1
|
Sanli I, Ozkan G, Şahin-Yeşilçubuk N. Green extractions of bioactive compounds from citrus peels and their applications in the food industry. Food Res Int 2025; 212:116352. [PMID: 40382027 DOI: 10.1016/j.foodres.2025.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/15/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
Citrus peel is the largest waste by mass of citrus fruit mass in the food industry, and it is specifically composed of valuable bioactive components such as phenolic compounds (naringin and hesperidin, predominantly), dietary fibers, essential oils like limonene and carotenoids. Green extraction methods, which refer to environmentally friendly techniques that minimize solvent use and energy consumption, are beneficial for achieving high efficiency in extracting these bioactive compounds. Therefore, it is critical to extract the bioactive components using ultrasound-assisted, microwave-assisted, enzyme-assisted, CO2 assisted, high intensity pulsed electric field, and so on. Moreover, not only the health benefits of the bioactive components such as anti-inflammatory, anti-cancer, anti-aging, cholesterol reduction effects, but also their potential to be used in functional foods thanks to the functional properties such as gelling agent, emulsifier, pigment and flavor enhancer, antioxidant agent are currently being investigated in the literature. In this review, the extraction of citrus fruits such as lemon, grapefruit, mandarin, orange and pomelo by various green extraction methods and food application studies with their functional properties in recent years have been discussed.
Collapse
Affiliation(s)
- Ilayda Sanli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye.
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye.
| | - Neşe Şahin-Yeşilçubuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye.
| |
Collapse
|
2
|
Sun W, Liu Y, Lei D, Wei L, Guo J. Dynamic changes of drying behavior, physicochemical quality, and volatile oil of Exocarpium citri grandis under different drying temperatures. J Food Sci 2025; 90:e17654. [PMID: 39898963 DOI: 10.1111/1750-3841.17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025]
Abstract
Drying is the primary processing step in Exocarpium citri grandis (ECG), yet its quality changes throughout the drying process have not been elucidated. Dynamic changes of drying behavior, structure, color, active components, antioxidant properties, and volatile oil in ECG under different drying temperatures (50, 60, 70, and 80°C) were investigated, and the quality change mechanism was revealed. Results showed that the moisture ratio decreased rapidly and that structural damage occurred as moisture content decreased from 1.0000 to 0.2175 g/g (on a dry basis, d.b.), which accelerated flavonoids, polysaccharides, volatile oil, and antioxidant activity degradation, whereas levels of naringin and rhoifolin were increased. The above quality change process was accelerated with the increasing temperature. Correlation analysis revealed that active components had a synergistic effect on antioxidant activity, and the total color difference (ΔE) value and that active components could be well fitted by a linear mathematical model with correlation coefficient (R2) of 0.7749-0.9781. Moreover, all the indicators were uniformly quantified using comprehensive evaluation method to obtain a comprehensive score, which was the highest (0.57) at 70°C, with high drying efficiency, well quality, and low energy consumption. The biosynthesis pathway verified that the species of volatile oil components increased, including newly terpenes, alcohols, aldehydes, esters, and others after 0.2175 g/g. This study revealed that the total content of active components in ECG decreased before 0.2175 g/g, and then the metabolite content and species increased during drying, as well as obtained the optimal drying temperature (70°C).
