1
|
Zhang B, Zhang Z, Fang X, Xue R, Chen S, Hou Y. Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube. ULTRASONICS SONOCHEMISTRY 2025; 112:107202. [PMID: 39709738 PMCID: PMC11729677 DOI: 10.1016/j.ultsonch.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT). The bubble number density in the S-S model was improved based on the experimental data of pressure and temperature. Simulation results indicate that there are two shedding modes of cavitation clouds in R134a refrigerant. One is induced by the combined action of reentrant flow and the vortices centrifugal force, while the other is generated by the central jet of the mainstream and the reverse jet produced by the collapsing cavitation bubbles. Furthermore, the thermodynamic effects of the refrigerant exert a certain inhibitory effect on cavitation, revealing the causes of instability in the refrigerant cavitation interface and the shedding characteristics of cavitation clouds. The relationship between local sound speed, flow velocity, and heat conduction rate in the cavitation region was studied, unveiling a time-lag in temperature changes relative to pressure changes in the intensive cavitation region. This study provides insights into the complex cavitation dynamics, especially in R134a refrigerant systems, and provides an approach for accurately predicting and managing cavitation in various industrial applications.
Collapse
Affiliation(s)
- Beile Zhang
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ze Zhang
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xufeng Fang
- R&D Center, Dongfang Electric Machinery Co., Ltd, Deyang 618000, China
| | - Rong Xue
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuangtao Chen
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Hou
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Apte D, Ge M, Zhang G, Coutier-Delgosha O. Numerical investigation of three-dimensional effects of hydrodynamic cavitation in a Venturi tube. ULTRASONICS SONOCHEMISTRY 2024; 111:107122. [PMID: 39504909 PMCID: PMC11570465 DOI: 10.1016/j.ultsonch.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Hydrodynamic Cavitation (HC) is a highly turbulent, unsteady, multi-phase flow that has been useful in many processing applications like wastewater treatment and process intensification and hence needs to be studied in detail. The aim of this study is to investigate the mechanisms driving HC inside a Venturi tube using numerical simulations. The numerical simulations are conducted in the form of both two-dimensional (2D) and three-dimensional (3D) simulations using the Detached Eddy Simulation (DES) model database to simulate the cavitation-turbulence interplay, and the results are validated against high-fidelity experimental data. Initial 2D calculation results show that though URANS models are able to show unsteady cavitation, they are unable to reproduce the correct cavity morphology while the DES models reproduce the cavity morphology accurately. After extending to 3D simulations and the resulting vorticity budget analysis highlight the cavitation-vortex interactions and show the domination of velocity gradients and the growth and shrinking of the fluid element terms over the baroclinic torque for vortex production. Finally, localized scale comparisons are conducted to evaluate the model's ability to simulate the cavitation-turbulence interaction. It is observed that the 3D DES simulations are able to predict accurately the cavitation-turbulence interaction on a localized scale for turbulence properties like Reynolds shear stress and Turbulent Kinetic Energy (TKE), emphasizing the 3D effects of turbulence and their influence on the cavitating flow. However, significant discrepancies continue to exist between the numerical simulations and experiments, near the throat where the numerical simulations predict a thinner cavity. Therefore, this study offers new insights on simulating HC and highlights the bottleneck between turbulence model development and accurate simulations of HC to provide a reference for improving modeling accuracy.
Collapse
Affiliation(s)
- Dhruv Apte
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, 24060, VA, USA.
| | - Mingming Ge
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China.
| | - Guangjian Zhang
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China.
