1
|
R M, Sunajadevi KRP. Exploring pseudocapacitive performance in Cr 2CT x/NiFe 2O 4 composites: experimental insights. Dalton Trans 2025; 54:6653-6664. [PMID: 40159844 DOI: 10.1039/d5dt00446b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The growing demand for sustainable and efficient energy storage systems has driven the development of advanced, durable, and cost-effective materials. This study introduces heterostructures of 2D Cr2CTx MXene and NiFe2O4, leveraging their synergistic properties, such as high conductivity, surface termination groups (-OH, -O, and -F), tunable surface chemistry, and rich redox activity. Comprehensive structural and morphological characterization confirms the enhanced functionality of Cr2CTx/NiFe2O4, which exhibits a remarkable specific capacitance of 1719.5 F g-1 with 88% retention over 5000 cycles in a three-electrode system. Additionally, the asymmetric supercapacitor device demonstrates a specific capacitance of 486.66 F g-1, an energy density of 97.66 W h kg-1, and a power density of 1203.95 W kg-1, retaining 94% of its capacitance after 5000 cycles. A plausible charge transfer mechanism in the composite is discussed, providing new insights into the synergistic Cr2CTx/NiFe2O4 heterostructures as high-performance materials for energy storage applications.
Collapse
Affiliation(s)
- Madhushree R
- Department of Chemistry, Christ University, Bengaluru, 560029, India.
| | | |
Collapse
|
2
|
Bouali W, Erk N, Sert B, Harputlu E. Evaluating the simultaneous electrochemical determination of antineoplastic drugs using LaNiO 3/g-C 3N 4@RGH nanocomposite material. Talanta 2024; 278:126486. [PMID: 38944941 DOI: 10.1016/j.talanta.2024.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A novel electrochemical sensor based on LaNiO3/g-C3N4@RGH nanocomposite material was developed to simultaneously determine Ribociclib (RIBO) and Alpelisib (ALPE). Ribociclib and Alpelisib are vital anticancer medications used in the treatment of advanced breast cancer. The sensor exhibited excellent electrocatalytic activity towards the oxidation of RIBO and ALPE, enabling their simultaneous detection. The fabricated sensor was characterized using various techniques, including energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), which confirmed the successful synthesis of the LaNiO3/g-C3N4@RGH composite material. Electrochemical characterization revealed enhanced conductivity and lower resistance of the modified electrode compared to the bare electrode. The developed sensor exhibited high repeatability, reproducibility, stability, and selectivity toward RIBO detection. Furthermore, the sensor displayed high sensitivity with low detection limits of 0.88 nM for RIBO and 6.1 nM for ALPE, and linear ranges of 0.05-6.2 μM and 0.5-6.5 μM, respectively. The proposed electrochemical sensor offers a promising approach for simultaneously determining RIBO and ALPE in pharmaceutical formulations and biological samples with recovery data of 98.7-102.0 %, providing a valuable tool for anticancer drug analysis and clinical research.
Collapse
Affiliation(s)
- Wiem Bouali
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey; Ankara University, The Graduate School of the Health Sciences, 06110, Ankara, Turkey.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Buse Sert
- Tarsus University, Faculty of Engineering, Department of Engineering Fundamental Sciences, 33400, Tarsus, Turkey
| | - Ersan Harputlu
- Tarsus University, Faculty of Engineering, Department of Engineering Fundamental Sciences, 33400, Tarsus, Turkey
| |
Collapse
|
3
|
An S, Nam SN, Choi JS, Park CM, Jang M, Lee JY, Jun BM, Yoon Y. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: An updated review. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134852. [PMID: 38852250 DOI: 10.1016/j.jhazmat.2024.134852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pharmaceuticals, personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have seen a recent sustained increase in usage, leading to increasing discharge and accumulation in wastewater. Conventional water treatment and disinfection processes are somewhat limited in effectively addressing this micropollutant issue. Ultrasonication (US), which serves as an advanced oxidation process, is based on the principle of ultrasound irradiation, exposing water to high-frequency waves, inducing thermal decomposition of H2O while using the produced radicals to oxidize and break down dissolved contaminants. This review evaluates research over the past five years on US-based technologies for the effective degradation of EDCs and PPCPs in water and assesses various factors that can influence the removal rate: solution pH, temperature of water, presence of background common ions, natural organic matter, species that serve as promoters and scavengers, and variations in US conditions (e.g., frequency, power density, and reaction type). This review also discusses various types of carbon/non-carbon catalysts, O3 and ultraviolet processes that can further enhance the degradation efficiency of EDCs and PPCPs in combination with US processes. Furthermore, numerous types of EDCs and PPCPs and recent research trends for these organic contaminants are considered.