Collapse
Affiliation(s)
- Wenling Sun
- College of Engineering, China Agricultural University, Beijing, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| | - Dengwen Lei
- College of Engineering, China Agricultural University, Beijing, China
| | - Lixuan Wei
- College of Engineering, China Agricultural University, Beijing, China
| | - Jiale Guo
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Barut Gök S, Yıkmış S, Levent O, Bozgeyik E, İlaslan K, Aydın VG. Influence of Ultrasonication and UV-C Processing on the Functional Characteristics and Anticarcinogenic Activity of Blackthorn Vinegar. ACS OMEGA 2024; 9:36699-36709. [PMID: 39220535 PMCID: PMC11360055 DOI: 10.1021/acsomega.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
In recent years, consumer trends have been changing toward fresh food products such as fruit juice, vinegar, etc. that are a good source of bioactive components, high nutritional characteristics, and beneficial microorganisms. Blackthorn (Prunus spinosa L.) vinegar (BV) is one of these nutritious foods. The study aims to examine the efficacy of ultraviolet-C (UV-C) light applied by a modified reactor and ultrasonication on bioactive compounds (total phenolic, total flavonoid, ascorbic acid content, and antioxidant activity) of traditionally produced BV. Furthermore, the volatile organic compound (VOC) profile, hydroxymethylfurfural (HMF) content, cytotoxicity properties, and color were assessed. UV-C light and ultrasonication processes enriched most bioactive components, but these methods did not significantly improve ascorbic acid (p > 0.05) compared to pasteurization. Twenty-seven volatile compounds were analyzed in order to determine the VOC profile. As a result, thermal and nonthermal methods were found to affect the profile significantly (p < 0.05). No significant differences were detected in total soluble solids (4.70-4.77), titratable acidity (3.81-3.87), and pH (3.39-3.41) values. The anticarcinogenic activities of UV-C-treated BVs were more significant than others. Nonthermal treatments were generally better than pasteurization in maintaining and enriching the quality of BV. In this study, UV-C light and ultrasonication technology can be used as an alternative to traditional thermal techniques to improve the quality of BV.
Collapse
Affiliation(s)
- Sıla Barut Gök
- Department
of Food Technology, Tekirdağ Namık
Kemal University, Tekirdağ 59830, Turkey
| | - Seydi Yıkmış
- Department
of Food Technology, Tekirdağ Namık
Kemal University, Tekirdağ 59830, Turkey
| | - Okan Levent
- Department
of Food Engineering, Faculty of Engineering, Inonu University, Malatya 44280, Turkey
| | - Esra Bozgeyik
- Department
of Medical Services and Techniques, Health Services Vocational School, Adıyaman University, Adıyaman 02040, Turkey
| | - Kerem İlaslan
- Department
of Gastronomy and Culinary Arts, School of Applied Sciences, Bahçeşehir University, İstanbul 34353, Turkey
| | - Vahide Gizem Aydın
- Department
of Nutrition and Dietetics, School of Health Sciences, Tekirdağ Namık Kemal University, Tekirdağ 59030, Turkey
| |
Collapse
|
4
|
Yan S, Dong R, Yang J, Wang G. Objective Quantification Technique and Widely Targeted Metabolomics-Based Analysis of the Effects of Different Saccharidation Processes on Preserved French Plums. Molecules 2024; 29:2011. [PMID: 38731502 PMCID: PMC11085051 DOI: 10.3390/molecules29092011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.
Collapse
Affiliation(s)
- Shengkun Yan
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Rong Dong
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiapeng Yang
- School of Control Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Guoqiang Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
5
|
Ahmad H, Islam T, Islam Z, Jubayer F, Rana R. Sonication results in variable quality and enhanced sensory attributes of Adajamir ( Citrus assamensis) juice: A study on an underutilized fruit. Heliyon 2023; 9:e23074. [PMID: 38125547 PMCID: PMC10731235 DOI: 10.1016/j.heliyon.2023.e23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Citrus assamensis, commonly known as Adajamir, is an underutilized fruit with distinctive sensory and nutritional properties. The limited amount of research on this particular citrus type was recognized as one of the research gaps for this study. The objective of this study was to evaluate and compare the impacts of sonication, pasteurization, and thermosonication techniques on the quality and sensory attributes of Adajamir juice. A randomized experimental design was used in the study, wherein the juice underwent three different treatments. The results indicate that there were no significant changes in pH or titratable acidity following all treatments. Yet, notable differences in juice color were observed. The use of sonication and thermosonication resulted in an increase in β-carotenoid levels. Additionally, total phenolic content and antioxidant activities were observed to increase. All three treatments led to a reduction in ascorbic acid levels relative to the control. However, the complete elimination of microbial growth was observed during the thermal treatment. Compared to other approaches, sonication has been shown to be notably more efficacious in enhancing both the flavor and aroma. Sonication has been observed to improve the perceived bitterness to a certain degree. These findings support the potential of sonication as an alternative preservation method for Adajamir juice, offering enhanced quality and sensory acceptance.
