1
|
Murphy C, Gornés Pons G, Keogh A, Ryan L, McCarra L, Jose CM, Kesar S, Nicholson S, Fitzmaurice GJ, Ryan R, Young V, Cuffe S, Finn SP, Gray SG. An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2023; 11:2576. [PMID: 37761019 PMCID: PMC10526426 DOI: 10.3390/biomedicines11092576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 09/29/2023] Open
Abstract
The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Ciara Murphy
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
| | - Glòria Gornés Pons
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Faculty of Biology, University of Barcelona, 08025 Barcelona, Spain
| | - Anna Keogh
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Lorraine McCarra
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Chris Maria Jose
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Shagun Kesar
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Gerard J. Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Sinead Cuffe
- HOPE Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Biological Sciences, Technological University Dublin, D07 XT95 Dublin, Ireland
| |
Collapse
|
2
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
3
|
Agrawal A, Datta C, Panda CK, Pal DK. Association of beta-catenin and CD44 in the development of renal cell carcinoma. Urologia 2020; 88:125-129. [PMID: 33300451 DOI: 10.1177/0391560320980672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION AND OBJECTIVE Renal cell carcinoma (RCC) accounts for approximately 3% of all cancers. Approximately 25%-30% of patients present with metastatic disease at the time of diagnosis, and metastatic RCC is a treatment-resistant malignancy. Altered expression of cell adhesion molecules such as CD44 on tumor cells suggests a pathogenetic mechanism for tumor metastasis and may provide prognostic information for particular tumors. These cell matrix interactions of CD44 play a role in tumor cell invasion and metastasis. The Wnt/beta-catenin pathway turned out to be a promising target as it is involved in the regulation of cell proliferation, differentiation and apoptosis induction. METHOD In this study, the expression of beta-catenin and CD44 was analyzed in primary renal cell carcinoma (RCC) samples to understand their association with development of the disease. For this purpose, immunohistochemical expression analysis of beta-catenin and CD44 was performed in 30 primary RCC histological samples and normal kidney tissues in different subtypes at different clinical stages of Indian patients (year: 2017-2019). RESULT Most of the patients who presented were diagnosed as clear cell carcinoma and it was observed that expression of CD44 was high in patients with high stage tumors. Also beta-catenin was increased in advanced grade tumors, but there was insignificant correlation between high expression of molecules and survival or recurrence of disease. CONCLUSION Both cd44 and beta-catenin activation was noted in patients with clear cell carcinoma, more in advanced tumors. Both can be promising targets for treatment in clear cell RCCs.
Collapse
Affiliation(s)
- Akash Agrawal
- Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Jin Y, Liu J, Liu Y, Liu Y, Guo G, Yu S, An R. Oxymatrine Inhibits Renal Cell Carcinoma Progression by Suppressing β-Catenin Expression. Front Pharmacol 2020; 11:808. [PMID: 32581789 PMCID: PMC7289957 DOI: 10.3389/fphar.2020.00808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/18/2020] [Indexed: 01/17/2023] Open
Abstract
Aims Oxymatrine (OMT) has been identified to possess immunomodulatory, antiinflammatory and anticancer properties. This study aimed to investigate its precise function and the underlying molecular mechanisms in renal cell carcinoma progression. Methods The antineoplastic effect of oxymatrine was investigated by CCK-8 assay, cell cycle analysis, apoptosis assay, wound healing experiment, transwell assay, and drug-sensitivity analysis in renal cancer cells following oxymatrine treatment. The modulation of oxymatrine on β-catenin was analyzed through western blot and immunofluorescence assay. β-catenin overexpression was employed to determine the key role of β-catenin in oxymatrine-inhibited renal cell carcinoma in vitro. In addition, animal model was established to investigate the effect of oxymatrine on tumor growth in vivo. Results Oxymatrine inhibited renal cell carcinoma progression in vitro, including cell proliferation, apoptosis, migration, invasion and chemotherapy sensitivity. Further mechanistic studies demonstrated that oxymatrine exerted its antineoplastic effect through suppressing the expression of β-catenin. Moreover, in nude mice model, oxymatrine exhibited remarkable inhibition of tumor growth, which was consistent with our in vitro results. Conclusions Our findings illuminate oxymatrine as an effective antitumor agent in renal cell carcinoma, and suggest it a promising therapeutic application in renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Yinshan Jin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiannan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yadong Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiying Guo