Collapse
Affiliation(s)
- Sujin An
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seong-Nam Nam
- Military Environmental Research Center, Korea Army Academy at Yeongcheon, 495 Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, 38900, Republic of Korea
| | - Jong Soo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Shahbaz M, Sabir N, Amin N, Zulfiqar Z, Zahid M. Synthesis and characterization of chromium aluminum carbide MAX phases (Cr xAlC x-1) for potential biomedical applications. Front Chem 2024; 12:1413253. [PMID: 39021388 PMCID: PMC11252007 DOI: 10.3389/fchem.2024.1413253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
MAX phases, characterized as nanolaminates of ternary carbides/nitrides structure, possess a unique combination of ceramic and metallic properties, rendering them pivotal in materials research. In this study, chromium aluminum carbide ternary compounds, Cr2AlC (211), Cr3AlC2 (312), and Cr4AlC3 (413) were successfully synthesized with high purity using a facile and cost-effective sol-gel method. Structural, morphological, and chemical characterization of the synthesized phases was conducted to understand the effects of composition changes and explore potential applications. Comprehensive characterization techniques including XRD for crystalline structure elucidations, SEM for morphological analysis, EDX for chemical composition, Raman spectroscopy for elucidation of vibrational modes, XPS to analyze elemental composition and surface chemistry, and FTIR spectroscopy to ensure the functional groups analysis, were performed. X-ray diffraction analysis indicated the high purity of the synthesized Cr2AlC phase as well as other ternary compounds Cr3AlC2 and Cr4AlC3, suggesting its suitability as a precursor for MXenes production. Additionally, the antimicrobial activity against Candida albicans and biocompatibility assessments against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and HepG2 cell line were investigated. The results demonstrated significant antifungal activity of the synthesized phases against Candida albicans and negligible impact on the viability of E. coli and S. aureus. Interestingly, lower concentrations of Cr2AlC MAX phase induced cytotoxicity in HepG2 cells by triggering intercellular oxidative stress, while Cr3AlC2 and Cr4AlC3 exhibited lower cytotoxicity compared to Cr2AlC, highlighting their potential in biomedical applications.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
- Punjab Institute of Nuclear Medicine (PINUM), Faisalabad, Pakistan
| | - Nadeem Sabir
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Amin
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Zobia Zulfiqar
- Department of Physics, Govt College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Hao X, Shen A, Duan R, Zhang P, Xue L, Zhao X, Wang X, Li X, Yang Y. Fabrication of a porous Urea@MIL-100(Fe)/CI-MCC/SA hydrogel for All-In-One adsorption, removal and fluorescence monitoring of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133326. [PMID: 38150765 DOI: 10.1016/j.jhazmat.2023.133326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In this paper, a novel All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform was generated by microcrystalline cellulose (MCC) functionalized with pH-response probe (CI), MIL-100 (Fe) and sodium alginate (SA), which was as a carrier of urea to adsorb, remove and monitor NO2-. Under acidic condition, the fluorescent hydrogel platform could produce N2, CO2 and H2O through the diazotization and redox reaction between urea and NO2- with a removal efficiency up to 99.8%, and could also character a good adsorption property for NO2- due to the positive charges of protonation (the maximum adsorption capacity was 21.67 mg g-1), and the adsorption kinetics conformed to pseudo-second-order model. By carried out the NO2- removal step in fluorescent hydrogel platform, NO2- could also be detected indirectly by sensing the changes of pH within 15 min. The linear response range was 0-0.005 M, and the detection limit (LOD) was 74 μM. These results demonstrated that this All-In-One Urea@MIL-100(Fe)/CI-MCC/SA hydrogel platform had great potential in environment. This strategy for the removal and monitoring of NO2- could be employed to related applications in water purification and environmental protection. ENVIRONMENTAL IMPLICATION: Nitrite is one of the important indicators of water monitoring, which is harmful to human and environment. The removal and monitoring of nitrite in industrial wastewater and surface water is very important, but there are no studies about it at present. Based on the fact that urea can react with nitrite to produce green products, we synthesized a novel functional hydrogel to achieve adsorption, removal and fluorescence monitoring of nitrite for the first time. Besides, the practicability of the material in environmental water samples was verified through the detection of nitrite in simulated wastewater.