Collapse
Affiliation(s)
- Hasan Ahmad
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Tariqul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Zohurul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| | - Fahad Jubayer
- Department of Food Engineering and Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rahmatuzzaman Rana
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet-3100, Bangladesh
| |
Collapse
|
6
|
Shangguan Y, Ni J, Jiang L, Hu Y, He C, Ma Y, Wu G, Xiong H. Response surface methodology-optimized extraction of flavonoids from pomelo peels and isolation of naringin with antioxidant activities by Sephadex LH20 gel chromatography. Curr Res Food Sci 2023; 7:100610. [PMID: 37860143 PMCID: PMC10582393 DOI: 10.1016/j.crfs.2023.100610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, flavonoids were extracted from pomelo peels and naringin was isolated from the flavonoid extract. The effects of extraction parameters, namely, ethanol concentration, solid-to-liquid ratio, and extraction time, on the yield of flavonoids extracted from pomelo peels were analyzed according to the Box-Behnken design of response surface methodology. The experimental conditions for flavonoid extraction were optimized, and naringin was separated from the extracted flavonoids using Sephadex LH-20 column chromatography. Experimental results showed that the influence of factors on the extraction rate of flavonoids from pomelo peels was in the order of ethanol concentration > solid-to-liquid ratio > extraction time, and the optimal extraction parameters were 85% ethanol concentration, 1:20 solid-to-liquid ratio, and 4-h extraction time for extracting flavonoids from pomelo peels. Under these conditions, the yield of flavonoids was 6.07 ± 0.06 mg/g. After three times of extraction, the flavonoid extraction rate reached 96.55%, and the residual naringin in the pomelo peels was 0.017 mg/g, at which point the bitterness in the pomelo peels disappeared. Two components, namely, PF1 and PF2, were separated from the crude flavonoid of pomelo peels through Sephadex LH20 column chromatography. PF2 was identified as naringin by high-performance liquid chromatography tandem mass spectrometry, with a purity of 95.7 ± 0.23%. Both flavonoids and PF2 exhibited good in vitro radicals scavenging activities on DPPH, ABTS, superoxide anion and hydroxyl.
Collapse
Affiliation(s)
- Yuchen Shangguan
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
- Jiangle County Agricultural Products Quality and Safety Inspection Station, Sanming, 353300, China
| | - Jing Ni
- Fisheries College of Jimei University, Xiamen, 361021, China
| | - Lili Jiang
- Xiamen Municipal Southern Ocean Testing Co., L, Xiamen, 361021, China
| | - Yang Hu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Ying Ma
- Fisheries College of Jimei University, Xiamen, 361021, China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, China
| |
Collapse
|
7
|
THE USE OF COLD PRESSING TECHNIQUE ASSOCIATED WITH EMERGING NON-THERMAL TECHNOLOGIES IN THE PRESERVATION OF BIOACTIVE COMPOUNDS IN TROPICAL FRUIT JUICES: AN OVERVIEW. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Gupta AK, Rather MA, Mishra P. Design and development of laboratory scale batch type device for debittering of bitter citrus juice. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
- Department of Life Sciences (Food Technology) Graphic Era (Deemed to be) University Dehradun Uttarakhand India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology Tezpur University Tezpur Assam India
| | - Poonam Mishra
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| |
Collapse
|
9
|
Liu X, Zhang C, Wang H, Wang Y, Zhu D, Liu H. Ultrasonic treatment maintains the flavor of the melon juice. ULTRASONICS SONOCHEMISTRY 2023; 92:106284. [PMID: 36603464 PMCID: PMC9826901 DOI: 10.1016/j.ultsonch.2022.106284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 06/07/2023]
Abstract
Thermal treatment usually leads to the flavor deterioration of melon juice. This study was initiated to evaluate the retention effect of ultrasonic (US) and ultra-high pressure (UHP) on volatile components of melon juice by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS). The electronic nose, electronic tongue, and GC-IMS analysis showed that US was much better way to contain the flavor of melon juice than UHP was does. The correlation coefficient between the US and the control was as high as 0.99. The concentration of characteristic aroma components in melon juice after ultrasonic treatment was 2.77 times and 3.02 times higher than that in the control and UHP, respectively. Moreover, the US treatment gave no significant difference in the total soluble solids, pH, and color of the juice. And it dramatically enhanced the flavor profile of melon juice.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chao Zhang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Hui Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Beijing 100097, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| |