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiliang Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Hashemi S, Fernandez Martinez JL, Saligan L, Sonis S. Exploring Genetic Attributions Underlying Radiotherapy-Induced Fatigue in Prostate Cancer Patients. J Pain Symptom Manage 2017; 54:326-339. [PMID: 28797855 DOI: 10.1016/j.jpainsymman.2017.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
CONTEXT Despite numerous proposed mechanisms, no definitive pathophysiology underlying radiotherapy-induced fatigue (RIF) has been established. However, the dysregulation of a set of 35 genes was recently validated to predict development of fatigue in prostate cancer patients receiving radiotherapy. OBJECTIVES To hypothesize novel pathways, and provide genetic targets for currently proposed pathways implicated in RIF development through analysis of the previously validated gene set. METHODS The gene set was analyzed for all phenotypic attributions implicated in the phenotype of fatigue. Initially, a "directed" approach was used by querying specific fatigue-related sub-phenotypes against all known phenotypic attributions of the gene set. Then, an "undirected" approach, reviewing the entirety of the literature referencing the 35 genes, was used to increase analysis sensitivity. RESULTS The dysregulated genes attribute to neural, immunological, mitochondrial, muscular, and metabolic pathways. In addition, certain genes suggest phenotypes not previously emphasized in the context of RIF, such as ionizing radiation sensitivity, DNA damage, and altered DNA repair frequency. Several genes also associated with prostate cancer depression, possibly emphasizing variable radiosensitivity by RIF-prone patients, which may have palliative care implications. Despite the relevant findings, many of the 35 RIF-predictive genes are poorly characterized, warranting their investigation. CONCLUSION The implications of herein presented RIF pathways are purely theoretical until specific end-point driven experiments are conducted in more congruent contexts. Nevertheless, the presented attributions are informative, directing future investigation to definitively elucidate RIF's pathoetiology. This study demonstrates an arguably comprehensive method of approaching known differential expression underlying a complex phenotype, to correlate feasible pathophysiology.
Collapse
Affiliation(s)
- Sepehr Hashemi
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Leorey Saligan
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland, USA
| | - Stephen Sonis
- Harvard School of Dental Medicine, Boston, Massachusetts, USA; Biomodels LLC, Watertown, Massachusetts, USA; Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Dimitrieva S, Schlapbach R, Rehrauer H. Prognostic value of cross-omics screening for kidney clear cell renal cancer survival. Biol Direct 2016; 11:68. [PMID: 27993167 PMCID: PMC5168807 DOI: 10.1186/s13062-016-0170-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a type of cancer that is resistant to chemotherapy and radiotherapy and has limited treatment possibilities. Large-scale molecular profiling of KIRC tumors offers a great potential to uncover the genetic and epigenetic changes underlying this disease and to improve the clinical management of KIRC patients. However, in practice the clinicians and researchers typically focus on single-platform molecular data or on a small set of genes. Using molecular and clinical data of over 500 patients, we have systematically studied which type of molecular data is the most informative in predicting the clinical outcome of KIRC patients, as a standalone platform and integrated with clinical data. Results We applied different computational approaches to preselect on survival-predictive genomic markers and evaluated the usability of mRNA/miRNA/protein expression data, copy number variation (CNV) data and DNA methylation data in predicting survival of KIRC patients. Our analyses show that expression and methylation data have statistically significant predictive powers compared to a random guess, but do not perform better than predictions on clinical data alone. However, the integration of molecular data with clinical variables resulted in improved predictions. We present a set of survival associated genomic loci that could potentially be employed as clinically useful biomarkers. Conclusions Our study evaluates the survival prediction of different large-scale molecular data of KIRC patients and describes the prognostic relevance of such data over