1
|
Soyama H, Hiromori K, Shibasaki-Kitakawa N. Simultaneous extraction of caffeic acid and production of cellulose microfibrils from coffee grounds using hydrodynamic cavitation in a Venturi tube. ULTRASONICS SONOCHEMISTRY 2025; 118:107370. [PMID: 40288159 PMCID: PMC12056391 DOI: 10.1016/j.ultsonch.2025.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Large quantities of spent coffee grounds (SCGs) are produced daily across the globe, accumulating as industrial waste in factories. Developing a process that both extracts high-value components and utilizes the bulk material would offer significant academic and industrial advantages. This study explores the use of hydrodynamic cavitation, which utilizes the chemical and physical effects produced by bubble collapse, for high-efficiency, continuous processing. The optimization of cavitation conditions was conducted by measuring the aggressive intensity of hydrodynamic cavitation within a Venturi tube. Then, unbrewed coffee grounds was processed by hydrodynamic cavitation to obtain stable results, as caffeic acid in SCGs varied depending on how the coffee was brewed. It was revealed that the hydrodynamic cavitation in the Venturi tube increased extraction rate of coffeic acid and simultaneously generates cellulose microfibrils. Note that the upstream pressure of the Venturi tube was 3.4 MPa, which was generated by a screw pump, and the aggressive intensity of the hydrodynamic cavitation was enhanced by optimizing the downstream pressure of the Venturi tube. The type of cavitation, closely linked to the aggressive intensity, was also analyzed through high-speed photography.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Kousuke Hiromori
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Naomi Shibasaki-Kitakawa
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Jia X, Zhang S, Tang Z, Xue K, Chen J, Manickam S, Lin Z, Sun X, Zhu Z. Investigations on cavitation flow and vorticity transport in a jet pump cavitation reactor with variable area ratios. ULTRASONICS SONOCHEMISTRY 2024; 108:106964. [PMID: 38943849 PMCID: PMC11260583 DOI: 10.1016/j.ultsonch.2024.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Hydrodynamic cavitation (HC) has emerged as a promising technology for water disinfection. Interestingly, when subjected to specific cavitation pressures, jet pump cavitation reactors (JPCRs) exhibit effective water treatment capabilities. This study investigated the cavitation flow and vorticty transport in a JPCR with various area ratios by utilizing computational fluid dynamics. The results reveal that cavitation is more likely to occur within the JPCR as the area ratio becomes smaller. While as the area ratio decreases, the limit flow ratio also decreases, leading to a reduced operational range for the JPCR. During the cavitation inception stage, only a few bubbles with limited travel distances are generated at the throat inlet. A stable cavitation layer developed between the throat and downstream wall during the limited cavitation stage. In this phase, the primary flow carried the bubbles towards the outlet. In addition, it was found that the vortex stretching, compression expansion, and baroclinic torque terms primarily influence the vorticity transport equation in this context. This work may provide a reference value to the design of JPCRs for water treatment.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuaikang Zhang
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenhe Tang
- Hangzhou Chinen Turbomachinery Co., Ltd., Hangzhou 310018, China
| | - Kuanrong Xue
- Shanghai Zonepic Chemical Technology Co., Ltd., Shanghai 200000, China
| | - Jingjing Chen
- Hangzhou Chinen Turbomachinery Co., Ltd., Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Zhe Lin
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Xia G, You W, Manickam S, Yoon JY, Xuan X, Sun X. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2024; 105:106849. [PMID: 38513544 PMCID: PMC11636836 DOI: 10.1016/j.ultsonch.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the "simplified flow field strategy" and the Q-criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the Q-criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.
Collapse
Affiliation(s)
- Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
4
|
Zhang X, Lin R, Zhang L, Chen J, Li M, Wang Y. Numerical investigation of effect of geometric parameters on performance of rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2024; 103:106790. [PMID: 38335836 PMCID: PMC10865477 DOI: 10.1016/j.ultsonch.2024.106790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The objective of this paper is to discuss the influence of geometric parameters on the performance of the rotational hydrodynamic cavitation reactor (RHCR) using numerical method. The novel RHCR is implemented by modifying a centrifugal impeller into a new one using the annular slit constriction (ASC) with circumferentially distributed blind holes. The cavitation intensity and cavitation generation rate are selected to evaluate the cavitation performance, the head is used to assess conveying performance, and the entropy generation theory is used to evaluate the energy loss in the impeller. The effect of the axial width, radial length and radial position of the ASC on the cavitating flow of the RHCR is investigated by CFD method. The results indicate that three patterns of cavitation are induced in the RHCR, including separation cavitation, vortex cavitation and shear cavitation. The axial width, radial length and radial position of the ASC are the important geometric parameter that affect the performance of the RHCR. A small width is superior to a large width in terms of cavitation performance, although the conveying performance suffers as a result. The energy loss in the impeller initially increases and then decreases as the width decreases. Both a reduction in radial length and radial position leads to higher cavitation and conveying capacity, accompanying slight increase in energy loss. Compared to the original model, the RHCR with an axial width of 3 mm, a radial length of 17 mm, and a radial position of 0.541 achieves the highest performance.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Energy and Power Engineering, Xihua University, Chendu 610039, China
| | - Renyong Lin
- Leo Group Pump (zhejiang) Co., LTD, Taizhou 318000, China
| | - Lingbo Zhang
- Leo Group Pump (zhejiang) Co., LTD, Taizhou 318000, China
| | - Jie Chen
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.