Collapse
|
10
|
Yang F, Shi C, Yan L, Xu Y, Dai Y, Bi S, Liu Y. Low-frequency ultrasonic treatment: A potential strategy to improve the flavor of fresh watermelon juice. ULTRASONICS SONOCHEMISTRY 2022; 91:106238. [PMID: 36436485 PMCID: PMC9703038 DOI: 10.1016/j.ultsonch.2022.106238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/12/2023]
Abstract
A molecular sensory science approach was used to explore the effects of ultrasonic treatment on aroma compounds of watermelon juice. Watermelon juice was submitted to ultrasonic power at 325 W for 20 min. Ultrasonic treatment reduced odor related to cucumber and green descriptors, whilst significantly improved odors related to sweet, floral, and fruity descriptors, thus contributing to the overall flavor of watermelon juice. Compared with untreated watermelon juice, the amount and concentration of volatile compounds in ultrasonicated watermelon juice increased by 82.50% and 111.84%, respectively. Notably, 22 alkene compounds were newly formed in ultrasonicated watermelon juice, which contributed to sweet and fruity aroma of watermelon juice. The findings of the present study suggest that ultrasonic treatment may be a potential method to improve the overall flavor of watermelon juice.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chunhe Shi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lichang Yan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ying Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yixin Dai
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shuang Bi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
11
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
12
|
Yıkmış S, Altıner DD, Ozer H, Levent O, Celik G, Çöl BG. Modeling and Optimization of Bioactive Compounds from Jujube (
Ziziphus jujuba Mill
.) Vinegar using Response Surface Methodology (
RSM
) and Artificial Neural Network (
ANN
): Comparison of Ultrasound Processing and Thermal Pasteurization. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seydi Yıkmış
- Department of Food Technology Tekirdag Namik Kemal University Tekirdag, 59830 Turkey
| | - Dilek Dülger Altıner
- Tourism Faculty, Department of Gastronomy and Culinary Arts Kocaeli University 41000 Kocaeli Turkey
| | - Hayrettin Ozer
- Food Institute ‐ MRC ‐ The Scientific and Technological Research Council of Turkey (TUBITAK) Kocaeli, 41470 Turkey
| | - Okan Levent
- Department of Food Engineering, Faculty of Engineering Inonu University 44280 Malatya Turkey
| | - Guler Celik
- The Scientific and Technological Research Council of Turkey Bursa Test and Analysis Laboratory (TUBITAK BUTAL), Bursa, 16190 Turkey
| | - Başak Gökçe Çöl
- Department of Nutrition and Dietetics İstanbul Gelisim University Avcılar, 34000 Istanbul Turkey
| |
Collapse
|
13
|
A Comparative Study on the Debittering of Kinnow (Citrus reticulate L.) Peels: Microbial, Chemical, and Ultrasound-Assisted Microbial Treatment. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kinnow mandarin (Citrus reticulate L.) peels are a storehouse of well-known bioactive compounds, viz., polyphenols, flavonoids, carotenoids, limonoids, and tocopherol, which exhibit an effective antioxidant capacity. However, naringin is the most predominant bitter flavanone compound found in Kinnow peels that causes their bitterness. It prohibits the effective utilization of peels in food-based products. In the present study, a novel approach for the debittering of Kinnow peels has been established to tackle this problem. A comparative evaluation of the different debittering methods (chemical, microbial, and ultrasound-assisted microbial treatments) used on Kinnow peel naringin and bioactive compounds was conducted. Among the chemical and microbial method; solid-state fermentation with A. niger led to greater extraction of naringin content (7.08 mg/g) from kinnow peels. Moreover, the numerical process optimization of ultrasound-assisted microbial debittering was performed by the Box–Behnken design (BBD) of a response surface methodology to maximize naringin hydrolysis. Among all three debittering methods, ultrasound-assisted microbial debittering led to a greater hydrolysis of naringin content and reduced processing time. The optimum conditions were ultrasound temperature (40 °C), time (30 min), and A. niger koji extract (1.45%) for the maximum extraction rate of naringin (11.91 mg/g). These debittered Kinnow peels can be utilized as raw material to develop therapeutic food products having a high phytochemical composition without any off-flavors or bitterness.