| | - Olivier Coutier-Delgosha
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, 24060, VA, USA; Univ. Lille, CNRS, ONERA, Arts et Metiers ParisTech, Centrale Lille, FRE 2017 - LMFL - Laboratoire de Mecanique des fluides de Lille, Kampe de Feriet, F-59000, Lille, France
| |
Collapse
|
3
|
Wawrzyniak P, Karaszewski W, Różański A. Cavitation and Solid-State Post-Condensation of Polyethylene Terephthalate: Literature Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5637. [PMID: 39597460 PMCID: PMC11595737 DOI: 10.3390/ma17225637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Polyethylene terephthalate (PET) is widely used in bottle production by stretch blow molding processes (SBM processes) due to its cost-effectiveness and low environmental impact. The presented literature review focuses on microcavitation and solid-state post-condensation effects that occur during the deformation of PET in the SBM process. The literature review describes cavitation and microcavitation effects in PET material and solid-state post-condensation of PET on the basis of a three-phase model of the PET microstructure. A three-phase model of PET microstructure (representing the amorphous phase in two ways, depending on the ratio of the trans-to-gauche conformation of the PET macromolecule and the amount of free volume) with a nucleation process, a crystallization process, and the use of positron annihilation lifetime spectroscopy (PALS) to analyze PET microstructure are discussed in detail. The conceptual model developed based on the literature combines solid-state post-condensation with microcavitation via the diffusion of the post-condensation product. This review identifies the shortcomings of the developed conceptual model and presents them with five hypotheses, which will be the basis for further research.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, 84 Ludwika Narbutta Street, 02-524 Warsaw, Poland
| | - Waldemar Karaszewski
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
| | - Artur Różański
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Street, 90-363 Łódz, Poland;
| |
Collapse
|
4
|
Boček Ž, Petkovšek M, Clark SJ, Fezzaa K, Dular M. Kelvin-Helmholtz instability as one of the key features for fast and efficient emulsification by hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 108:106970. [PMID: 38943847 PMCID: PMC11261489 DOI: 10.1016/j.ultsonch.2024.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The paper investigates the oil-water emulsification process inside a micro-venturi channel. More specifically, the possible influence of Kelvin-Helmholtz instability on the emulsification process. High-speed visualizations were conducted inside a square venturi constriction with throat dimensions of 450 µm by 450 µm, both under visible light and X-Rays. We show that cavity shedding caused by the instability results in the formation of several cavity vortices. Their rotation causes the deformation of the oil stream into a distinct wave-like shape, combined with fragmentation into larger drops due to cavitation bubble collapse. Later on, the cavity collapse further disperses the larger drops into a finer emulsion. Thus, it turns out that the Kelvin-Helmholtz instability is similarly characteristic for hydrodynamic cavitation emulsification inside a microchannel as is the Rayleigh-Taylor instability for acoustically driven emulsion formation.
Collapse
Affiliation(s)
- Žan Boček
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Samuel J Clark
- Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 6043, USA
| | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 6043, USA
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Zhang K, Zheng J, Xu Y, Liao Z, Huang Y, Lu L. Enhanced fabrication of size-controllable chitosan-genipin nanoparticles using orifice-induced hydrodynamic cavitation: Process optimization and performance evaluation. ULTRASONICS SONOCHEMISTRY 2024; 106:106899. [PMID: 38733852 PMCID: PMC11103574 DOI: 10.1016/j.ultsonch.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Jianbin Zheng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Zicheng Liao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| |
Collapse
|
6
|
Soyama H, Liang X, Yashiro W, Kajiwara K, Asimakopoulou EM, Bellucci V, Birnsteinova S, Giovanetti G, Kim C, Kirkwood HJ, Koliyadu JCP, Letrun R, Zhang Y, Uličný J, Bean R, Mancuso AP, Villanueva-Perez P, Sato T, Vagovič P, Eakins D, Korsunsky AM. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging. ULTRASONICS SONOCHEMISTRY 2023; 101:106715. [PMID: 38061251 PMCID: PMC10750113 DOI: 10.1016/j.ultsonch.2023.106715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Xiaoyu Liang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Kajiwara
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | | | | | | | | | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Jozef Uličný
- Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P Mancuso
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany; Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel Eakins
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
7
|
Marinoiu A, Raceanu M, Carcadea E, Varlam M. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1233. [PMID: 37049326 PMCID: PMC10096973 DOI: 10.3390/nano13071233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen-doped graphene is currently recognized as one of the most promising catalysts for the oxygen reduction reaction (ORR). It has been demonstrated to act as a metal-free electrode with good electrocatalytic activity and long-term operation stability, excellent for the ORR in proton exchange membrane fuel cells (PEMFCs). As a consequence, intensive research has been dedicated to the investigation of this catalyst through varying the methodologies for the synthesis, characterization, and technologies improvement. A simple, scalable, single-step synthesis method for nitrogen-doped graphene oxide preparation was adopted in this paper. The physical and chemical properties of various materials obtained from different precursors have been evaluated and compared, leading to the conclusion that ammonia allows for a higher resulting nitrogen concentration, due to its high vapor pressure, which facilitates the functionalization reaction of graphene oxide. Electrochemical measurements indicated that the presence of nitrogen-doped oxide can effectively enhance the electrocatalytic activity and stability for ORR, making it a viable candidate for practical application as a PEMFC cathode electrode.
