1
|
Periyasamy T, Asrafali SP, Kim SC, Lee J. Electrochemical Sensing of Metribuzin Utilizing the Synergistic Effects of Cationic and Anionic Bio-Polymers with Hetero-Doped Carbon. Polymers (Basel) 2024; 17:39. [PMID: 39795443 PMCID: PMC11723142 DOI: 10.3390/polym17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ). The PBC-ACH sensor presents multiple advantages, including ease of fabrication, excellent biocompatibility, and low-cost production, making it suitable for various applications. In optimized experimental conditions, the sensor was fabricated by modifying a glassy carbon electrode (GCE) with the PBC-ACH complex, resulting in the creation of a GCE/PBC-ACH electrode. This modified electrode demonstrated the ability to detect MTZ at nanomolar levels, with an LoD of 13.04 nM, showcasing a high sensitivity of 1.40 µA µM-1 cm-2. Moreover, the GCE/PBC-ACH sensor exhibited remarkable selectivity, stability, and reproducibility in terms of its electrochemical performance, which are essential features for reliable sensing applications. The potential mechanism behind the detection of MTZ using the GCE/PBC-ACH sensor was investigated thoroughly, providing insights into its sensing behavior. Additionally, tests on real samples validated the sensor's practicality and efficiency in detecting specific analytes. These findings emphasize the potential of the GCE/PBC-ACH sensor as a highly effective electrochemical sensor, with promising applications in environmental monitoring and other fields requiring precise analyte detection.
Collapse
Affiliation(s)
- Thirukumaran Periyasamy
- Department of Fiber System Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Shakila Parveen Asrafali
- Department of Fiber System Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea; (T.P.); (S.P.A.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea;
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea; (T.P.); (S.P.A.)
| |
Collapse
|
2
|
Yang S, Cui Y, Liu Z, Peng C, Sun S, Yang J, Wang M. Performance of a polymerization-based electrochemically assisted persulfate process on a real coking wastewater treatment. J Environ Sci (China) 2024; 146:149-162. [PMID: 38969443 DOI: 10.1016/j.jes.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2024]
Abstract
Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.
Collapse
Affiliation(s)
- Suiqin Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuhong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland.
| | - Chao Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiquan Sun
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jingjing Yang
- Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Dung NT, Khiem TC, Thao NP, Phu NA, Son NT, Dat TQ, Phuong NT, Trang TT, Nhi BD, Thuy NT, Lin KYA, Huy NN. Enhancing catalytic activity of CuCoFe-layered double oxide towards peroxymonosulfate activation by coupling with biochar derived from durian peel for antibiotic degradation: The role of C=O in biochar and underlying mechanism of built-in electric field. CHEMOSPHERE 2024; 361:142452. [PMID: 38810804 DOI: 10.1016/j.chemosphere.2024.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O2•- and 1O2 in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min-1, which was 14.35 and 2.66 times higher than those in BCD/PMS and CuCoFe-LDO/PMS systems, respectively. The catalytic system exhibited good performance over a wide pH range (3-9) and high degradation efficiency of other antibiotics. Built-in electric field (BIEF) driven by large difference in the work function/Fermi level ratio between CuCoFe-LDO and BCD accelerated continuous electron transfer from CuCoFe-LDO to BCD to result in two different microenvironments with opposite charges at the interface, which enhanced PMS adsorption and activation via different directions. As a non-radical, 1O2 was mainly generated via PMS activation by C=O in BCD. The presence of C=O in BCD resulted in an increase in atomic charge of C in C=O and redistributed the charge density of other C atoms. As a result, strong adsorption of PMS at C atom in C=O and other C with a high positive charge was favorable for 1O2 generation, whereas an enhanced adsorption of PMS at negatively charged C accounted for the generation of •OH and SO4•-. After adsorption, electrons in C of BCD became deficient and were fulfilled with those transferred from CuCoFe-LDO driven by BIEF, which ensured the high catalytic activity of CuCoFe-LDO/BCD. O2•-, on the other hand, was generated via several pathways that involved in the transformation of •OH and SO4•- originated from PMS activation by the transition of metal species in CuCoFe-LDO and negatively charged C in BCD. This study proposed a new idea of fabricating a low-cost metal-LDH and biomass-derived catalyst with a strong synergistic effect induced by BIEF for enhancing PMS activation and antibiotic degradation.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Ta Cong Khiem
