1
|
George Warren W, Osborn M, Yates A, O'Sullivan SE. The emerging role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov Today 2024; 29:103980. [PMID: 38614160 DOI: 10.1016/j.drudis.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/β-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.
Collapse
Affiliation(s)
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | | |
Collapse
|
2
|
Li M, Zhu G, Liu Y, Li X, Zhou Y, Li C, Wang M, Zhang J, Wang Z, Tan S, Chen W, Zhang H. Integrated genomic and proteomic analyses identify PYGL as a novel experimental therapeutic target for clear cell renal cell carcinoma. Heliyon 2024; 10:e28295. [PMID: 38545181 PMCID: PMC10966709 DOI: 10.1016/j.heliyon.2024.e28295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
Sunitinib, the first-line targeted therapy for metastatic clear cell renal cell carcinoma (ccRCC), faces a significant challenge as most patients develop acquired resistance. Integrated genomic and proteomic analyses identified PYGL as a novel therapeutic target for ccRCC. PYGL knockdown inhibited cell proliferation, cloning capacity, migration, invasion, and tumorigenesis in ccRCC cell lines. PYGL expression was increased in sunitinib-resistant ccRCC cell lines, and CP-91149 targeting the PYGL could restore drug sensitivity in these cell lines. Moreover, chromatin immune-precipitation assays revealed that PYGL upregulation is induced by the transcription factor, hypoxia-inducible factor 1α. Overall, PYGL was identified as a novel diagnostic biomarker by combining genomic and proteomic approaches in ccRCC, and sunitinib resistance to ccRCC may be overcome by targeting PYGL.
Collapse
Affiliation(s)
- Mingyong Li
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqiang Zhu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuxia Zhou
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Minglei Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenqi Chen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, 421000 Hengyang, Hunan, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
3
|
Meng X, Yu G, Luo T, Zhang R, Zhang J, Liu Y. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring. CHEMOSPHERE 2023; 341:140120. [PMID: 37696479 DOI: 10.1016/j.chemosphere.2023.140120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Emerging epidemiological evidence indicates potential associations between gestational perfluorobutane sulfonate (PFBS) exposure and adverse metabolic outcomes in offspring. However, the underlying mechanisms remain unclear. Our study aimed to investigate PFBS exposure effects during pregnancy and lactation on rat offspring lipid profiles and the possible underlying mechanisms. Although the biochemical index difference including total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), alanine amino transaminase (ALT), aspartate amino transferase (AST), and fasting blood glucose between exposed groups and the control group was not significant, transcriptome analyses showed that the differentially expressed genes (DEGs) in the 50 mg/kg/day PFBS exposure group were significantly related to protein digestion and absorption, peroxisome proliferator activated-receptor (PPAR) signaling pathway, xenobiotic metabolism by cytochrome P450, glycine, serine and threonine metabolism, β-alanine metabolism, bile secretion, unsaturated fatty acid (FA) biosynthesis, and alanine, aspartate and glutamate metabolism. Untargeted metabolomics analyses identified 17 differential metabolites in the 50 mg/kg/day PFBS exposure group. Among these, phosphatidylserine [PS (18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))], lysoPE (18:1(11Z)/0:0), and PS (14:0/20:4(5Z,8Z,11Z,14Z)) were significantly correlated with phospholipid metabolism disorders. Correlation analysis indicated the DEGs, including FA binding protein (Fabp4), spermine oxidase (Smox), Fabp2, acyl-CoA thioesterase 5 (Acot5), sarcosine dehydrogenase (Sardh), and amine oxidase, copper-containing 3 (Aoc3) that significantly enriched in xenobiotic metabolism by cytochrome P450 and glycine, serine, and threonine metabolism signaling pathways were highly related to the differential metabolite pantetheine 4'-phosphate. Pantetheine 4'-phosphate was significantly negatively associated with non-high-density lipoprotein (non-HDL) and TC levels. Collectively, our study indicated that maternal PFBS exposure at a relatively low level could alter gene expression and metabolic molecules in lipid metabolism-related pathway series in rat offspring, although the effects on metabolic phenotypes were not significant within the limited observational period, using group-wise and trend analyses.
