1
|
Luo SY, Tao JL, Bi YX, Xiao HW, Chen HL, Li XX, Wang YC, Fang XM. Radiofrequency affects the decrystallization efficiency and physicochemical properties of rape honey via crystal structure modification and inactivating enzyme. Food Chem 2025; 463:141202. [PMID: 39303474 DOI: 10.1016/j.foodchem.2024.141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Crystallization degrades the physicochemical properties of honey and reduces consumer acceptance. To address this issue, radiofrequency was developed to investigate the decrystallization efficiency and quality impact mechanism of rape honey. The results showed that radiofrequency significantly decreased the number and size of crystals, leading to shortening the decrystallization time to less than 10 min. The response surface optimization methodology further indicated that the highest decrystallization rate (98.72 ± 0.34 %) and lower 5-Hydroxymethylfurfural (2.45 ± 0.12 mg/kg) contents were obtained. Furthermore, radiofrequency changed the honey from a pseudoplastic into a Newtonian fluid efficiently due to the volumetric heating feature. It is worth noting that the inactivation of glucose oxidase reduced the antibacterial capacity, while the increase in total phenolic and flavonoid contents improved the antioxidant capacity of rape honey. In summary, current findings indicated that radiofrequency is a potential alternative decrystallization technology for water baths.
Collapse
Affiliation(s)
- Shi-Ye Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Jia-Li Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Yan-Xiang Bi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Hua-Lei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Xiang-Xin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Yin-Chen Wang
- Guizhou Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary Medicine, No. 2, Laolipo, Longdongbao, Nanming District, Guiyang 550000, China.
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| |
Collapse
|
2
|
Tarapoulouzi M, Mironescu M, Drouza C, Mironescu ID, Agriopoulou S. Insight into the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023; 12:473. [PMID: 36766000 PMCID: PMC9914568 DOI: 10.3390/foods12030473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Chryssoula Drouza
- Department of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol 3036, Cyprus
| | - Ion Dan Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
3
|
Dallagnol AM, Dallagnol VC, Vignolo GM, Lopes NP, Brunetti AE. Flavonoids and Phenylethylamides Are Pivotal Factors Affecting the Antimicrobial Properties of Stingless Bee Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12596-12603. [PMID: 36154047 DOI: 10.1021/acs.jafc.2c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the recent approval of stingless bee honey to the Argentine Food Code, there are still many gaps in information. Likely, the main reason for this is that multiple ecological and chemical factors influence their production and antimicrobial properties. This work combined metabolomic, microbiological, and physicochemical analyses to characterize the honey ofTetragonisca fiebrigifrom Northeastern Argentina. The antimicrobial activity tests showed that honey samples (n = 24) inhibited some Gram-positive and Gram-negative bacteria at different sensitivity levels. Furthermore, samples selected for their high bioactivity revealed crystallizations, a positive correlation with fungal growth, and the presence of flavonoids. The major polyphenols annotated by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis and supported by metabolomic tools were quercetin 3,4'-dimethyl ether, pachypodol, jaceoside, irigenin trimethyl ether, corymboside, chrysoeriol 7-neohesperidoside, and corymboside. In contrast, samples missing antimicrobial activity did not crystallize, lacked flavonoids, and were enriched in phenylethylamides. Based on these findings, we discuss the significance of flavonoids and phenylethylamides on honey's antimicrobial activity and food quality and how they may indeed reflect essential parameters of the hive, such as microbial balance and eubiosis.