Collapse
|
14
|
Yıkmış S, Erdal B, Bozgeyik E, Levent O, Yinanç A. Evaluation of purple onion waste from the perspective of sustainability in gastronomy: Ultrasound-treated vinegar. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Erdal B, Yıkmış S, Demirok NT, Bozgeyik E, Levent O. Effects of Non-Thermal Treatment on Gilaburu Vinegar ( Viburnum opulus L.): Polyphenols, Amino Acid, Antimicrobial, and Anticancer Properties. BIOLOGY 2022; 11:biology11060926. [PMID: 35741447 PMCID: PMC9220034 DOI: 10.3390/biology11060926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In this study, traditionally produced vinegar made from gilaburu (C-GV) and thermally pasteurized gilaburu vinegar (P-GV), and (ultrasound-treated gilaburu vinegar (UT-GV) were evaluated. At the same time, ultrasound treatment enriched 11 phenolic compounds (gallic acid, protocatechuic acid, hydroxybenzoic acid, vanillic acid, p-coumaric acid, rutin, ferulic acid, o-coumaric acid, neohesperidin, quercetin, trans-cinnamic). Ultrasound showed different effects on free amino acids and volatile profiles. In general, ultrasound showed more positive results than thermal pasteurization. Six important minerals (Ca, Fe, K, Mg, Mn, and Zn) were detected in gilaburu vinegar, and ultrasound treatment increased the Fe content. Gilaburu vinegar, prepared by different methods, had potential antibacterial and anti-cancer activity. Abstract Gilaburu (Viburnum opulus L.) is an important fruit that has been studied in recent years due to its phytochemicals and health benefits. In this study, traditionally produced vinegar made from gilaburu fruit (C-GV) was evaluated. Vinegar with higher levels of bioactive components optimized by response surface methodology (RSM) was also produced using ultrasound (UT-GV). The maximum optimization result for the bioactive components was achieved at 14 min and 61.2 amplitude. The effectiveness of thermal pasteurization (P-GV) on gilaburu vinegar was evaluated. An increase was detected for every organic acid with ultrasound treatment. In the UT-GV and C-GV samples, arabinose was present, which is useful for stimulating the immune system. Gilaburu vinegar samples contained 29–31 volatile compounds. The smallest amount of volatile compounds was found in P-GV (1280.9 µg/kg), and the largest amounts of volatile compounds were found in C-GV (1566.9 µg/kg) and UT-GV (1244.10 µg/kg). In the UT-GV sample, Fe was increased, but Ca, K, Mg, and Mn were decreased. A total of 15 polyphenols were detected in C-GV, P-GV, and UT-GV samples, and gallic acid was the most common. A total of 17 free amino acids were detected in gilaburu vinegar samples. Ultrasound provided enrichment in total phenolic compounds and total free amino acids. All three vinegar samples had good antimicrobial activity against pathogens. The efficacy of C-GV, P-GV, and UT-GV samples against colon and stomach cancer was determined, but there were no significant differences between them. As a result, ultrasound treatment is notable due to its antimicrobial and anticancer activity, especially for the enrichment of phenolic compounds and amino acids in gilaburu vinegar.
Collapse
Affiliation(s)
- Berna Erdal
- Department of Medical Microbiology, Tekirdag Namik Kemal University, Tekirdag 59830, Turkey;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namık Kemal University, Tekirdag 59830, Turkey
- Correspondence:
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namik Kemal University, Tekirdag 59030, Turkey;
| | - Esra Bozgeyik
- Vocational School of Health Services, Adiyaman University, Adiyaman 02040, Turkey;
| | - Okan Levent
- Department of Food Engineering, Faculty of Engineering, Inonu University, Malatya 44280, Turkey;
| |
Collapse
|
16
|
Yıkmış S, Ozer H, Levent O, Çöl BG, Erdal B. Effect of thermosonication and thermal treatments on antidiabetic, antihypertensive, mineral elements and in vitro bioaccessibility of bioactive compounds in freshly squeezed pomegranate juice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|