clinical-variable-only models. It also demonstrates the survival prognostic importance of methylation alterations in KIRC tumors and points to the potential of epigenetic modulators in KIRC treatment. Reviewers An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015 by the CAMDA Programme Committee. The full research paper then underwent one round of Open Peer Review under a responsible CAMDA Programme Committee member, Djork-Arné Clevert, PhD (Bayer AG, Germany). Open Peer Review was provided by Martin Otava, PhD (Janssen Pharmaceutica, Belgium) and Hendrik Luuk, PhD (The Centre for Disease Models and Biomedical Imaging, University of Tartu, Estonia). The Reviewer comments section shows the full reviews and author responses. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0170-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Slavica Dimitrieva
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
7
|
Kovacs G, Billfeldt NK, Farkas N, Dergez T, Javorhazy A, Banyai D, Pusztai C, Szanto A. Cytoplasmic expression of β-catenin is an independent predictor of progression of conventional renal cell carcinoma: a simple immunostaining score. Histopathology 2016; 70:273-280. [DOI: 10.1111/his.13059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/05/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Gyula Kovacs
- Medical Faculty; Ruprecht-Karls-University; Heidelberg Germany
- Department of Urology; Medical School; University of Pecs; Pecs Hungary
| | | | - Nelli Farkas
- Institute of Bioanalysis; Medical School; University of Pecs; Pecs Hungary
| | - Timea Dergez
- Institute of Bioanalysis; Medical School; University of Pecs; Pecs Hungary
| | - Andras Javorhazy
- Department of Urology; Medical School; University of Pecs; Pecs Hungary
| | - Daniel Banyai
- Department of Urology; Medical School; University of Pecs; Pecs Hungary
| | - Csaba Pusztai
- Department of Urology; Medical School; University of Pecs; Pecs Hungary
| | - Arpad Szanto
- Department of Urology; Medical School; University of Pecs; Pecs Hungary
| |
Collapse
|
8
|
Panchenko MV. Structure, function and regulation of jade family PHD finger 1 (JADE1). Gene 2016; 589:1-11. [PMID: 27155521 DOI: 10.1016/j.gene.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
Abstract
The family of JADE proteins includes three paralogues encoded by individual genes and designated PHF17 (JADE1), PHF16 (JADE2), and PHF15 (JADE3). All three JADE proteins bear in tandem two Plant Homeo-domains (PHD) which are zinc finger domains. This review focuses on one member of the JADE family, JADE1. Studies addressing the biochemical, cellular and biological role of JADE1 are discussed. Recent discoveries of JADE1 function in the regulation of the epithelial cell cycle with potential relevance to disease are presented. Unresolved questions and future directions are formulated.
Collapse
Affiliation(s)
- Maria V Panchenko
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, United States.
| |
Collapse
|
9
|
Dere R, Perkins AL, Bawa-Khalfe T, Jonasch D, Walker CL. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J Am Soc Nephrol 2014; 26:553-64. [PMID: 25313256 DOI: 10.1681/asn.2013090984] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
von Hippel-Lindau (VHL) gene mutations are associated with clear cell renal cell carcinoma (ccRCC). A hallmark of ccRCC is loss of the primary cilium. Loss of this key organelle in ccRCC is caused by loss of VHL and associated with increased Aurora kinase A (AURKA) and histone deacetylase 6 (HDAC6) activities, which drive disassembly of the primary cilium. However, the underlying mechanism by which VHL loss increases AURKA levels has not been clearly elucidated, although it has been suggested that hypoxia-inducible factor-1α (HIF-1α) mediates increased AURKA expression in VHL-null cells. By contrast, we found that elevated AURKA expression is not increased by HIF-1α, suggesting an alternate mechanism for AURKA dysregulation in VHL-null cells. We report here that AURKA expression is driven by β-catenin transcription in VHL-null cells. In a panel of RCC cell lines, we observed nuclear accumulation of β-catenin and increased AURKA signaling to HDAC6. Moreover, HIF-1α inhibited AURKA expression by inhibiting β-catenin transcription. VHL knockdown activated β-catenin and elevated AURKA expression, decreased primary cilia formation, and caused significant shortening of cilia length in cells that did form cilia. The β-catenin responsive transcription inhibitor iCRT14 reduced AURKA levels and rescued ciliary defects, inducing a significant increase in primary cilia formation in VHL-deficient cells. These data define a role for β-catenin in regulating AURKA and formation of primary cilia in the setting of VHL deficiency, opening new avenues for treatment with β-catenin inhibitors to rescue ciliogenesis in ccRCC.
