-reduction potential (ORP) of oxidized CPP solution in the anodic region were 2.00- 2.52 and 371.17- 564.45 mV, respectively, due to the electrolysis of water, whereas those of reduced CPP solution in cathodic region were 9.46- 10.84 and - 202.77 ~ -230.57 mV. The modified CPPs in the anodic region (A-0, A-0.01, and A-0.1) exhibited significantly higher weight-average molecular weights and methyl esterification degrees than those in the cathodic region (C-0, C-0.01 and C-0.1). In contrast, the K+, Mg2+, and Ca2+ contents of A-0, A-0.01, and A-0.1 were lower than those of C-0, C-0.01 and C-0.1 due to the electrophoretic migration. Furthermore, the antioxidant activities of A-0 and A-0.01 solutions were stronger than those of the C-0, C-0.01, and C-0.1, while rheological and texture properties of their hydrogels showed contradictory results. Finally, the potential structure-function relationships of CPPs were explored by combining PCA and correlation analysis. Overall, this study introduced a potential approach for pectin purification and functional low-methoxyl pectin manufacturing.
Collapse
Affiliation(s)
- Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| | - Jin Wang
- The State Centre of Quality Supervision and Inspection for Camellia Products (Jiangxi), Ganzhou 341000, China
| | - Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomus Region, Shihezi, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| |
Collapse
|
18
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
19
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
20
|
Extraction, Structural Characterization, Biological Functions, and Application of Rice Bran Polysaccharides: A Review. Foods 2023; 12:foods12030639. [PMID: 36766168 PMCID: PMC9914776 DOI: 10.3390/foods12030639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Rice bran is a "treasure house of natural nutrition". Even so, utilization of rice bran is often ignored, and this has resulted in the wastage of nutrients. Polysaccharides are one of the active substances in rice bran that have gained widespread attention for their antioxidant, antitumor, immune-enhancing, antibacterial, and hypoglycemic properties. This review summarizes the extraction methods, structural characterization, bioactivity, and application of rice bran polysaccharides that have been developed and studied in recent years, laying a foundation for its development into foods and medicines. In addition, we also discuss the prospects for future research on rice bran polysaccharides.
Collapse
|
21
|
Xu F, Zhang S, Waterhouse GI, Zhou T, Du Y, Sun-Waterhouse D, Wu P. Yeast fermentation of apple and grape pomaces affects subsequent aqueous pectin extraction: Composition, structure, functional and antioxidant properties of pectins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Ma X, Dong L, He Y, Chen S. Effects of ultrasound-assisted H 2O 2 on the solubilization and antioxidant activity of yeast β-glucan. ULTRASONICS SONOCHEMISTRY 2022; 90:106210. [PMID: 36327922 PMCID: PMC9619374 DOI: 10.1016/j.ultsonch.2022.106210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Yeast β-glucan (YG) possess an extensive range of biological activities, such as the inhibition of oxidation, but the poor water solubility of macromolecular YG limits its application. In this study, through the combined degradation of ultrasonic waves and H2O2, and the optimization of the main process parameters for solubilizing YG by response surface methodology (RSM), a new product of YGUH was generated. The molecular weight, structural characteristics and degradation kinetics before and after solubilization were evaluated. The results showed that the optimal solubilization conditions were reaction time: 4 h, ultrasonic power: 3 W/mL, H2O2 concentration: 24 %. Under these conditions, ultrasound-assisted H2O2 increased the solubility (from 13.60 % to 70.00 %) and reduced molecular weight (from 6.73 × 106 Da to 1.22 × 106 Da). Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), Congo red (CR), scanning electron microscopy (SEM) revealed that ultrasound-assisted H2O2 increased the conformation's flexibility greatly, without changing the main structure of YG. More importantly, solubilization of YG improved free radical scavenging activity with YGUH exhibiting the highest levels of DPPH and ABTS+ free radical scavenging activity. These results revealed that ultrasound-assisted H2O2 degradation could be a suitable way to increase the solubility of YG for producing value-added YG.