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Anh Phu
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Truong Son
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Tran Quang Dat
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Thu Phuong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay, Hanoi, Viet Nam
| | - Tran Thi Trang
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Viet Nam
| | - Bui Dinh Nhi
- Faculty of Chemical and Environmental Technology, Viet Tri University of Industry, 9 Tien Son St., Viet Tri City, Phu Tho Province, Viet Nam
| | - Nguyen Thi Thuy
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kun-Yi Adrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Yea Y, Elanchezhiyan SS, Saravanakumar R, Jagan G, Choi JU, Saravanakumar K, Park CM. All-solid-state Z-scheme ZnFe-LDH/rGO/g-C 3N 5 heterojunction for enhanced sonophotocatalytic degradation of ciprofloxacin: Performance and mechanistic insights. ENVIRONMENTAL RESEARCH 2024; 247:118209. [PMID: 38237757 DOI: 10.1016/j.envres.2024.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
The fabrication of all-solid-state Z-scheme sonophotocatalysts is vital for improving the transfer rate of photogenerated electrons to remove antibiotics present in wastewater. Herein, a novel indirect Z-scheme ZnFe-layered double hydroxide (LDH)/reduced graphene oxide (rGO)/graphitic carbon nitride (g-C3N5) heterojunction was synthesized using a simple strategy. The ZnFe-LDH/rGO/g-C3N5 (ZF@rGCN) ternary composites were systematically characterized using different techniques. Results revealed that the 15%ZF@rGCN catalyst achieved a ciprofloxacin (CIP) degradation efficiency of 95% via the synergistic effect of sonocatalysis and photocatalysis. The improved sonophotocatalytic performance of the ZF@rGCN heterojunction was attributed to an increase in the number of active sites, a Z-scheme charge-transfer channel in ZF@rGCN, and an extended visible light response range. The introduction of rGO further enhanced the charge-transfer rate and preserved the reductive and oxidative sites of the ZF@rGCN system, thereby affording additional reactive species to participate in CIP removal. In addition, owing to its unique properties, rGO possibly increased the absorption of incident light and served as an electronic bridge in the as-formed ZF@rGCN catalyst. Finally, the possible CIP degradation pathways and the sonophotocatalytic Z-scheme charge-migration route of ZF@rGCN were proposed. This study presents a new approach for fabricating highly efficient Z-scheme sonophotocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Yeonji Yea
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - S Sd Elanchezhiyan
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virudhunagar District, Tamil Nadu, India.
| | - R Saravanakumar
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virudhunagar District, Tamil Nadu, India.
| | - Govindan Jagan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Jong Uk Choi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Jin X, Qi B. Activation of peroxydisulfate via BiCoFe-layered double hydroxide for effective degradation of aniline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23979-23994. [PMID: 38436846 DOI: 10.1007/s11356-024-32735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The sulfate radical-based advanced oxidation processes (SR-AOPs) is a promising method for the degradation of pollutants, with the development of highly efficient catalysts for persulfate activation has been widely concerned. The novel BiCoFe-LDH (BCF-x) was synthesized successfully by coprecipitation method, which can activate peroxydisulfate (PDS) efficiently to degrade aniline. Comparative analysis with pure CoFe-LDH revealed a remarkable increase in reaction rate constant by approximately 14.66 times; the degradation rate of aniline (10 mg/L) was 100% in 60 min with the condition of 0.5 g/L BCF-1.5 and 0.5 g/L PDS, due to BCF-1.5 which was characterized as a complex of CoFe-LDH and Bi2O2CO3, promoting electron transport to improve the efficiency of activated PDS. In the reaction system, SO4•-, ·OH, and 1O2 were responsible for the aniline degradation and ·OH was the primary one. Furthermore, this work proposes a reaction electron transfer catalytic mechanism, which provided a new insight and good application prospect for efficient activation of PDS for pollutant degradation.
