1
|
Dong H, Liu G, Peng G. Simulation Study on the Dynamics of Cavitation Bubbles in Multi-Frequency Ultrasound. J Biomed Phys Eng 2025; 15:185-198. [PMID: 40259938 PMCID: PMC12009471 DOI: 10.31661/jbpe.v0i0.2410-1841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/22/2025] [Indexed: 04/23/2025]
Abstract
Background High-intensity focused ultrasound (HIFU) therapy is an effective minimally invasive treatment technique. Objective This work aimed to present a theoretical foundation for transient cavitation control in HIFU treatment and investigate cavitation bubbles in multi-frequency ultrasound. Material and Methods In this theoretical study, the nonlinear vibrations of bubbles in different mediums (water, urine, kidney, and muscle) were simulated using Gilmore-Akulichev and modified Keller-Miksis equations. The dynamic changes of bubble radius during irradiation by multi-frequency combined ultrasound were analyzed, and the effects of multi-frequency ultrasound combinations and frequency differences on the maximum and minimum values of bubble expansion radius and bubble collapse time were investigated. Results At the same highest frequency, the triple-frequency produced the largest bubble expansion radius (Rmax) while the single-frequency resulted in the smallest bubble expansion radius (Rmin). At the same lowest frequency, the single-frequency had the biggest bubble expansion radius and the triple-frequency had the smallest bubble expansion radius. Compared to the combination with a large frequency difference at high frequency, the triple-frequency combination with a small frequency difference at low frequency exhibited a noticeably larger Rmax, but Rmin showed the opposite behavior. Rmax/Rmin decreased for the same ultrasonic combination when the medium viscosity increased. The bubble expansion radius ratio Rmax/Rmin was positively correlated with the bubble collapse time. Conclusion There was a strong correlation between the frequency difference and the multi-frequency ultrasound combination and the maximum and minimum values of the cavitation bubble radius and the collapse time.
Collapse
Affiliation(s)
- Hu Dong
- School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
| | - Gang Liu
- School of Information Science and Engineering, Xinyu University, Xinyu, 338004, China
| | - Gaofeng Peng
- School of Information Science and Engineering, Changsha Normal University, Changsha 410100, China
| |
Collapse
|
2
|
Shi X, Yu Z, Liu Z, Cao N, Zhu L, Liu Y, Zhao K, Shi T, Yin L, Fan Z. Scalable, High-Yield Monolayer MXene Preparation from Multilayer MXene for Many Applications. Angew Chem Int Ed Engl 2025; 64:e202418420. [PMID: 39401092 DOI: 10.1002/anie.202418420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
MXene (Ti3C2Tx) is renowned for its exceptional conductivity and hydrophilicity; however, the low yield of monolayers hinders its industrial scalability. Herein, we present a strategy to substantially enhance the monolayer yield by disrupting the hydrogen-bonding cage confinement of multilayer MXene using high-temperature ultrasound, challenging the conventional belief that monolayer MXene can only be prepared at lower temperatures. At approximately 70 °C, the weakened hydrogen bonding between the oxygen-containing terminal groups of multilayer MXene and surrounding water molecules weakens the hydrogen-bond cage confinement. This enables ultrasonic cavitation to generate more microbubbles that penetrate the interlayers of multilayer MXene, resulting in gentle and thorough delamination into larger monolayer nanosheets. Achieving up to a 95 % yield in just tens of minutes, these nanosheets exhibit properties comparable to those produced by traditional ice-bath methods. Furthermore, the high-concentration MXene ink produced on a large scale using this high-yield approach exhibits excellent printing and processing capabilities, and the corresponding products showcase superior infrared stealth and Joule heating characteristics. This work addresses a key technical bottleneck in MXene production, paving the way for its extensive technological and industrial applications.