Collapse
Affiliation(s)
- Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Lin Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Shiwen Chen
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
23
|
Ren H, Li Z, Gao R, Zhao T, Luo D, Yu Z, Zhang S, Qi C, Wang Y, Qiao H, Cui Y, Gan L, Wang P, Wang J. Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells. Foods 2022; 11:foods11213449. [PMID: 36360063 PMCID: PMC9657679 DOI: 10.3390/foods11213449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Polysaccharide decolorization is a key determinant of polysaccharide structure. In this study, two purified Rehmannia glutinosa polysaccharides, RGP−1−A and RGP−2−A, were obtained after decolorization using the AB-8 macroporous resin and H2O2, respectively. RGP−1−A (molecular weight (Mw) = 18,964 Da) and RGP−2−A (Mw = 3305 Da) were acidic and neutral heteropolysaccharides, respectively, and were both polycrystalline in structure. FTIR analysis revealed that RGP−1−A was a sulfate polysaccharide, while RGP−2−A had no sulfate group. Experiments on IPEC-1 cells showed that RGPs alleviated oxidative stress by regulating the Nrf2/Keap1 pathway. These findings were confirmed by the upregulation of Nrf2, NQO1, and HO-1; the subsequent increase in the levels of antioxidant indicators (SOD, LDH, CAT, and MDA); and the restoration of mitochondrial membrane potential. Overall, the antioxidant capacity of RGP−1−A was significantly higher than that of RGP−2−A. These results suggest that RGPs may be a potential natural antioxidant and could be developed into functional foods.
Collapse
|
24
|
Effects of ultrasound-assisted Fenton treatment on structure and hypolipidemic activity of apricot polysaccharides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Shi Q, Zou MY, Wang JH, Song MM, Xiong SQ, Liu Y. Ultrasonic effects on molecular weight degradation, physicochemical and rheological properties of pectin extracted from Premna microphylla Turcz. Int J Biol Macromol 2022; 221:1065-1076. [PMID: 36108745 DOI: 10.1016/j.ijbiomac.2022.09.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
The high molecular weight and poor solubility of pectin extracted from Premna microphylla Turcz (PEP) limits its application. Therefore, in this paper, the degradation effects of PEP under ultrasound irradiation and the influences of ultrasonic on the PEP processing characteristics were investigated. The results indicated that the Mw of PEP decreased significantly with a narrow distribution after ultrasonic treatment. The degradation kinetics of PEP at different ultrasound intensities were sufficiently described by the 2nd-order kinetics eq. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis suggested that ultrasonic treatment destroyed the ordered structure inside the PEP, resulting in a looser microscopic morphology. Compared with the control, the thermal stability of PEP was significantly boosted after ultrasonic treatment. Rheological analysis illustrated that the sonicated PEP presented lower apparent viscosities than the original PEP. While the elasticity and thermal reversibility of the degraded products was enhanced. Ultrasonic treatment prominently weakened its shear thinning fluid behavior and thixotropy, thus improved its processing quality. Therefore, desirable PEP can be prepared by ultrasonic irradiation. The results can provide a reference for the development and application of PEP.
Collapse
Affiliation(s)
- Qiang Shi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ming-Yue Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Miao-Miao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shan-Qiang Xiong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
26
|
Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr Polym 2022; 291:119535. [DOI: 10.1016/j.carbpol.2022.119535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
|
27
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
28
|
Yu C, Hu X, Ahmadi S, Wu D, Xiao H, Zhang H, Ding T, Liu D, Ye X, Chen S, Chen J. Structure and In Vitro Fermentation Characteristics of Polysaccharides Sequentially Extracted from Goji Berry ( Lycium barbarum) Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7535-7546. [PMID: 35549264 DOI: 10.1021/acs.jafc.2c01157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, the chelating agent-soluble fraction (CA), sodium carbonate-soluble fraction (SC), and sodium hydroxide-soluble fraction (SH) were sequentially extracted from the cell wall of goji berry (Lycium barbarum) leaves. Furthermore, SC was purified with Q-Sepharose fast flow resin to obtain the neutral sugar fraction (SC-I) and acid sugar fraction (SC-II). Physicochemical properties of polysaccharides were characterized by high-performance anion-exchange chromatography with pulsed amperometry detection, size exclusion chromatography-multi-angle laser light scattering, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and atomic force microscopy analysis. Additionally, the impact of polysaccharides on modulating human gut microbiota was investigated by in vitro fermentation. A high amount of galacturonic acid (GalA) in CA showed that it was an aggregation of linear homogalacturonan. SC was the main pectic polysaccharide fraction and rich in neutral sugars. SC-I was the neutral sugar fraction with an extremely high molecular weight (2.055 × 106 Da), while SC-II was the acid sugar fraction with a low molecular weight (1.766 × 105 Da). SH seemed like a mixture of pectin and hemicellulose. All the five polysaccharides significantly (P < 0.05) increased the abundance of Bacteroides, Bifidobacteria, and Lactobacilli. To the best of our knowledge, this is the first report on the structure and fermentation characteristics of goji berry leaf polysaccharides, which is meaningful to provide a structural basis for further bioactivity research.