Collapse
Affiliation(s)
- Yutong Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xinglong Jin
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Buying Qi
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
6
|
Yan M, Li Y, Xu Q, Wei X, Xiao P, Chen F, Yang L, Wu XL. Enhanced electron-transfer for peroxymonosulfate activation by Ni single sites adjacent to Ni nanoparticles. J Colloid Interface Sci 2024; 654:979-987. [PMID: 37898081 DOI: 10.1016/j.jcis.2023.10.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Oriented generation of specific reactive oxygen species (ROS) has been challenging in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). In this work, we constructed a multifunctional catalyst composed of Ni NPs embedded in N-doped carbon nanotubes (NCNTs) with exposed Ni single-atom sites (Ni-NCNTs). The Ni-N4 single sites adjacent to the Ni NPs are more efficient for PMS adsorption and activation, resulting in enhanced production of singlet oxygen (1O2). More interesting, we demonstrated that the superoxide anion radical (O2•-) was generated from 1O2 reduction via the electron transfer from the graphitic-N sites of Ni-NCNTs rather than from O2 reduction or PMS decomposition as reported in previous studies. Thus, Ni-NCNTs can act as both electron acceptor and donor to trigger the cascade production of 1O2 and O2•-, respectively, leading to fast and selective degradation of aqueous organic pollutants. The graphitic-N adjacent to the aromatic π-conjugation of NCNTs facilitated chemisorption of 1O2 onto NCNTs via the strong π*-π interactions, and more importantly, donated the lone pair electrons to trigger the reduction of 1O2 to O2•-. This study unravels the mechanisms for enhanced production of ROS in the nanoconfined Fenton-like systems and shed new light on the application of multifunctional nanocatalyst for rapid wastewater decontamination.
Collapse
Affiliation(s)
- Minjia Yan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qiuyi Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Peiyuan Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Lining Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Bao J, Guo S, Fan D, Cheng J, Zhang Y, Pang X. Sonoactivated Nanomaterials: A potent armament for wastewater treatment. ULTRASONICS SONOCHEMISTRY 2023; 99:106569. [PMID: 37657369 PMCID: PMC10495678 DOI: 10.1016/j.ultsonch.2023.106569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The world is currently facing a critical issue of water pollution, with wastewater being a major contributor. It comes from different types of pollutants, including industrial, medical, agricultural, and domestic. Effective treatment of wastewater requires efficient degradation of pollutants and carcinogens prior to discharge. Commonly used methods for wastewater treatment include filtration, adsorption, biodegradation, advanced oxidation processes, and Fenton oxidation, among others.The sonochemical effect refers to the decomposition, oxidation, reduction, and other reactions of pollutant molecules in wastewater upon ultrasound activation, achieving pollutants removal. Furthermore, the micro-flow effect generated by ultrasonic waves creates tiny bubbles and eddies. This significantly increases the contact area and exchange speed of pollutants and dissolved oxygen, thereby accelerating pollutant degradation. Currently, ultrasonic-assisted technology has emerged as a promising approach due to its strong oxidation ability, simple and cheap equipments, and minimal secondary pollution. However, the use of ultrasound in wastewater treatment has some limitations, such as high energy consumption, lengthy treatment time, limited water treatment capacity, stringent water quality requirements, and unstable treatment effects. To address these issues, the combination of enhanced ultrasound with nanotechnology is proposed and has shown great potential in wastewater treatment. Such a combination can greatly improve the efficiency of ultrasonic oxidation, resulting in an improved performance of wastewater purification. This article presents recent progress in the development of sonoactivated nanomaterials for enhanced wastewater disposal. Such nanomaterials are systematically classified and discussed. Potential challenges and future prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshaung Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
8
|
Liu G, Song C, Huang Z, Jin X, Cao K, Chen F, Jin B, Rao L, Huang Q. Ultrasound enhanced destruction of tetracycline hydrochloride with peroxydisulfate oxidation over FeS/NBC catalyst: Governing factors, strengthening mechanism and degradation pathway. CHEMOSPHERE 2023; 338:139418. [PMID: 37414292 DOI: 10.1016/j.chemosphere.2023.139418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In this study, FeS/N-doped biochar (NBC) derived from the co-pyrolysis of birch sawdust and Mohr's salt was applied to evaluate the efficiency of catalyzed peroxydisulfate (PDS) oxidation for tetracycline (TC) degradation. It is found that the combination of ultrasonic irradiation can distinctly enhance the removal of TC. This study investigated the effects of control factors such as PDS dose, solution pH, ultrasonic power, and frequency on TC degradation. Within the applied ultrasound intensity range, TC degradation increases with increasing frequency and power. However, excessive power can lead to a reduced efficiency. Under the optimized experimental conditions, the observed reaction kinetic constant of TC degradation increased from 0.0251 to 0.0474 min-1, with an increase of 89%. The removal ratio of TC also increased from ∼85% to ∼99% and the mineralization level from 45% to 64% within 90 min. Through the decomposition testing of PDS, reaction stoichiometric efficiency calculation, and electron paramagnetic resonance experiments, it is shown that the increase in TC degradation of the ultrasound-assisted FeS/NBC-PDS system was attributed to the increase in PDS decomposition and utilization, as well as the increase in SO4•- concentration. The radical quenching experiments showed that SO4•-, •OH, and O2•- radicals were the dominant active species in TC degradation. TC degradation pathways were speculated according to intermediates from HPLC-MS analysis. The test of simulated actual samples showed that dissolved organic matter, metal ions, and anions in waters can undercut the TC degradation in FeS/NBC-PDS system, but ultrasound can significantly reduce the negative impact of these factors.