Collapse
Affiliation(s)
- Ruhee Dere
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Ashley Lyn Perkins
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Tasneem Bawa-Khalfe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darius Jonasch
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas; and
| |
Collapse
|
10
|
Krabbe LM, Westerman ME, Bagrodia A, Gayed BA, Darwish OM, Haddad AQ, Khalil D, Kapur P, Sagalowsky AI, Lotan Y, Margulis V. Dysregulation of β-Catenin is an Independent Predictor of Oncologic Outcomes in Patients with Clear Cell Renal Cell Carcinoma. J Urol 2014; 191:1671-7. [DOI: 10.1016/j.juro.2013.11.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Affiliation(s)
- Laura-Maria Krabbe
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Urology, University of Muenster Medical Center, Muenster, Germany
| | - Mary E. Westerman
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bishoy A. Gayed
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oussama M. Darwish
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ahmed Q. Haddad
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dina Khalil
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arthur I. Sagalowsky
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Iizuka M, Susa T, Takahashi Y, Tamamori-Adachi M, Kajitani T, Okinaga H, Fukusato T, Okazaki T. Histone acetyltransferase Hbo1 destabilizes estrogen receptor α by ubiquitination and modulates proliferation of breast cancers. Cancer Sci 2013; 104:1647-55. [PMID: 24125069 DOI: 10.1111/cas.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022] Open
Abstract
The estrogen receptor (ER) is a key molecule for growth of breast cancers. It has been a successful target for treatment of breast cancers. Elucidation of the ER expression mechanism is of importance for designing therapeutics for ER-positive breast cancers. However, the detailed mechanism of ER stability is still unclear. Here, we report that histone acetyltransferase Hbo1 promotes destabilization of estrogen receptor α (ERα) in breast cancers through lysine 48-linked ubiquitination. The acetyltransferase activity of Hbo1 is linked to its activity for ERα ubiquitination. Depletion of Hbo1 and anti-estrogen treatment displayed a potent growth suppression of breast cancer cell line. Hbo1 modulated transcription by ERα. Mutually exclusive expression of Hbo1 and ERα was observed in roughly half of the human breast tumors examined in the present study. Modulation of ER stability by Hbo1 in breast cancers may provide a novel therapeutic possibility.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Song E, Ma X, Li H, Zhang P, Ni D, Chen W, Gao Y, Fan Y, Pang H, Shi T, Ding Q, Wang B, Zhang Y, Zhang X. Attenuation of krüppel-like factor 4 facilitates carcinogenesis by inducing g1/s phase arrest in clear cell renal cell carcinoma. PLoS One 2013; 8:e67758. [PMID: 23861801 PMCID: PMC3702498 DOI: 10.1371/journal.pone.0067758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/21/2013] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor with diverse functions in various cancer types; however, the function of KLF4 in clear cell renal cell carcinoma (ccRCC) carcinogenesis remains unknown. In this study, we initially examined KLF4 expression by using a cohort of surgically removed ccRCC specimens and cell lines. Results indicated that the transcription and translation of KLF4 were lower in ccRCC tissues than in patient-matched normal tissues. Furthermore, the KLF4 expression was significantly downregulated in the five ccRCC cell lines at protein and mRNA levels compared with that in normal renal proximal tubular epithelial cell lines (HKC). KLF4 downregulation was significantly correlated with tumor stage and tumor diameter. Promoter hypermethylation may contribute to its low expression. In addition, in vitro studies indicated that the KLF4 overexpression significantly inhibited proliferation in human ccRCC cell lines 786-O and ACHN. Moreover, the KLF4 overexpression arrested the cell cycle progress at the G1/S phase transition by upregulating p21WAF1/CIP1 expression and downregulating cyclin D1 expression, KLF4 knockdown in HKC cells did the opposite. In vivo studies confirmed the anti-proliferative effect of KLF4. Our results suggested that KLF4 had an important function in suppressing the growth of ccRCC.
Collapse
Affiliation(s)
- Erlin Song
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
- Department of Urology, Chinese PLA 211 Hospital, Harbin, China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Hongzhao Li
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Peng Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Dong Ni
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Weihao Chen
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Yu Gao
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Yang Fan
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Haigang Pang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Taoping Shi
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Qiang Ding
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Baojun Wang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Yu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Zeng L, Bai M, Mittal AK, El-Jouni W, Zhou J, Cohen DM, Zhou MI, Cohen HT. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma. Cancer Res 2013; 73:5371-80. [PMID: 23824745 DOI: 10.1158/0008-5472.can-12-4707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor pVHL is lost in the majority of clear-cell renal cell carcinomas (RCC). Activation of the PI3K/AKT/mTOR pathway is also common in RCC, with PTEN loss occurring in approximately 30% of the cases, but other mechanisms responsible for activating AKT at a wider level in this setting are undefined. Plant homeodomain protein Jade-1 (PHF17) is a candidate renal tumor suppressor stabilized by pVHL. Here, using kinase arrays, we identified phospho-AKT1 as an important target of Jade-1. Overexpressing or silencing Jade-1 in RCC cells increased or decreased levels of endogenous phospho-AKT/AKT1. Furthermore, reintroducing pVHL into RCC cells increased endogenous Jade-1 and suppressed endogenous levels of phospho-AKT, which colocalized with and bound to Jade-1. The N-terminus of Jade-1 bound both the catalytic domain and the C-terminal regulatory tail of AKT, suggesting a mechanism through which Jade-1 inhibited AKT kinase activity. Intriguingly, RCC precursor cells where Jade-1 was silenced exhibited an increased capacity for AKT-dependent anchorage-independent growth, in support of a tumor suppressor function for Jade-1 in RCC. In support of this concept, an in silico expression analysis suggested that reduced Jade-1 expression is a poor prognostic factor in clear-cell RCC that is associated with activation of an AKT1 target gene signature. Taken together, our results identify 2 mechanisms for Jade-1 fine control of AKT/AKT1 in RCC, through loss of pVHL, which decreases Jade-1 protein, or through attenuation in Jade-1 expression. These findings help explain the pathologic cooperativity in clear-cell RCC between PTEN inactivation and pVHL loss, which leads to decreased Jade-1 levels that superactivate AKT. In addition, they prompt further investigation of Jade-1 as a candidate biomarker and tumor suppressor in clear-cell RCC.