Collapse
Affiliation(s)
- Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxin Hu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450007, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450007, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450007, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
29
|
Silva EK, Anthero AGDS, Emerick LB, Zabot GL, Hubinger MD, Meireles MAA. Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride. Int J Biol Macromol 2022; 207:1-8. [PMID: 35196570 DOI: 10.1016/j.ijbiomac.2022.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the impact of the ultrasound intensity (0, 5, 10, and 20 W/cm2) on the esterification of annatto (Bixa orellana L.) seed starch with octenyl succinic anhydride (OSA) employing a short processing time (5 min) to produce a novel emulsifier. OSA-esterified annatto seed starches were examined according to their degree of substitution (DS), amylose content, granule size distribution, microstructure, and X-ray diffractogram. Also, the performance of the OSA-modified annatto seed starch to stabilize colloidal systems was compared to commercial samples of OSA-modified starches. For this, annatto seed oil-in-water emulsions were produced and characterized according to their droplet size distribution, microstructure, and kinetic stability. Increasing ultrasound intensity from 5 W/cm2 to 20 W/cm2, DS values reached up to 0.139 ± 0.031. Likewise, these treatments yielded approximately 1.24-1.36 times more amylose content than the sample without ultrasound application. Most of the starch granules presented smooth surfaces without visible fissures. The higher ultrasound intensity hindered the aggregation of starch granules, thus forming well-defined elliptical particles. On the other hand, the increase of the ultrasound intensity did not change Brouckere mean diameter of the starch granules. No significant qualitative differences were seen in the X-ray diffractograms in terms of diffraction angle and peak intensity, indicating that the main functional characteristics of starches were not altered with ultrasound treatment. Furthermore, modified annatto starch was able to stabilize annatto seed oil-in-water emulsions. When compared to two commercial modified starches, OSA-esterified annatto starch produced a colloidal system with a larger Sauter mean diameter (14 ± 2 μm). However, the emulsion stabilized with modified annatto starch was more kinetically stable during the storage time in comparison to those stabilized with commercial starches.
Collapse
Affiliation(s)
- Eric Keven Silva
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Ana Gabriela da S Anthero
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Lucas B Emerick
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., 1040, Cachoeira do Sul, RS, 96508-010, Brazil
| | - Miriam D Hubinger
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Maria Angela A Meireles
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
30
|
Basak S, Annapure US. Impact of atmospheric pressure cold plasma on the rheological and gelling properties of high methoxyl apple pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Trends in "green" and novel methods of pectin modification - A review. Carbohydr Polym 2022; 278:118967. [PMID: 34973782 DOI: 10.1016/j.carbpol.2021.118967] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
Modification of hydrocolloids to alter their functional properties using chemical methods is well documented in the literature. There has been a recent trend of adopting eco-friendly and "green" methods for modification. Pectin, being a very important hydrocolloid finds its use in various food applications due to its gelling, emulsifying, and stabilizing properties. The adoption of various "green" methods can alter the properties of pectin and make it more suitable for incorporation in food products. The novel approaches such as microwave and pulsed electric field can also be utilized for solvent-free modification, making it desirable from the perspective of sustainability, as it reduces the consumption of organic chemicals. Pectic oligosaccharides (POSs) produced via novel approaches are being explored for their biological properties and incorporation in various functional foods. The review can help to set the perspective of potential scale-up and adoption by the food industry for modification of pectin.