Collapse
Affiliation(s)
- Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Chuangfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Zilin Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Li Rao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
9
|
Liu G, Zhang X, Liu H, He Z, Show PL, Vasseghian Y, Wang C. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. ENVIRONMENTAL RESEARCH 2023; 234:116534. [PMID: 37399983 DOI: 10.1016/j.envres.2023.116534] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Heterogeneous advanced oxidation process has been widely studied as an effective method for removing organic pollutants in wastewater, but the development of efficient catalysts is still challenging. This review summaries the present status of researches on biochar/layered double hydroxides composites (BLDHCs) as catalysts for treatment of organic wastewater. The synthesis methods of layered double hydroxides, the characterizations of BLDHCs, the impacts of process factors influencing catalytic performance, and research advances in various advanced oxidation processes are discussed in this work. The integration of layered double hydroxides and biochar provides synthetic effects for improving pollutant removal. The enhanced pollutant degradation in heterogeneous Fenton, sulfate radical-based, sono-assisted, and photo-assisted processes using BLDHCs have been verified. Pollutant degradation in heterogeneous advanced oxidation processes using BLDHCs is influenced by process factors such as catalyst dosage, oxidant addition, solution pH, reaction time, temperature, and co-existing substances. BLDHCs are promising catalysts due to the unique features including easy preparation, distinct structure, adjustable metal ions, and high stability. Currently, catalytic degradation of organic pollutants using BLDHCs is still in its infancy. More researches should be conducted on the controllable synthesis of BLDHCs, the in-depth understanding of catalytic mechanism, the improvement of catalytic performance, and large-scale application of treating real wastewater.
Collapse
Affiliation(s)
- Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhangxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Sun S, Ren Y, Guo F, Zhou Y, Cui M, Ma J, Han Z, Khim J. Comparison of effects of multiple oxidants with an ultrasonic system under unified system conditions for bisphenol A degradation. CHEMOSPHERE 2023; 329:138526. [PMID: 37019404 DOI: 10.1016/j.chemosphere.2023.138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Bisphenol A (BPA) as a trace contaminant has been reported, due to widespread use in the plastics industry. This study applied the 35 kHz ultrasound (US) to activate four different common oxidants (H2O2, HSO5-, S2O82-, and IO4-) for BPA degradation. With increasing initial concentration of oxidants, the degradation rate of BPA increased. The synergy index confirmed that a synergistic relationship between US and oxidants. This study also examined the impact of pH and temperature. The results showed that the kinetic constants of US, US-H2O2, US-HSO5- and US-IO4-decreased when the pH increased from 6 to 11. The optimal pH for US-S2O82- was 8. Notably, increasing temperature decreased the performance of US, US-H2O2, and US-IO4- systems, while it could increase the degradation of BPA in US-S2O82- and US-HSO5-. The activation energy for BPA decomposition using the US-IO4- system was the lowest, at 0.453nullkJnullmol-1, and the synergy index was the highest at 2.22. Additionally, the ΔG# value was found to be 2.11 + 0.29T when the temperature ranged from 25 °C to 45 °C. The main oxidation contribution is achieved by hydroxyl radicals in scavenger test. The mechanism of activation of US-oxidant is heat and electron transfer. In the case of the US-IO4- system, the economic analysis yielded 271 kwh m-3, which was approximately 2.4 times lower than that of the US process.