Collapse
Affiliation(s)
- Liling Zeng
- Renal and Hematology/Oncology Sections, Departments of Medicine and Pathology, Boston Medical Center and Boston University School of Medicine, Boston, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kruck S, Eyrich C, Scharpf M, Sievert KD, Fend F, Stenzl A, Bedke J. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int J Mol Sci 2013; 14:10944-57. [PMID: 23708097 PMCID: PMC3709711 DOI: 10.3390/ijms140610944] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022] Open
Abstract
In renal cell carcinoma (RCC), single members of the Wnt/β-catenin signaling cascade were recently identified to contribute to cancer progression. However, the role of Wnt1, one of the key ligands in β-catenin regulation, is currently unknown in RCC. Therefore, alterations of the Wnt1/β-catenin axis in clear cell RCC (ccRCC) were examined with regard to clinicopathology, overall survival (OS) and cancer specific survival (CSS). Corresponding ccRCCs and benign renal tissue were analyzed in 278 patients for Wnt1 and β-catenin expression by immunohistochemistry in tissue microarrays. Expression scores, including intensity and percentage of stained cells, were compared between normal kidney and ccRCCs. Data was categorized according to mean expression scores and correlated to tumor and patients' characteristics. Survival was analyzed according to the Kaplan-Meier and log-rank test. Univariable and multivariable Cox proportional hazard regression models were used to explore the independent prognostic value of Wnt1 and β-catenin. In ccRCCs, high Wnt1 was associated with increased tumor diameter, stage and vascular invasion (p ≤ 0.02). High membranous β-catenin was associated with advanced stage, vascular invasion and tumor necrosis (p ≤ 0.01). Higher diameter, stage, node involvement, grade, vascular invasion and sarcomatoid differentiation (p ≤ 0.01) were found in patients with high cytoplasmic β-catenin. Patients with a high cytoplasmic β-catenin had a significantly reduced OS (hazard ratio (HR) 1.75) and CSS (HR 2.26), which was not independently associated with OS and CSS after adjustment in the multivariable model. Increased ccRCC aggressiveness was reflected by an altered Wnt1/β-catenin signaling. Cytoplasmic β-catenin was identified as the most promising candidate associated with unfavorable clinicopathology and impaired survival. Nevertheless, the shift of membranous β-catenin to the cytoplasm with a subsequently increased nuclear expression, as shown for other malignancies, could not be demonstrated to be present in ccRCC.
Collapse
Affiliation(s)
- Stephan Kruck
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Christian Eyrich
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Marcus Scharpf
- Institute of Pathology, Eberhard Karls University, Tuebingen 72076, Germany; E-Mails: (M.S.); (F.F.)
| | - Karl-Dietrich Sievert
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Falco Fend
- Institute of Pathology, Eberhard Karls University, Tuebingen 72076, Germany; E-Mails: (M.S.); (F.F.)
| | - Arnulf Stenzl
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
| | - Jens Bedke
- Department of Urology, Eberhard Karls University Tuebingen, Hoppe-Seyler Strasse 3, Tuebingen 72076, Germany; E-Mails: (S.K.); (C.E.); (K.-D.S.); (A.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-7071-298-6613; Fax: +49-7071-295-092
| |
Collapse
|