Collapse
|
32
|
Chen J, Cui Y, Ma Y, Zhang S. The gelation behavior of thiolated citrus high-methoxyl pectin induced by sodium phosphate dibasic dodecahydrate. Carbohydr Polym 2022; 277:118849. [PMID: 34893259 DOI: 10.1016/j.carbpol.2021.118849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
The present study found that sodium phosphate dibasic dodecahydrate (Na2HPO4) was capable of inducing the gelation of thiolated citrus high-methoxyl pectin (TCHMP). TCHMP was synthesized by amidation of citrus high-methoxyl pectin. The gel formation exhibited an obvious concentration-dependence, including TCHMP and Na2HPO4 concentration. For Na2HPO4-induced TCHMP gels (TCHMPGs), gel strength and water holding capacity (WHC) increased, while the microcellular network structure was more compact with the increase of TCHMP and Na2HPO4 concentration. Dynamic viscoelastic experiment showed when Na2HPO4 concentration was more than or equal to 0.5 mol/L, TCHMP sols could be transferred into gels within 30 min. Crystal property was not changed while thermal stability was improved after phase transition. Gelling forces analysis indicated that disulfide bonds were the main interaction forces in TCHMPGs. Consequently, TCHMPGs were covalently crosslinked and exhibited satisfactory gel performance. The results provide a theoretical basis for the formation of gels by Na2HPO4 induced TCHMP.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Yanli Cui
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
33
|
Jia Y, Lu Y, Wang Y, Zhang M, He C, Chen H. Spheroidization of ultrasonic degraded corn silk polysaccharide to enhance bioactivity by the anti-solvent precipitation method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:53-61. [PMID: 34031881 DOI: 10.1002/jsfa.11329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Corn silk is a very important by-product of corn production with medicinal value. Corn silk polysaccharide (CSP) is the main active ingredient. In the present study, ultrasound and spheroidization by anti-solvent were applied to improve the biological activity of CSP. RESULTS The results showed that ultrasonic degradation improved the α-glucosidase inhibitory activity of CSP by changing its physicochemical characteristics. As the anti-solvent ratio increased, the particle size of the nanoparticles (NPs) from the spheroidization of ultrasonic-degraded corn silk polysaccharide (UCSP) gradually increased, and NP-1 exhibited the highest inhibitory effect of α-glucosidase. Isothermal titration calorimetry (ITC) results indicated that the enhanced activity might be due to more α-glucosidase binding sites with NP-1 compared with no spheroidization. Western blotting results showed that NP-1 could improve the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) uptake in the L6 cells by regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway and the translocation of glucose transporter 4 (GLUT4). NP-1 also exhibited excellent stability in different environments. CONCLUSION The study revealed that ultrasonic treatment and spheroidization processing showed potential applications for improving the biological activity of polysaccharides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, P.R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, P.R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
34
|
Liang WL, Liao JS, Qi JR, Jiang WX, Yang XQ. Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chem 2021; 375:131806. [PMID: 34933235 DOI: 10.1016/j.foodchem.2021.131806] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Moderate alkali de-esterification can change the physicochemical characteristics and thus the functional properties of high methoxyl pectin (HMP). The results revealed that de-esterification could increase negative charges (Zeta potential from -21 to -31 mV), decrease molecular weight (from 448 to 136 kDa) and apparent viscosity of HMP. Homogalacturonan (HG) content decreased (from 62% to 49%) while rhamnogalacturonan Ⅰ (RG-Ⅰ) content increased (from 32% to 46%) after de-esterification. The group characteristics of HMP with different degree of esterification (DE) were similar and no obvious impact was made on degree of crystallinity by alkali de-esterification. A conformation transition of HMP molecule implied by Congo red test were occurred as the DE decreased. With the decrease of DE, the molecular structure of HMP became shorter and smaller, and the entanglement was weaker. The de-esterification caused slight decrease of thermal stability. Alkali de-esterification would weaken the gel property and the emulsifying ability of HMP.