Collapse
Affiliation(s)
- Andrea Micaela Dallagnol
- Laboratorio de Microbiología de Alimentos y Biotecnología Dr. Fernando O. Benassi, Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN, UNaM), Ruta 12, Km 7,5, Posadas CP 3300, Misiones, Argentina
- Instituto de Materiales de Misiones (IMAM, UNaM-CONICET), Felix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| | - Verónica Cristina Dallagnol
- Instituto de Materiales de Misiones (IMAM, UNaM-CONICET), Felix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos (CERELA, CONICET). Chacabuco 145, San Miguel de Tucumán CP 4000, Tucumán, Argentina
| | - Norberto Peporine Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Andrés Eduardo Brunetti
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS, UNaM-CONICET), Félix de Azara 1552, Posadas CP 3300, Misiones, Argentina
| |
Collapse
|
4
|
Peláez-Acero A, Garrido-Islas DB, Campos-Montiel RG, González-Montiel L, Medina-Pérez G, Luna-Rodríguez L, González-Lemus U, Cenobio-Galindo ADJ. The Application of Ultrasound in Honey: Antioxidant Activity, Inhibitory Effect on α-amylase and α-glucosidase, and In Vitro Digestibility Assessment. Molecules 2022; 27:molecules27185825. [PMID: 36144558 PMCID: PMC9504444 DOI: 10.3390/molecules27185825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023] Open
Abstract
In the present study, the effects of ultrasound (10, 20, and 30 min) on the bioactive compounds, antioxidant capacity, enzymatic inhibition, and in vitro digestion of six honey extracts from the Oaxaca state, Mexico, were analyzed. Significant differences were found in each honey extract with respect to the ultrasonic treatment applied (p < 0.05). In the honey extract P-A1 treated with 20 min of ultrasound, the phenols reached a maximum concentration of 29.91 ± 1.56 mg EQ/100 g, and the flavonoids of 1.92 ± 0.01 mg EQ/100 g; in addition, an inhibition of α-amylase of 37.14 ± 0.09% was noted. There were also differences in the phases of intestinal and gastric digestion, presenting a decrease in phenols (3.92 ± 0.042 mg EQ/100 g), flavonoids (0.61 ± 0.17 mg EAG/100 mg), antioxidant capacity (8.89 ± 0.56 mg EAG/100 mg), and amylase inhibition (9.59 ± 1.38%). The results obtained from this study indicate that, in some honeys, the processing method could increase the concentration of bioactive compounds, the antioxidant capacity, and the enzymatic inhibition; however, when subjected to in vitro digestion, the properties of honey are modified. The results obtained could aid in the development of these compounds for use in traditional medicine as a natural source of bioactive compounds.
Collapse
Affiliation(s)
- Armando Peláez-Acero
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Diana Belem Garrido-Islas
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Rafael Germán Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
- Correspondence: (R.G.C.-M.); (A.d.J.C.-G.)
| | - Lucio González-Montiel
- Instituto de Tecnología de los Alimentos, Universidad de la Cañada, Teotitlán de Flores Magón, Oaxaca 68540, Mexico
| | - Gabriela Medina-Pérez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Lorena Luna-Rodríguez
- José Carlos Rodríguez-Figueroa’s Laboratory, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Colonia Vicentina, Mexico City 09340, Mexico
| | - Uriel González-Lemus
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
| | - Antonio de Jesús Cenobio-Galindo
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario s/n Km. 1., Tulancingo Hidalgo 43600, Mexico
- Correspondence: (R.G.C.-M.); (A.d.J.C.-G.)
| |
Collapse
|
5
|
Wu W, Jiang S, Liu M, Tian S. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. ULTRASONICS SONOCHEMISTRY 2021; 80:105833. [PMID: 34798525 PMCID: PMC8605316 DOI: 10.1016/j.ultsonch.2021.105833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
This study was designed to optimize the extraction rate of total polyphenols and ellagic acid from pomegranate flowers. Single factors were investigated for liquid-to-material ratio (5-25), ethanol concentration (20%-60%), sonication time (5-60 min), and sonication power (150-500 W). The level range of the Box-Bokhen design was determined with respect to the single-factor results. The components of each index were normalized using the entropy weighting method for obtaining the comprehensive evaluation value. Under the actual conditions, the final optimization results were 17 for liquid-to-material ratio, 43% for ethanol concentration, 10 min for ultrasonic time, and 300 W for ultrasonic power. The extracts obtained under optimal conditions were tested for the inhibition of Streptococcus mutans and its biofilm, and results showed that pomegranate flowers exerted some inhibitory effects on the bacterium. Phosphomolybdenum and FRAP assays were used, and DPPH, ABTS, and O2- radical scavenging tests were conducted, indicating that pomegranate flower extracts have good antioxidant capacity.
Collapse
Affiliation(s)
- Wenxia Wu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shan Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengmeng Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| |
Collapse
|