Collapse
Affiliation(s)
- Adriana Marinoiu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mircea Raceanu
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
- Doctoral School, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Elena Carcadea
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| | - Mihai Varlam
- ICSI Energy Department, National Research and Development Institute for Cryogenic and Isotopic Technologies, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
8
|
Study on Cavitation of Port Plate of Seawater Desalination Pump with Energy Recovery Function. Processes (Basel) 2023. [DOI: 10.3390/pr11030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
To address the problem of low integration and efficiency of reverse osmosis desalination system, an energy-recovery type incurve multiple acting pump is developed with integrated functions of a high-pressure pump, energy recovery device and booster pump. In order to determine its flow range and suppress cavitation generation, a mathematical model of the port plate is established, combining the realizable k-ɛ turbulence model and the Schnerr-Sauer cavitation model to obtain the internal flow field characteristics of the port plate. The effects of different rotational speeds and inlet pressures on cavitation were analyzed to obtain the gas volume fraction distribution rules. The design is based on the pressure and mass flow monitoring test device to verify the numerical calculation results. The results show that the experimental and simulation data match accurately, and with the increase in speed and the decrease in inlet pressure, the cavitation phenomenon becomes serious and the flow coefficient is reduced. The optimal working speed of the pump in this paper is 520 r/min and the output flow is 200 L/min. Compared with conventional products, the volume is reduced by more than 40%.
Collapse
|
9
|
Song L, Wei Y, Deng C, Yang J, Sui H, Guo F, Meng L, Zhao X, Wei S, Sun D, Han Z, Xu M, Pan X. A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3684. [PMID: 36834379 PMCID: PMC9959747 DOI: 10.3390/ijerph20043684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/24/2023]
Abstract
In the removal of nitric oxide (NO) by sodium chlorite (NaClO2), the NaClO2 concentration is usually increased, and an alkaline absorbent is added to improve the NO removal efficiency. However, this increases the cost of denitrification. This study is the first to use hydrodynamic cavitation (HC) combined with NaClO2 for wet denitrification. Under optimal experimental conditions, when 3.0 L of NaClO2 with a concentration of 1.00 mmol/L was used to treat NO (concentration: 1000 ppmv and flow rate: 1.0 L/min), 100% of nitrogen oxides (NOx) could be removed in 8.22 min. Furthermore, the NO removal efficiency remained at 100% over the next 6.92 min. Furthermore, the formation of ClO2 by NaClO2 is affected by pH. The initial NOx removal efficiency was 84.8-54.8% for initial pH = 4.00-7.00. The initial NOx removal efficiency increases as the initial pH decreases. When the initial pH was 3.50, the initial NOx removal efficiency reached 100% under the synergistic effect of HC. Therefore, this method enhances the oxidation capacity of NaClO2 through HC, realizes high-efficiency denitrification with low NaClO2 concentration (1.00 mmol/L), and has better practicability for the treatment of NOx from ships.
Collapse
Affiliation(s)
- Liguo Song
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Yuhang Wei
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Chengqi Deng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jingang Yang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Hao Sui
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Feng Guo
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Lingrun Meng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Xingda Zhao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Shiping Wei
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Deping Sun
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Minyi Xu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Xinxiang Pan
- School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
10
|
Influence of Tip Clearance on Cavitation Characteristics of an Inducer of Turbopump: CFD Study. Processes (Basel) 2022. [DOI: 10.3390/pr11010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tip clearance, a compact gap between the inducer blade tip and casing wall, is critical to both the liquid leakage and cavitation-induced forces of a turbopump. In this study, we numerically investigate the effect of tip clearance on the cavitation characteristics of an inducer. Six different tip clearances, 0.1, 0.3, 0.5, 1.0, 1.5, and 2 mm, namely Models A–F, were designed to evaluate the cavitation performance, cavity structure, blade loading, radial force, etc. Model D (1.0 mm) had the relatively highest head coefficient and smallest cavity area on each blade as compared to all other models. The pressure coefficient distribution and blade loading further confirmed that Model D can maintain a higher pressure head and better suppress the cavitation onset than the other models. The radial force signals in the time and frequency domains show that Model D has an intermediate force magnitude with slightly higher noises at the rotating frequency and its harmonic frequencies. Model D also has a relatively smaller vortex region and smaller vortex strength (λ2 criterion). In short, all results show that Model D is the best alternative to balance the complex interactions of the bulk flow and tip leakage flow, compromising the hydraulic head and rotating cavitation.