Collapse
Affiliation(s)
- Wan-Ling Liang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- Guangzhou Laimeng Biotechnology Co. Ltd., Guangzhou 510640, PR China; School of Life Sciences, South China Normal University, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| | - Wen-Xin Jiang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
35
|
Muñoz-Almagro N, Morales-Soriano E, Villamiel M, Condezo-Hoyos L. Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. ULTRASONICS SONOCHEMISTRY 2021; 80:105835. [PMID: 34826725 PMCID: PMC8626613 DOI: 10.1016/j.ultsonch.2021.105835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
With the growing of consumer's demand for products ready to eat that can be elaborated with greener technologies without affecting to their organoleptic characteristics, the application of ultrasound combined with microwaves has been widely studied on food preservation treatments (drying, frying), extraction of high-value added compounds and enzymatic hydrolysis of proteins. This review presents a complete picture of current knowledge on the ultrasound combined with microwaves including the mechanisms, influencing factors, advantages and drawbacks, emphasising in several synergistic effects observed in different processes of strong importance in the food industry. Recent research has shown that this hybrid technology could not only minimise the disadvantages of power US for drying and frying but also improve the product quality and the efficiency of both cooking processes by lowering the energy consumption. Regarding extraction, current studies have corroborated that the combined method presents higher yields in less time, in comparison with those in the respective ultrasound and microwave separately. Additionally, recent results have indicated that the bioactive compounds extracted by this combined technology exhibit promising antitumor activities as well as antioxidant and hepatoprotective effects. Remarkably, this hybrid technology has been shown as a good pre-treatment since the structural changes that are produced in the molecules facilitate the subsequent action of enzymes. However, the combination of these techniques still requires a proper design to develop and optimized conditions are required to make a scale process, and it may lead to a major step concerning a sustainable development and utilization of bioactive compounds from natural products in real life.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Morales-Soriano
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru
| | - Mar Villamiel
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Perú.
| |
Collapse
|
36
|
Li X, Zhang G, Li J, Jiang T, Chen H, Li P, Guan Y. Degradation by Vc‐H
2
O
2
, characterization and antioxidant activity of polysaccharides from
Passiflora edulis
peel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xia Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Guozhu Zhang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jing Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Tiemin Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Huiying Chen
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Peijun Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yuan Guan
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
37
|
Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. COATINGS 2021. [DOI: 10.3390/coatings11080922] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pectin is a biocompatible polysaccharide with intrinsic biological activity, which may exhibit different structures depending on its source or extraction method. The extraction of pectin from various industrial by-products presents itself as a green option for the valorization of agro-industrial residues by producing a high commercial value product. Pectin is susceptible to physical, chemical, and/or enzymatic changes. The numerous functional groups present in its structure can stimulate different functionalities, and certain modifications can enable pectin for countless applications in food, agriculture, drugs, and biomedicine. It is currently a trend to use pectin to produce edible coating to protect foodstuff, antimicrobial bio-based films, nanoparticles, healing agents, and cancer treatment. Advances in methodology, use of different sources of extraction, and knowledge about structural modification have significantly expanded the properties, yields, and applications of this polysaccharide. Recently, structurally modified pectin has shown better functional properties and bioactivities than the native one. In addition, pectin can be used in conjunction with a wide variety of biopolymers with differentiated properties and specific functionalities. In this context, this review presents the structural characteristics and properties of pectin and information on the modification of this polysaccharide, its respective applications, perspectives, and future challenges.
Collapse
|
38
|
Chen X, Sun-Waterhouse D, Yao W, Li X, Zhao M, You L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem 2021; 365:130524. [PMID: 34252626 DOI: 10.1016/j.foodchem.2021.130524] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Increasing studies focus on the degradation of polysaccharides by free radicals. The review mainly provides an overview of degradation of polysaccharides by free radicals generated from hydrogen peroxide (H2O2). Evidence suggests that free radicals generated from H2O2 can be generated by various mechanisms. It broke glycosidic bonds mainly through hydrogen abstraction, causing the degradation of polysaccharides. Its degradation efficiency is affected by many factors, such as the concentration of polysaccharides and H2O2, temperature and pH. In addition, free radical degradation could change the physicochemical and structural properties of polysaccharides, such as water solubility, thermal stability, molecular weight, monosaccharide composition, apparent morphology, and chain conformation, but it had little effects on the primary structure of polysaccharides. Besides, free radical degradation could also improve the bioactivities of polysaccharides, including antioxidant, antitumor and anticoagulant activities.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Xiong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
39
|
Chen X, You L, Ma Y, Zhao Z, Kulikouskaya V. Influence of UV/H 2O 2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and RAW 264.7 cells responses. Food Chem Toxicol 2021; 153:112246. [PMID: 33940104 DOI: 10.1016/j.fct.2021.112246] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
There are few studies on seaweed polysaccharides with UV/H2O2 treatment, so the aim of this study was to evaluate the effects of UV/H2O2 treatment on physicochemical properties and RAW 264.7 cells responses of polysaccharides from Sargassum fusiforme (PSF). Results showed that the contents of reducing sugar and sulfate in PSF with UV/H2O2 treatment for 2 h increased by 202.86% and 31.77%, respectively, and the contents of total sugar, protein and uronic acid decreased by 14.29%, 57.11% and 43.18% compared with those of original polysaccharides. In addition, UV/H2O2 treatment did not change the monosaccharide types of original polysaccharides, but it could change its monosaccharide composition and surface morphology. Besides, polysaccharides after UV/H2O2 treatment for 0.5-2 h had lower toxicity than original polysaccharides in RAW 264.7 cells. Typically, PSF with UV/H2O2 treatment for 2 h (PSF-T2) could effectively inhibit pro-inflammatory molecules production (including NO, IL-1β, IL-6 and TNF-α), and down-regulate related genes expression (including Tlr4, Irak, Il-1β, Il-6, Il-12 and Tnf-α). Therefore, UV/H2O2 treatment is a potential way to prepare polysaccharide with better anti-inflammatory activity.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China.
