1
|
Khan MU, Yu P, Wu Y, Chen Z, Kong L, Farid A, Cui J, Yang J. Comprehensive review of enzymes (protease, lipase) in milk: Impact on storage quality, detection methods, and control strategies. Compr Rev Food Sci Food Saf 2025; 24:e70164. [PMID: 40260771 DOI: 10.1111/1541-4337.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Enzymes play a crucial role in determining the storage quality of milk by influencing various biochemical processes. Among these enzymes, proteases and lipases are of particular significance due to their impact on flavor, texture, and shelf-life stability. This study offers a thorough examination of proteases and lipases in milk, focusing on their enzymatic activities and mechanisms of action during storage. The present review addresses the techniques for monitoring enzyme activity, including fluorescence-based assays, spectrophotometry, fluorometry, mass spectrometry, biosensors, ELISA, polymerase chain reaction, and next-generation sequencing, emphasizing their sensitivity and applicability in quality control. Furthermore, various strategies for controlling enzyme activity in milk are examined, encompassing both thermal and non-thermal treatments, pH modulation, and the use of enzyme inhibitors. Additionally, the review explores the regulatory frameworks governing enzyme activity in dairy products to ensure compliance with safety and quality standards. A thorough understanding of the dynamics of proteases and lipases in dairy products is crucial for optimizing storage conditions, ensuring product quality, and meeting consumer demands for purity and nutritional integrity.
Collapse
Affiliation(s)
- Mati Ullah Khan
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
| | - Pengfei Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P. R. China
| | - Yuyin Wu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, P. R. China
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, P. R. China
| | - Ling Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P. R. China
| | - Anum Farid
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
| | - Jiaqi Cui
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
| | - Jun Yang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
| |
Collapse
|
2
|
Mao S, Jiang J, Xiong K, Chen Y, Yao Y, Liu L, Liu H, Li X. Enzyme Engineering: Performance Optimization, Novel Sources, and Applications in the Food Industry. Foods 2024; 13:3846. [PMID: 39682920 DOI: 10.3390/foods13233846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This review summarizes the latest progress in enzyme preparation, including enzyme design and modification technology, exploration of new enzyme sources, and application of enzyme preparation in food processing, detection, and preservation. The directed evolution technology improved the stability and catalytic efficiency of enzymes, while enzyme immobilization technology enhanced reusability and industrial applicability. Extremozymes and biomimetic enzymes exhibit excellent performance under harsh conditions. In food processing, enzyme preparation can improve food quality and flavor. In food detection, enzymes combined with immune detection and biosensors realize rapid detection of allergens, pollutants, and pesticide residues. In food preservation, enzymes enhance food quality by extending shelf life and inhibiting microbial growth. In the future, enzyme engineering will be combined with computer-aided design, artificial intelligence, and new material technology to promote intelligent enzyme design and multifunctional enzyme preparation development and help the technological upgrading and sustainable development of the food industry and green chemistry.
Collapse
Affiliation(s)
- Shucan Mao
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jiawen Jiang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ke Xiong
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yiqiang Chen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuyang Yao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Linchang Liu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hanbing Liu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiang Li
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Yıkmış S, Bozgeyik E, Tokatlı Demirok N, İlaslan K, Aadil RM. Bioactive, Pro-Apoptotic-Angiotensin Converting Enzyme Inhibitor Effects and Properties of Ultrasound-Treated Traditional Poppy Vinegar Using the Response Surface Methodology Model. ACS OMEGA 2024; 9:34848-34858. [PMID: 39157087 PMCID: PMC11325416 DOI: 10.1021/acsomega.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Poppy vinegar with functional properties is a fermented product. This study evaluated traditionally produced poppy vinegar. The study was conducted on poppy vinegar to determine the maximum increase in angiotensin converting enzyme (ACE) inhibitory activity %, total phenolic content (TPC), and radical scavenging activity (DPPH) of the vinegar at different combinations of ultrasound treatment duration (2-14 min) and amplitude (40-100%). The optimal parameters obtained using the response surface methodologies (RSM) were the duration of the ultrasound of 5.5 min and the amplitude of the ultrasound at 57%. When the DPPH values, ACE inhibition %, and TPC and DPPH values obtained with the RSM model were compared with the experimental values, the difference was 9.80, 3.0, and 4.6%, respectively, showing good agreement between actual and predicted values. The higher ultrasound intensities and longer treatment times had a significant effect on antioxidant activity. Poppy vinegar samples significantly induced the apoptosis of lung cancer cells, particularly those stored for 6 and 12 months. The amounts of protocatechuic acid, gallic acid, neohesperidin, hydroxybenzoic acid, resveratrol, rutin, trans-cinnamic acid, quercetin, and flavon in poppy vinegar were determined, which decreased significantly as storage time increased. TPC and TFC were determined to be 90.39 mg of GAE/100 mL and 29.86 mg of TEAC/mL, respectively, and there was no significant change in these bioactive compounds after 6 months of storage. The highest value of ACE inhibitory activity was found at the beginning of the storage period. The present study was the first study to examine the bioactive components, ACE inhibition activity, pro-apoptotic activities, and phenolic composition of traditionally produced ultrasound-treated poppy vinegar during storage. The control of production parameters and the design of ideal poppy vinegar fermentation processes could benefit from this research.