Collapse
Affiliation(s)
- Shiyu Sun
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yangmin Ren
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Fengshi Guo
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongyue Zhou
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junjun Ma
- Nanjing Green-water Environment Engineering Limited By Share Ltd. C Building No. 606 Ningliu Road, Chemical Industrial Park, Nanjing, China
| | - Zhengchang Han
- Nanjing Green-water Environment Engineering Limited By Share Ltd. C Building No. 606 Ningliu Road, Chemical Industrial Park, Nanjing, China.
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Yang F, Zhao Y, He L, Wang Z. Activation of peroxymonosulfate by base for degradation of methylene blue: role of bromide ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27306-5. [PMID: 37195600 DOI: 10.1007/s11356-023-27306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Bromide ions are inevitable in aquatic environment and influence the degradation of contaminants in non-radical based advanced oxidation processes, but the role of reactive bromine species (RBS) remain obscure. This study investigated the role of bromide ions in the degradation of methylene blue (MB) during the base/peroxymonosulfate (PMS) process. The formation of RBS as a function of bromide ions were evaluated using a kinetic modelling. Bromide ions were shown to play crucial roles in MB degradation. Increasing the dosage of NaOH and Br- increased the transformation kinetics of MB. However, brominated intermediates which are more toxic than precursor MB were generated in the presence of Br-. The formation of adsorbable organic halides (AOX) was enhanced by elevating the dosage of Br-. The formation of AOX was even more significant in the absence of NaOH, and the AOX values decreased with the increasing alkalinity. The kinetic model indicated that the dominant reactive species formed in the base/PMS/Br- process are 1O2 and HOBr, and Br2 in the Br-/PMS process. Therefore, the influence of bromide ions should be taken into consideration in the application of the base/PMS process for organic matters in bromide-containing natural water. Strategies should be developed to make full use of RBS for the abatement of organic pollutants and to reduce the formation of AOX. This study reveals that in the treatment of saline wastewater by PMS-based processes, increasing the amount of NaOH may be an effective strategy to inhibit the accumulation of AOX.
Collapse
Affiliation(s)
- Fei Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yufeng Zhao
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Lin He
- College of Water Conservancy and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Zhen Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| |
Collapse
|
12
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Zhang J, Zhao Y, Zhang K, Zada A, Qi K. Sonocatalytic degradation of tetracycline hydrochloride with CoFe 2O 4/g-C 3N 4 composite. ULTRASONICS SONOCHEMISTRY 2023; 94:106325. [PMID: 36801673 PMCID: PMC9945770 DOI: 10.1016/j.ultsonch.2023.106325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 02/08/2023] [Indexed: 05/23/2023]
Abstract
In this work, different mass percent ratios of CoFe2O4 coupled g-C3N4 (w%-CoFe2O4/g-C3N4, CFO/CN) nanocomposites were integrated through a hydrothermal process for the sonocatalytic eradication of tetracycline hydrochloride (TCH) from aqueous media. The prepared sonocatalysts were subjected to various techniques to investigate their morphology, crystallinity, ultrasound wave capturing activity and charge conductivity. From the investigated activity of the composite materials, it has been registered that the best sonocatalytic degradation efficiency of 26.71 % in 10 min was delivered when the amount of CoFe2O4 was 25% in the nanocomposite. The delivered efficiency was higher than that of bare CoFe2O4 and g-C3N4. This enriched sonocatalytic efficiency was credited to the accelerated charge transfer and separation of e--h+ pair through the S-scheme heterojunctional interface. The trapping experiments confirmed that all the three species i.e. •OH, h+ and •O2- were involved in the eradication of antibiotics. A strong interaction was shown up between CoFe2O4 and g-C3N4 in the FTIR study to support charge transfer as confirmed from the photoluminescence and photocurrent analysis of the samples. This work will provide an easy approach for fabricating highly efficient low-cost magnetic sonocatalysts for the eradication of hazardous materials present in our environment.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Yue Zhao
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Kai Zhang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000 China; College of Science and Technology, Hebei Agricultural University, Cangzhou 061100 China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| |
Collapse
|