| | - Yongxuan Ma
- Guangzhou Liheng Clinical Nutrition Co. Ltd., Guangzhou, 510610, Guangdong, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus. 36F. Skaryna str., Minsk, 220141, Belarus
| |
Collapse
|
40
|
Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction. Int J Biol Macromol 2021; 176:332-341. [PMID: 33556397 DOI: 10.1016/j.ijbiomac.2021.01.216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/24/2022]
Abstract
The properties of pectin extracted from mandarin citrus peels by manosonication extraction (MSp) were systematically studied and compared with pectin obtained by the conventional maceration method (CMp). The yield of MSp (25.5%) was significantly higher than that of CMp (18.3%), while MSp exhibited two Mw fraction distributions. Monosaccharide analysis demonstrated that MSp had more branched RG-I regions (78.3 mol%) than CMp (36.6 mol%) with a high content of arabinose and galactose. The branched-chain morphological characteristics of samples were directly imaged by atomic force microscopy. MSp exhibited a significantly lower degree of methoxylation than CMp by FT-IR and NMR analysis, but X-ray diffraction analysis showed little difference in the level of crystallinity. Moreover, MSp and CMp showed non-Newtonian behaviour, and the increasing order of apparent viscosities was 1.0 w/v% MSp < 1.0 w/v% CMp < 2.0 w/v% CMp < 2.0 w/v% MSp. Thermal analysis and weight loss measurements indicated MSp exhibited greater thermal stability. The results also indicated that both MSp and CMp significantly enhanced the emulsion activity at high concentrations; the emulsions containing 1.5 w/v% pectin showed no phase separation over 21 days, suggesting that MSp could be a potential effective stabiliser in the food and beverage industry.
Collapse
|
41
|
Jiang TJ, Xie C, Peng HD, Lei B, Chen QQ, Li G, Luo CW. Oxygen doped graphitic carbon nitride nanosheets for the degradation of organic pollutants by activating hydrogen peroxide in the presence of bicarbonate in the dark. RSC Adv 2020; 11:296-306. [PMID: 35423051 PMCID: PMC8691115 DOI: 10.1039/d0ra07893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
The development of novel wastewater treatment processes that use heterogeneous catalysts to activate hydrogen peroxide (H2O2) with bicarbonate (HCO3 -) has been a subject of great interest in recent years; however, significant challenges remain, despite research into numerous metal-based catalysts. The work presented herein employed oxygen-doped graphitic carbon nitride (O/g-C3N4) as a non-metal catalyst for activating H2O2 in the presence of HCO3 -, and this method represented the first system capable of removing organic pollutants in the dark, to our knowledge. The catalysts were characterized using several microscopic imaging, spectroscopic, electrochemical, and crystallographic techniques, as well as N2-physorption procedures. Analysis of the results revealed that the O/g-C3N4 catalyst possessed a high specific surface area and many defect sites. Various operational parameters, including the relative amounts of HCO3 -, H2O2, and O/g-C3N4, were systemically investigated. A clear performance enhancement was observed in the degradation of organic contaminants when subjected to the HCO3 --H2O2-O/g-C3N4 system, and this result was ascribed to the synchronous adsorption and chemical oxidation processes. The novel system presented herein represented a new water treatment technology that was effective for removing organic contaminants.