Collapse
Affiliation(s)
- Xi Meng
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin, 541001, China
| | - Ruiyuan Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yongjie Liu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Moeyersoms AHM, Gallo RA, Zhang MG, Stathias V, Maeng MM, Owens D, Abou Khzam R, Sayegh Y, Maza C, Dubovy SR, Tse DT, Pelaez D. Spatial Transcriptomics Identifies Expression Signatures Specific to Lacrimal Gland Adenoid Cystic Carcinoma Cells. Cancers (Basel) 2023; 15:3211. [PMID: 37370820 PMCID: PMC10296284 DOI: 10.3390/cancers15123211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although primary tumors of the lacrimal gland are rare, adenoid cystic carcinoma (ACC) is the most common and lethal epithelial lacrimal gland malignancy. Traditional management of lacrimal gland adenoid cystic carcinoma (LGACC) involves the removal of the eye and surrounding socket contents, followed by chemoradiation. Even with this radical treatment, the 10-year survival rate for LGACC is 20% given the propensity for recurrence and metastasis. Due to the rarity of LGACC, its pathobiology is not well-understood, leading to difficulties in diagnosis, treatment, and effective management. Here, we integrate bulk RNA sequencing (RNA-seq) and spatial transcriptomics to identify a specific LGACC gene signature that can inform novel targeted therapies. Of the 3499 differentially expressed genes identified by bulk RNA-seq, the results of our spatial transcriptomic analysis reveal 15 upregulated and 12 downregulated genes that specifically arise from LGACC cells, whereas fibroblasts, reactive fibrotic tissue, and nervous and skeletal muscle account for the remaining bulk RNA-seq signature. In light of the analysis, we identified a transitional state cell or stem cell cluster. The results of the pathway analysis identified the upregulation of PI3K-Akt signaling, IL-17 signaling, and multiple other cancer pathways. This study provides insights into the molecular and cellular landscape of LGACC, which can inform new, targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Acadia H M Moeyersoms
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ryan A Gallo
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michelle G Zhang
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michelle M Maeng
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06437, USA
| | - Dawn Owens
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33314, USA
| | - Rayan Abou Khzam
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yoseph Sayegh
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Cynthia Maza
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sander R Dubovy
- Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David T Tse
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Wang Z, Liu H, Gong Y, Cheng Y. Establishment and validation of an aging-related risk signature associated with prognosis and tumor immune microenvironment in breast cancer. Eur J Med Res 2022; 27:317. [PMID: 36581948 PMCID: PMC9798726 DOI: 10.1186/s40001-022-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly malignant and heterogeneous tumor which is currently the cancer with the highest incidence and seriously endangers the survival and prognosis of patients. Aging, as a research hotspot in recent years, is widely considered to be involved in the occurrence and development of a variety of tumors. However, the relationship between aging-related genes (ARGs) and BC has not yet been fully elucidated. MATERIALS AND METHODS The expression profiles and clinicopathological data were acquired in the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) database. Firstly, the differentially expressed ARGs in BC and normal breast tissues were investigated. Based on these differential genes, a risk model was constructed composed of 11 ARGs via univariate and multivariate Cox analysis. Subsequently, survival analysis, independent prognostic analysis, time-dependent receiver operating characteristic (ROC) analysis and nomogram were performed to assess its ability to sensitively and specifically predict the survival and prognosis of patients, which was also verified in the validation set. In addition, functional enrichment analysis and immune infiltration analysis were applied to reveal the relationship between the risk scores and tumor immune microenvironment, immune status and immunotherapy. Finally, multiple datasets and real-time polymerase chain reaction (RT-PCR) were utilized to verify the expression level of the key genes. RESULTS An 11-gene signature (including FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57, CPLX2 and CCL19) was established to predict the survival of BC patients, which was validated by the GEO cohort. Based on the risk model, the BC patients were divided into high- and low-risk groups, and the high-risk patients showed worse survival. Stepwise ROC analysis and Cox analyses demonstrated the good performance and independence of the model. Moreover, a nomogram combined with the risk score and clinical parameters was built for prognostic prediction. Functional enrichment analysis revealed the robust relationship between the risk model with immune-related functions and pathways. Subsequent immune microenvironment analysis, immunotherapy, etc., indicated that the immune status of patients in the high-risk group decreased, and the anti-tumor immune function was impaired, which was significantly different with those in the low-risk group. Eventually, the expression level of FABP7, IGHD, SPIB, CTSW, IGKC, SEZ6, S100B, CXCL1, IGLV6-57 and CCL19 was identified as down-regulated in tumor cell line, while CPLX2 up-regulated, which was mostly similar with the results in TCGA and Human Protein Atlas (HPA) via RT-PCR. CONCLUSIONS In summary, our study constructed a risk model composed of ARGs, which could be used as a solid model for predicting the survival and prognosis of BC patients. Moreover, this model also played an important role in tumor immunity, providing a new direction for patient immune status assessment and immunotherapy selection.