Collapse
Affiliation(s)
- Xiangxiang Shi
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Yu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zi Liu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ningning Cao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Lin Zhu
- Air Defense and Antimissile School, Air Force Engineering University, Xi'an, 710100, China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ke Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Ting Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhimin Fan
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
3
|
Ji Z, Suo D, Jin J, Liu X, Wang Y, Funahashi S, Li W, Yan T. Numerical investigation of acoustic cavitation characteristics of a single gas-vapor bubble in soft tissue under dual-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 111:107061. [PMID: 39316938 PMCID: PMC11462371 DOI: 10.1016/j.ultsonch.2024.107061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
The viscoelastic tissue under dual-frequency ultrasound excitation affects the acoustic cavitation of a single gas-vapor bubble. To investigate the effect of the cavitation dynamics, the Gilmore-Akulichev-Zener (GAZ) model is coupled with the Peng-Robinson equation of state (PR EOS). Results indicate that the GAZ-PR EOS model can accurately estimate the bubble dynamics by comparing with the Gilmore PR EOS and GAZ-Van der Waals (VDW) EOS model. Furthermore, the acoustic cavitation effect in different viscoelastic tissues is investigated, including the radial stress at the bubble wall, the temperature, pressure, and the number of water molecules inside the bubble. Results show that the creep recovery and the relaxation of the stress caused by viscoelasticity can affect the acoustic cavitation of the bubble, which could inhibit the bubble's expansion and reduce the internal temperature and pressure within the bubble. Moreover, the effect of dual-frequency ultrasound on the cavitation of single gas-vapor bubbles is studied. Results suggest that dual-frequency ultrasound could increase the internal temperature of bubbles, the internal pressure of bubbles, and the radial stress at the bubble wall. More importantly, there is a specific optimal combination of frequencies for particular viscoelasticity by exploring the impact of different dual-frequency ultrasound combinations and tissue viscoelasticity on the acoustic cavitation of a single gas-vapor bubble. In conclusion, this study helps to provide theoretical guidance for dual-frequency ultrasound to improve acoustic chemical and mechanical effects, and further optimize its application in acoustic sonochemistry and ultrasound therapy.
Collapse
Affiliation(s)
- Zhenxiang Ji
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Jin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xinze Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Lei W, Chang S, Tian F, Zou X, Hu J, Qian S. Numerical simulation study on opening blood-brain barrier by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 109:107005. [PMID: 39098097 PMCID: PMC11345312 DOI: 10.1016/j.ultsonch.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Experimental studies have shown that ultrasonic cavitation can reversibly open the blood-brain barrier (BBB) to assist drug delivery. Nevertheless, the majority of the present study focused on experimental aspects of BBB opening. In this study, we developed a three-bubble-liquid-solid model to investigate the dynamic behavior of multiple bubbles within the blood vessels, and elucidate the physical mechanism of drug molecules through endothelial cells under ultrasonic cavitation excitation. The results showed that the large bubbles have a significant inhibitory effect on the movement of small bubbles, and the vibration morphology of intravascular microbubbles was affected by the acoustic parameters, microbubble size, and the distance between the microbubbles. The ultrasonic cavitation can significantly enhance the unidirectional flux of drug molecules, and the unidirectional flux growth rate of the wall can reach more than 5 %. Microjets and shock waves emitted from microbubbles generate different stress distribution patterns on the vascular wall, which in turn affects the pore size of the vessel wall and the permeability of drug molecules. The vibration morphology of microbubbles is related to the concentration, arrangement and scale of microbubbles, and the drug permeation impact can be enhanced by optimizing bubble size and acoustic parameters. The results offer an extensive depiction of the factors influencing the blood-brain barrier opening through ultrasonic cavitation, and the model may provide a potential technique to actively regulate the penetration capacity of drugs through endothelial layer of the neurovascular system by regulating BBB opening.
Collapse
Affiliation(s)
- Weirui Lei
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shuai Chang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang 421001, China.
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
5
|
Sojahrood AJ, Yang C, Counil C, Nittayacharn P, Goertz DE, Exner AA, Kolios MC. Influence of the liquid ionic strength on the resonance frequency and shell parameters of lipid-coated microbubbles. J Colloid Interface Sci 2024; 664:533-538. [PMID: 38484521 DOI: 10.1016/j.jcis.2024.01.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 04/07/2024]
Abstract
The correct measurement of the resonance frequency and shell properties of coated microbubbles (MBs) is essential in understanding and optimizing their response to ultrasound (US) exposure parameters. In diagnostic and therapeutic ultrasound, MBs are typically surrounded by blood; however, the influence of the medium charges on the MB resonance frequency has not been systematically studied using controlled measurements. This study aims to measure the medium charge interactions on MB behavior by measuring the frequency-dependent attenuation of the same size MBs in mediums with different charge densities. In-house lipid-coated MBs with C3F8 gas core were formulated. The MBs were isolated to a mean size of 2.35 μm using differential centrifugation. MBs were diluted to ≈8×105 MBs/mL in distilled water (DW), Phosphate-Buffered Saline solution (PBS1x) and PBS10x. The frequency-dependent attenuation of the MBs solutions was measured using an aligned pair of PVDF transducers with a center frequency of 10MHz and 100% bandwidth in the linear oscillation regime (7 kPa pressure amplitude). The MB shell properties were estimated by fitting the linear equation to experiments. Using a pendant drop tension meter, the surface tension at the equilibrium of ≈6 mm diameter size drops of the same MB shell was measured inside DW, PBS1x and PBS10x. The surface tension at the C3F8/solution interface was estimated by fitting the Young-Laplace equation from the recorded images. The frequency of the peak attenuation at different salinity levels was 13, 7.5 and 6.25 MHz in DW, PBS1x and PBS-10x, respectively. The attenuation peak increased by ≈140% with increasing ion density. MBs' estimated shell elasticity decreased by 64% between DW and PBS-1x and 36% between PBS-1x and PBS-10x. The drop surface tension reduced by 10.5% between DW and PBS-1x and by 5% between PBS-1x and PBS-10x, respectively. Reduction in the shell stiffness is consistent with the drop surface tension measurements. The shell viscosity was reduced by ≈40% between DW and PBS-1x and 42% between PBS-1x and PBS-10x. The reduction in the fitted stiffness and viscosity is possibly due to the formation of a densely charged layer around the shell, further reducing the effective surface tension on the MBs. The changes in the resonance frequency and estimated shell parameters were significant and may potentially help to better understand and explain bubble behavior in applications.