Collapse
Affiliation(s)
- Tian-Jiao Jiang
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Chao Xie
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Huai-De Peng
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Bo Lei
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Qing-Qing Chen
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Gang Li
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Cai-Wu Luo
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Co., Ltd 243000 China
- Key Laboratory of Clean Energy Material, LongYan University 364012 China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 China
| |
Collapse
|
42
|
Yan JK, Wang C, Qiu WY, Chen TT, Yang Y, Wang WH, Zhang HN. Ultrasonic treatment at different pH values affects the macromolecular, structural, and rheological characteristics of citrus pectin. Food Chem 2020; 341:128216. [PMID: 33032253 DOI: 10.1016/j.foodchem.2020.128216] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Ultrasonic degradation has become a promising strategy for producing modified pectin (MP). In this study, the impact of ultrasonic treatment at various pH values (4.0, 7.0, and 10.0) on the macromolecular, structural and rheological characteristics of citrus pectin was investigated. Results demonstrated that ultrasonic irradiation at the higher pH led to larger reductions in the intrinsic viscosity and weight-average molecular weight of pectin. The degradation kinetics of pectin at different pH values under ultrasound well fitted to a second-order reaction kinetics model. Acoustic cavitation, β-elimination, and demethylation led to the breakage of glycosidic linkages of side chains and methoxyl groups of pectin, but did not have noticeable influences on the main chain of pectin. The ultrasonic treatment at a high pH led to an apparent change in the rheological characteristics of pectin. Therefore, ultrasonic treatment at various pH values can be developed as a viable means to prepare desirable MP.
Collapse
Affiliation(s)
- Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chun Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Yi Qiu
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wen-Han Wang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - He-Nan Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
43
|
Yang Y, Chen D, Yu Y, Huang X. Effect of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin. Food Sci Nutr 2020; 8:4266-4275. [PMID: 32884707 PMCID: PMC7455947 DOI: 10.1002/fsn3.1722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023] Open
Abstract
The effects of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin were studied. Results indicated that intrinsic viscosity ([η]) and viscosity average molecular weight ([M v]) decreased with the increased time from 0 to 30 min but increased when the duration prolonged to 45 min. The change of apparent viscosity with shear rate of all pectin solutions could be well described by Sisko model (R 2 ≥ .996) and the infinite-rate viscosity (η ∞) and the consistency coefficient (k s) values decreased after ultrasonic treatment. Ultrasonic treatment could have an effect on dynamic moduli and activation energy of sugar beet pectin solutions. Particle size of pectin emulsions decreased and absolute zeta potential increased with increased time from 0 to 20 min. Excessive ultrasonic duration (30 and 45 min) could result in the aggregation of oil droplets in pectin emulsion and decrease in emulsifying stability. It could be concluded that ultrasonic treatment could affect the rheological and emulsifying properties of sugar beet pectin. The results have important implications for understanding the ultrasonic modification of sugar beet pectin.