| | - Ming Li
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
| | - Yong Wang
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China; Department of Precision Manufacturing Engineering, Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China
| |
Collapse
|
5
|
Soyama H, Liang X, Yashiro W, Kajiwara K, Asimakopoulou EM, Bellucci V, Birnsteinova S, Giovanetti G, Kim C, Kirkwood HJ, Koliyadu JCP, Letrun R, Zhang Y, Uličný J, Bean R, Mancuso AP, Villanueva-Perez P, Sato T, Vagovič P, Eakins D, Korsunsky AM. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging. ULTRASONICS SONOCHEMISTRY 2023; 101:106715. [PMID: 38061251 PMCID: PMC10750113 DOI: 10.1016/j.ultsonch.2023.106715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Xiaoyu Liang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Kajiwara
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | | | | | | | | | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Jozef Uličný
- Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P Mancuso
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany; Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel Eakins
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
6
|
Sun X, Xia G, You W, Jia X, Manickam S, Tao Y, Zhao S, Yoon JY, Xuan X. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2023; 99:106544. [PMID: 37544171 PMCID: PMC10432248 DOI: 10.1016/j.ultsonch.2023.106544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Hydrodynamic cavitation (HC) is widely considered a promising process intensification technology. The novel advanced rotational hydrodynamic cavitation reactors (ARHCRs), with considerably higher performance compared with traditional devices, have gained increasing attention of academic and industrial communities. The cavitation generation unit (CGU), located on the rotor and/or stator of an ARHCR, is utilized to generate cavitation and consequently, its geometrical structure is vital for the performance. The present work studied, for the first time, the effect of the arrangement of CGU on the performance of a representative ARHCR by employing computational fluid dynamics based on the "simplified flow field" strategy. The effect of CGU arrangement, which was neglected in the past, was evaluated: radial offset distance (c), intersection angle (ω), number of rows (N), circumferential offset angle (γ), and radial spacing (r). The results indicate that the CGU, with an arrangement of a low ω and moderate c, N, γ, and r, performed the highest cavitation efficiency. The corresponding reasons were analyzed by combining the flow field and cavitation pattern. Moreover, the results also exposed a weakness of the "simplified flow field" strategy which may induce the unfavorable "sidewall effect" and cause false high-pressure region. The findings of this work may provide a reference value to the design of ARHCRs.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xiaoqi Jia
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
7
|
Pereira TC, Flores EMM, Abramova AV, Verdini F, Calcio Gaudino E, Bucciol F, Cravotto G. Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water. ULTRASONICS SONOCHEMISTRY 2023; 95:106388. [PMID: 37011519 PMCID: PMC10457580 DOI: 10.1016/j.ultsonch.2023.106388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10-6 mol L-1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10-6 S cm-1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10-3 mol H2O2 L-1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10-3 molH2O2L-1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.
Collapse
Affiliation(s)
| | | | - Anna V Abramova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Federico Verdini
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | | | - Fabio Bucciol
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, Turin University, Turin, Italy
| |
Collapse
|
8
|
A Review on Rotary Generators of Hydrodynamic Cavitation for Wastewater Treatment and Enhancement of Anaerobic Digestion Process. Processes (Basel) 2023. [DOI: 10.3390/pr11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The issue of ever-increasing amounts of waste activated sludge (WAS) produced from biological wastewater treatment plants (WWTPs) is pointed out. WAS can be effectively reduced in the anaerobic digestion (AD) process, where methanogens break down organic matter and simultaneously produce biogas in the absence of oxygen, mainly methane and CO2. Biomethane can then be effectively used in gas turbines to produce electricity and power a part of WWTPs. Hydrodynamic cavitation (HC) has been identified as a potential technique that can improve the AD process and enhance biogas yield. Rotary generators of hydrodynamic cavitation (RGHCs) that have gained considerable popularity due to their promising results and scalability are presented. Operation, their underlying mechanisms, parameters for performance evaluation, and their division based on geometry of cavitation generation units (CGUs) are presented. Their current use in the field of wastewater treatment is presented, with the focus on WAS pre/treatment. In addition, comparison of achieved results with RGHCs relevant to the enhancement of AD process is presented.
Collapse
|
9
|
Song Y, Hou R, Zhang W, Liu J. Hydrodynamic cavitation as an efficient water treatment method for various sewage:- A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:302-320. [PMID: 35906909 DOI: 10.2166/wst.2022.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the development of industry and the rapid growth of population, the current water treatment technologies face many challenges. Hydrodynamic cavitation as a green and efficient means of water treatment has attracted much attention. During the hydrodynamic cavitation, enormous energy could be released into the surrounding liquid which causes thermal effects (local hotspots with 4600 K), mechanical effects (pressures of 1500 bar) and chemical effects (hydroxyl radicals). These conditions can degrade bacteria and organic substance in sewage. Moreover, the combination of hydrodynamic cavitation and other water treatment methods can produce a coupling effect. In this review, we summarize the methods of hydrodynamic cavitation and the performance of water treatment for different types of sewage. The application of hydrodynamic cavitation reactors with different structures in water treatment are also evaluated and discussed. The design and optimization of high-performance hydrodynamic cavitation reactor are the most crucial issues for the application of hydrodynamic cavitation in water treatment. Finally, recommendations are provided for the future progress of hydrodynamic cavitation for water treatment.
Collapse
Affiliation(s)
- Yongxing Song
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ; Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China
| | - Ruijie Hou
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail:
| | - Weibin Zhang
- Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China
| | - Jingting Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|