Collapse
Affiliation(s)
- Xiaohui Hao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ao Shen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruochen Duan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panqing Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lingwei Xue
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, Henan Province, China.
| | - Xiuqing Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuebing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xue Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxu Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Yu S, Liu C, Sui M, Wei H, Cheng H, Chen Y, Zhu Y, Wang H, Ma P, Wang L, Li T. Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. ULTRASONICS SONOCHEMISTRY 2024; 102:106714. [PMID: 38113586 PMCID: PMC10772293 DOI: 10.1016/j.ultsonch.2023.106714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.
Collapse
Affiliation(s)
- Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqiang Wei
- The Twelfth Oil Production Plant of Changqing Oilfield Company, Qingyang 745400, China
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujing Chen
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Penglei Ma
- College of Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| |
Collapse
|
7
|
Shanmugam Ranjith K, Majid Ghoreishian S, Han S, Chodankar NR, Seeta Rama Raju G, Marje SJ, Huh YS, Han YK. Synergistic effects of layered Ti 3C 2T X MXene/MIL-101(Cr) heterostructure as a sonocatalyst for efficient degradation of sulfadiazine and acetaminophen in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106570. [PMID: 37678067 PMCID: PMC10495666 DOI: 10.1016/j.ultsonch.2023.106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of ∼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.
Collapse
Affiliation(s)
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Supriya J Marje
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
8
|
Sadeghi Rad S, Khataee A, Arefi-Oskoui S, Sadeghi Rad T, Zarei M, Orooji Y, Gengec E, Kobya M. Carbonaceous CoCr LDH nanocomposite as a light-responsive sonocatalyst for treatment of a plasticizer-containing water. ULTRASONICS SONOCHEMISTRY 2023; 98:106485. [PMID: 37352730 PMCID: PMC10331313 DOI: 10.1016/j.ultsonch.2023.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
The carbonous-based nanocomposites of CoCr layered double hydroxide (LDH) with graphene oxide (GO) and reduced graphene oxide (rGO) were prepared. The successful synthesis of the CoCr LDH in hydrotalcite crystalline structure was deduced from the pattern obtained from X-ray diffraction, and the chemical composition of its surface was checked by X-ray photoelectron spectroscopy. The prosperous decorating of LDH on the sheets of rGO and GO was authenticated by the energy dispersive X-ray spectroscopy analysis and micrographs of scanning electron and transmission electron microscopy. The photo-assisted sonocatalytic activity of the prepared nanocomposites was appraised for the decomposition of dimethyl phthalate (DMP) as a plasticizer. The highest decomposition efficiency of 100% was obtained in the existence of CoCr LDH/rGO nanocomposite (0.5 g/L) during 20 min of reaction time via photo-assisted sonocatalysis. The rGO improved the catalytic activity of the CoCr LDH by increasing the specific surface area from 1.2 m2/g to 4.5 m2/g and reducing the band gap from 1.7 eV to 1.3 eV. Moreover, the results of the colony-forming unit method endorsed antibacterial property improvement of the CoCr LDH via hybridizing with rGO. The results of this research provide an optimistic perspective for applying carbonous-based nanocomposites of CoCr LDH as a novel catalyst with antibacterial properties in photo-assisted sonocatalytic processes.
Collapse
Affiliation(s)
- Samin Sadeghi Rad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Tannaz Sadeghi Rad
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Erhan Gengec
- Department of Environmental Protection Technology, Kocaeli University, 41285 Kartepe, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyzstan
| |
Collapse
|