Collapse
Affiliation(s)
- Yang Yang
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Dongdong Chen
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Yang Yu
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Xin Huang
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingChina
- National Engineering Laboratory for Crop Efficient Water Use and Disaster MitigationKey Laboratory of Dryland Agriculture and Key Laboratory for Prevention and Control of Residual Pollution in Agricultural FilmMinistry of AgricultureBeijingChina
| |
Collapse
|
44
|
Yang Y, Zheng Z, Zhang D, Zhou C, Zhang X. Ultrasonic degradation of nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29143-29155. [PMID: 32424764 DOI: 10.1007/s11356-020-09040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA), two highly toxics and carcinogenic disinfection by-products, cannot be efficiently removed by conventional water treatment processes, while the ultrasound treatment was developed as a promising alternative. In this work, nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA) are degraded by ultrasound treatment. Greater than 99% of NDPA and NDBA mixing solution could be decomposed within 60 min at neutral pH under optimal ultrasound power and frequency settings of 100 W and 600 kHz, respectively. Free radical reactions (OH•) played a significant role and the reaction sites were predominately at the bubble interface. The degradation of both NDPA and NDBA exhibited pseudo-first-order degradation kinetics, and the rate constant kapp was influenced by a number of factors including ultrasonic frequency, power, initial concentration, initial pH, various anions and cations frequently present in drinking water, hydroxyl radical scavengers, and water matrices, especially the promoting effect of various anions and cations and water matrices. The results of this study suggest the potential for ultrasound treatment as a method for removing NAms from water.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dongfeng Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Zhou
- Shanghai Municipal Planning & Design Institute Co., Ltd., Shanghai, 200031, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
45
|
Cao J, Yang J, Wang Z, Lu M, Yue K. Modified citrus pectins by UV/H 2O 2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym 2020; 247:116742. [PMID: 32829861 DOI: 10.1016/j.carbpol.2020.116742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Two modified citrus pectins, MCP4 and MCP10, were prepared by UV/H2O2 treatment at pH 4 and pH 10, respectively, and their structures were characterized. MCP10 had a rhamnogalacturonan-I (RG-I) enriched backbone with a high degree of branching (DB ∼61 %) and a low methoxylation degree (24 %). MCP4 had a homogalacturonan enriched backbone with a high degree (46 %) of methoxylation and a low DB (∼41 %) of RG-I branches. MCP10 exhibited a higher anti-inflammatory activity than MCP4 in suppressing the NF-κB expression and the production of pro-inflammatory factors TNF-α and IL-1β of THP-1 cells stimulated by lipopolysaccharide. MCP10 also showed a stronger inhibitory effect on Caco-2 cell proliferation. The stronger bioactivities of MCP10 may be attributable to the abundant branches and the proper length of terminal galactan residues attached to the RG-I domain.
Collapse
Affiliation(s)
- Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China
| | - Kaiting Yue
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| |
Collapse
|
46
|
Cao J, Yang J, Yue K, Wang Z. Preparation of modified citrus pectin (MCP) using an advanced oxidation process with hydroxyl radicals generated by UV-H2O2. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Wang W, Chen W, Kahraman O, Chantapakul T, Ding T, Liu D, Feng H. Manothermosonication (MTS) treatment by a continuous-flow system: Effects on the degradation kinetics and microstructural characteristics of citrus pectin. ULTRASONICS SONOCHEMISTRY 2020; 63:104973. [PMID: 31986328 DOI: 10.1016/j.ultsonch.2020.104973] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Modified pectin (MP) was reported to have increased bioactivities compared with the original one. However, traditional modification methods such as using an acidic solvent with heating are not only costly but causing severe pollution as well. In this study, manothermosonication (MTS) with a continuous-flow system was utilized to modify citrus pectin. The citrus pectin (5 g/L) treated by MTS (3.23 W/mL, 400 kPa, 45 °C) exhibited lower molecular weight (Mw, 248.17 kDa) and PDI (2.76). The pectin treated by MTS (400 KPa, 45 °C, 5 min) exhibited a narrower Mw distribution and lowered more Mw (48.8%) than the ultrasound(US)-treated (23.8%). Pectin degradation data fitted well to kinetic model of 1/Mwt -1/Mw0 = kt (45-65 °C). A lower activation energy of 13.33 kJ/mol was observed in the MTS treatment compared with the US-treated (16.38 kJ/mol). The MTS-treated pectin lowered the degree of methoxylation (DM), mol% of rhamnose and galacturonic acid (GalA) while increased mol% of galactose (Gal), xylose (Xyl), and arabinose (Ara). The 1H and 13C nuclear magnetic resonance showed that MTS could not alter the primary structures of citrus pectin. However, an elevated (Gal + Ara)/Rha and reduced GalA/(Rha + Ara + Gal + Xyl) molar ratios after MTS suggested that MTS resulted in more significant degradation on the main chains and less on the side chains of pectin, in agreement with the result of atomic force microscope. Moreover, the MTS-treated pectin exhibited a higher 1,1-diphenyl-2picryl hydrazyl radical scavenging capacity compared with original pectin.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Weijun Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ozan Kahraman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Thunthacha Chantapakul
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
48
|
Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics. Carbohydr Polym 2020; 230:115647. [DOI: 10.1016/j.carbpol.2019.115647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
|