Collapse
|
11
|
Che X, Guo R, Wu F, Ren H, Zhou W. Simulations of water vaporization in novel internal-intensified spouted beds: Multiphase-flow, heat and mass transfer. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Experiment and Numerical Simulation on Hydraulic Loss and Flow Pattern of Low Hump Outlet Conduit with Different Inlet Water Rotation Speeds. ENERGIES 2022. [DOI: 10.3390/en15155371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The rotation speed of water at the inlet of the low hump outlet conduit has a great effect on its hydraulic performance. Therefore, the influence of different inlet water rotation speeds on hydraulic loss and flow pattern of low hump outlet conduit is studied in this paper. By solving RANS equations and the RNG k-ε turbulence model, the hydraulic loss and 3D flow field of the low hump outlet conduit were calculated under different inlet water rotation speeds. To verify the numerical results, the model tests of low hump outlet conduit with different guide vanes were conducted. The results show that along with the growth of inlet water rotation speed, the hydraulic loss of outlet conduit will firstly decrease by degrees and then increase dramatically, the vortex location moves from the whole bottom of the descent segment to the right bottom of descent segment and the vortex area becomes smaller, the flow pattern of the whole conduit is improved obviously. The hydraulic loss and flow field of numerical simulation are consistent with those of the model test. Because of its great influence on hydraulic performance, inlet water rotation speed must be taken into consideration in the hydraulic optimization design of guide vane and low hump outlet conduit.
Collapse
|
13
|
A Study Comparing the Subsurface Vortex Characteristics in Pump Sumps. ENERGIES 2022. [DOI: 10.3390/en15145049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vortex generated around the suction region of the pump sump causes problems such as damage to the pump, increased maintenance costs, and failure to supply coolant smoothly. Therefore, analyzing vortices is essential in pump sump design. However, the CFD analysis alone is insufficient in pump sumps vortex analysis since the reliability of the results is doubtful in scaled model tests. This study conducted the model test to validate a suitable CFD simulation method by identifying the Type 2 vortex among the three types of subsurface vortices. The dye test and PIV technology were used to visualize the Type 2 subsurface vortices, whereas the PIV vorticity results were then compared to the CFD results. The average vorticity of 60.2 (1/s) was identified as the reference level of Type 2 subsurface vortices formation by mapping the dye test results with the PIV vorticity results. Furthermore, the average vorticities of 84.63 (1/s) and 85.15 (1/s) were recorded in the presence of Type 2 subsurface vortices in PIV and CFD, respectively, and these values can be applied to the designing of pump sumps.
Collapse
|
14
|
Laser Doppler Velocimetry Test of Flow Characteristics in Draft Tube of Model Pump Turbine. Processes (Basel) 2022. [DOI: 10.3390/pr10071323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
For Francis pump turbines, the pressure pulsation characteristics of the draft tube are some of the key concerns during the operation of the units. The pressure pulsation characteristics of the draft tube are directly related to the draft tube spiral cavitating vortex rope. In this paper, the velocity distribution in the draft tube of a Francis pump turbine is tested by means of laser Doppler velocimetry. The velocity pulsation was found to be directly related to the pressure pulsation, while the velocity pulsation was also influenced by the cavitation coefficient. The main frequency of the velocity pulsation was close to the main frequency of the pressure pulsation and became larger as the cavitation factor increased.
Collapse
|
15
|
Ge M, Sun C, Zhang X, Coutier-Delgosha O, Zhang G. Synchrotron X-ray based particle image velocimetry to measure multiphase streamflow and densitometry. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Bayesian Inference of Cavitation Model Coefficients and Uncertainty Quantification of a Venturi Flow Simulation. ENERGIES 2022. [DOI: 10.3390/en15124204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present work, uncertainty quantification of a venturi tube simulation with the cavitating flow is conducted based on Bayesian inference and point-collocation nonintrusive polynomial chaos (PC-NIPC). A Zwart–Gerber–Belamri (ZGB) cavitation model and RNG k-ε turbulence model are adopted to simulate the cavitating flow in the venturi tube using ANSYS Fluent, and the simulation results, with void fractions and velocity profiles, are validated with experimental data. A grid convergence index (GCI) based on the SLS-GCI method is investigated for the cavitation area, and the uncertainty error (UG) is estimated as 1.12 × 10−5. First, for uncertainty quantification of the venturi flow simulation, the ZGB cavitation model coefficients are calibrated with an experimental void fraction as observation data, and posterior distributions of the four model coefficients are obtained using MCMC. Second, based on the calibrated model coefficients, the forward problem with two random inputs, an inlet velocity, and wall roughness, is conducted using PC-NIPC for the surrogate model. The quantities of interest are set to the cavitation area and the profile of the velocity and void fraction. It is confirmed that the wall roughness with a Sobol index of 0.72 has a more significant effect on the uncertainty of the cavitating flow simulation than the inlet velocity of 0.52.
Collapse
|