Collapse
Affiliation(s)
- A J Sojahrood
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - C Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - C Counil
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA
| | - P Nittayacharn
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - D E Goertz
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - A A Exner
- Department of Biomedical Engineering, Case Western University, Cleveland, OH, USA
| | - M C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Hamdaoui O. Special Issue on "Innovative insights in sonochemical degradation of emerging pollutants in water". ULTRASONICS SONOCHEMISTRY 2024; 104:106822. [PMID: 38413316 PMCID: PMC10985799 DOI: 10.1016/j.ultsonch.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, Saudi Arabia.
| |
Collapse
|
7
|
Qin D, Lei S, Zhang B, Liu Y, Tian J, Ji X, Yang H. Influence of interactions between bubbles on physico-chemical effects of acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 104:106808. [PMID: 38377805 PMCID: PMC11636826 DOI: 10.1016/j.ultsonch.2024.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.e., the cavitation dynamics, the resultant temperature, pressure and chemical yields within collapsing bubbles), particularly focusing on the influence of the interactions between bubbles. A comprehensive model was developed to simulate the acoustic cavitation dynamics via combining the influences of mass transfer, heat conduction and chemical reactions as well as the interaction effects between bubbles. The results demonstrated that only the large bubble exerts a greater impact on the small one in a two-bubble system. Specifically, within parameter ranges covered this study, there are noticeable decreases in the expansion ratio of the small bubble, the resultant temperature, pressure and molar yields of free radicals, hence weakening the cavitation intensity and cavitation- associated physico-chemical effects. Moreover, the influences of the interactions between bubbles were further assessed quantitatively under various parameters, such as the ultrasound amplitude PA and frequency f, the distance between bubbles d0, the initial radius of the large bubble R20, as well as the liquid properties (e.g., surface tension σ and viscosity μ). It was found that the suppression effect can be amplified when subjected to ultrasound with an increased PA and/or a decreased f, probably due to a stronger cavitation intensity under this condition. Additionally, the suppression effect is also enhanced with a decrease in d0, σ and μ, but with R20 increasing. This study can contribute to deepening knowledge about acoustic cavitation and the resultant physical and/or chemical effects, potentially further facilitating the ultrasound-assisted various applications involving acoustic cavitation.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bingyu Zhang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Yanping Liu
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jian Tian
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Yang Q, Li D, Xiao T, Chang H, Fu X, Wang H. Control mechanisms of different bionic structures for hydrofoil cavitation. ULTRASONICS SONOCHEMISTRY 2024; 102:106745. [PMID: 38163405 PMCID: PMC10801308 DOI: 10.1016/j.ultsonch.2023.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Cavitation limits the efficient and stable operation of rotating machinery. The exploration of control methods for hydrofoil cavitation is important for improving the performance of hydraulic machinery. The leading-edge protuberances of the humpback flipper and the spine structure of the tail fin of sailfish are two common bionic structures for cavitation control; however, the control effects of both have limitations. Accordingly, in this study, a passive control method for hydrofoil cavitation was developed by combining the two bionic structures. With the large eddy simulation method, the cavitation processes of wavy leading-edge hydrofoil, bionic fin spine structure hydrofoil, and novel bionic combined structure hydrofoil were studied under a cavitation number of σ = 0.8. The control mechanisms of the three bionic structures for the hydrofoil cavitation were investigated. The results indicated that the novel bionic combined hydrofoil realised the superposition and complementation of the control effects of the two single bionic structures and achieved a better cavitation inhibition effect, reducing the total volume of cavitation by 43 %. In addition, it enhanced the stability of the flow field and reduced the standard deviation of the pressure coefficient on the suction surface by up to 46.55 %. This research provides theoretical support for the optimisation and modification of the blades of hydraulic machinery, such as propellers and pump turbines.
Collapse
Affiliation(s)
- Qi Yang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Deyou Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Tinglan Xiao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hong Chang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaolong Fu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hongjie Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|