Collapse
Affiliation(s)
- Seydi Yıkmış
- Department
of Food Technology, Tekirdag Namık
Kemal University, 59830 Tekirdag, Türkiye
| | - Esra Bozgeyik
- Vocational
School of Health Services, Adiyaman University, 02040 Adiyaman, Türkiye
| | - Nazan Tokatlı Demirok
- Department
of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdag Namık Kemal University, 59030 Tekirdag, Türkiye
| | - Kerem İlaslan
- Department
of Gastronomy and Culinary Arts, School of Applied Sciences, Bahcesehir University, 34000 İstanbul, Turkiye
| | - Rana Muhammad Aadil
- National
Institute of Food Science and Technology, University of Agriculture, 38000 Faisalabad, Pakistan
| |
Collapse
|
4
|
Nagy D, Zsom T, Taczman-Brückner A, Somogyi T, Zsom-Muha V, Felföldi J. Comparison of the Bactericidal Effect of Ultrasonic and Heat Combined with Ultrasonic Treatments on Egg Liquids and Additional Analysis of Their Effect by NIR Spectral Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:4547. [PMID: 39065944 PMCID: PMC11281172 DOI: 10.3390/s24144547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Eggs are a valuable source of nutrients, but they represent a food safety risk due to the presence of microbes. In this work, three types of egg liquids (albumen, yolk and whole egg) previously contaminated with E. coli were treated with ultrasound (US) and a combination of ultrasound and low (55 °C) temperature (US+H). The US treatment parameters were 20 and 40 kHz and 180 and 300 W power and a 30, 45 or 60 min treatment time. The ultrasonic treatment alone resulted in a reduction in the microbial count of less than 1 log CFU, while the US+H treatment resulted in a reduction in CFU counts to below detectable levels in all three egg liquids. Heat treatment and ultrasound treatment had a synergistic effect on E. coli reduction. For all measurements, except for the whole egg samples treated with US, the 20 kHz treated samples showed a significantly (>90% probability level) lower bactericidal effect than the 40 kHz treated samples. PCA and aquaphotometric analysis of NIR spectra showed significant differences between the heat-treated groups' (H and US+H) and the non-heat-treated groups' (US and control) NIR spectra. LDA results show that heat-treated groups are distinguishable from non-heat-treated groups (for albumen 91% and for egg yolk and whole egg 100%).
Collapse
Affiliation(s)
- Dávid Nagy
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Tamás Zsom
- Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45., H-1118 Budapest, Hungary
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Tamás Somogyi
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Viktória Zsom-Muha
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - József Felföldi
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| |
Collapse
|
5
|
Moura RS, Guimarães JT, Scudino H, Freitas MQ, Mársico ET, Esmerino EA, Sant'Anna C, Henrique Campelo Félix P, Pimentel TC, Paulino BN, Cauduro VH, Flores EMM, Ricardo H Lopes J, Cruz AG. Thermosonication as an effective substitution for fusion in Brazilian cheese spread (Requeijão Cremoso) manufacturing: The effect of ultrasonic power on technological properties. ULTRASONICS SONOCHEMISTRY 2024; 105:106867. [PMID: 38581799 PMCID: PMC11015516 DOI: 10.1016/j.ultsonch.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
In this initial study, the impact of thermosonication as an alternative to the traditional fusion in Brazilian cheese spread (Requeijão Cremoso) manufacture was investigated. The effect of ultrasound (US) power was evaluated considering various aspects such as gross composition, microstructure, texture, rheology, color, fatty acid composition, and volatile compounds. A 13 mm US probe operating at 20 kHz was used. The experiment involved different US power levels (200, 400, and 600 W) at 85 °C for 1 min, and results were compared to the conventional process in the same conditions (85 °C for 1 min, control treatment). The texture became softer as ultrasound power increased from 200 to 600 W, which was attributed to structural changes within the protein and lipid matrix. The color of the cheese spread also underwent noticeable changes for all US treatments, and treatment at 600 W resulted in increased lightness but reduced color intensity. Moreover, the fatty acid composition of the cheese spread showed variations with different US power, with samples treated at 600 W showing lower concentrations of saturated and unsaturated fatty acids, as well as lower atherogenicity and thrombogenicity indexes, indicating a potentially healthier product. Volatile compounds were also influenced by US, with less compounds being identified at higher powers, especially at 600 W. This could indicate possible degradation, which should be evaluated in further studies regarding US treatment effects on consumer perception. Hence, this initial work demonstrated that thermosonication might be interesting in the manufacture of Brazilian cheese spread, since it can be used to manipulate the texture, color and aroma of the product in order to improve its quality parameters.
Collapse
Affiliation(s)
- Rafaella S Moura
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Monica Q Freitas
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Eliane T Mársico
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Celso Sant'Anna
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Duque de Caxias, Rio de Janeiro, Brazil
| | | | - Tatiana C Pimentel
- Federal Institute of Science and Technology of Paraná, Paranavaí, PR, Brazil
| | - Bruno N Paulino
- Department of Bromatogical Analysis, Federal University of Bahia, Bahia, Brazil
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, RS, Brazil.
| | - José Ricardo H Lopes
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|