Collapse
Affiliation(s)
- Zitao Wang
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Hua Liu
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yiping Gong
- grid.412632.00000 0004 1758 2270Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Yanxiang Cheng
- grid.412632.00000 0004 1758 2270Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
6
|
Sun Z, Guo Y, Zhang D, Zhang G, Zhang Y, Wang X. FABP7 inhibits proliferation and invasion abilities of cutaneous squamous cell carcinoma cells via the Notch signaling pathway. Oncol Lett 2022; 24:254. [PMID: 35765272 PMCID: PMC9219017 DOI: 10.3892/ol.2022.13374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most common non-melanoma skin cancers worldwide. Fatty acid-binding protein 7 (FABP7) has been reported to be involved in the occurrence, development, metastasis and prognosis of various tumors. In addition, downregulated FABP7 expression was demonstrated in cutaneous malignant melanoma in a previous study. Therefore, we speculated that FABP7 may be a biomarker for CSCC diagnosis. The aim of the present study was to determine the molecular mechanism underlying the effects of FABP7 in CSCC, which may provide a new diagnostic biomarker or treatment target for CSCC. Reverse transcription-PCR, western blotting and immunohistochemistry assays were performed to detect the expression levels of FABP7 in CSCC tissues and cells. Overexpression of FABP7 was achieved in A431 and colo-16 cell lines by transfection with an overexpression vector (oeFABP7). Cell proliferation, colony formation, migration and invasion were detected by Cell Counting Kit-8, crystal violet, scratch and Transwell assays, respectively. Following FABP7 overexpression, western blotting was used to determine the expression levels of proliferation-, invasion- and Notch pathway-associated proteins, including Snail, N-cadherin, Twist, matrix metalloproteinase (MMP)-2, MMP-7, Notch 1 and Notch 3. In addition a CSCC model in nude mice was constructed. Immunohistochemistry was used to determine the expression levels of FABP7, Ki67, Notch 1 and Notch 3. It was demonstrated that FABP7 expression levels were significantly reduced in human CSCC tissues and cells compared with normal samples. Overexpression of FABP7 inhibited the proliferation, invasion and migration abilities of A431 and colo-16 cells compared with those in the negative control group. In addition, transfection with oeFABP7 reduced the expression levels of proliferation-, invasion- and Notch pathway-associated proteins compared with those in the negative control group. Overexpression of FABP7 also reduced the growth of CSCC tumors in vivo and inhibited the expression of Ki67, Notch 1 and Notch 3. Therefore, the results of the present study suggested that FABP7 may inhibit the proliferation and invasion of CSCC cells via the Notch signaling pathway.
Collapse
Affiliation(s)
- Zhonghui Sun
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China.,Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Yunyi Guo
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Danlu Zhang
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China
| | - Ying Zhang
- Department of Dermatology, Fengxian Institute of Dermatosis Prevention and Treatment, Shanghai 201408, P.R. China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, P.R. China
| |
Collapse
|
7
|
Identification of FABP7 as a Potential Biomarker for Predicting Prognosis and Antiangiogenic Drug Efficacy of Glioma. DISEASE MARKERS 2022; 2022:2091791. [PMID: 35783014 PMCID: PMC9249527 DOI: 10.1155/2022/2091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Objective Glioma is a common malignant tumor of the central nervous system with extremely poor prognosis. An efficient molecular marker for diagnosis and treatment is urgently needed. Fatty acid binding protein 7(FABP7), which regulates intracellular lipid metabolism, is highly expressed in nervous system tumors, but its prognostic value remains undetermined. The present study investigated the relationship between FABP7 expression and prognosis in glioma patients by bioinformatics analysis, as well as immunohistochemically evaluating the effect of FABP7 expression on the efficacy of antiangiogenic drugs. Methods Gene expression and clinical data on patients with glioma were collected from the China Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases. Levels of FABP7 expression and their association with the clinicopathologic characteristics of glioma patients were analyzed in the CGGA database. The relationships between FABP7 expression and clinical findings, such as survival and prognostic, were determined and used for nomogram construction. Mechanisms of action of FABP7 were assessed using GSEA software. FABP7 expression in the tissues of glioma patients treated with apatinib was evaluated immunohistochemically. Results FABP7 was highly expressed in glioma samples, with higher FABP7 expression associated with poorer patient prognosis and more advanced clinicopathological features. Bioinformatics analysis, including survival, receiver operating characteristic curve, and univariate and multivariate Cox analyses, showed that FABP7 was independently prognostic of outcomes in glioma patients. GSEA analysis showed that FABP7 was associated with angiogenesis, with FABP7 having correlation coefficients > 0.4 with seven factors in the angiogenic pathway, POSTN, TIMP1, PDGFA, FGFR1, S100A4, COL5A2, and STC1, and the expression of these factors related to patient prognosis. Immunohistochemistry showed that FABP7 expression was higher in glioma patients with poor survival after apatinib treatment. Conclusions High FABP7 expression is associated with poor prognosis in glioma patients. FABP7, which is important for glioma angiogenesis, may serve as an independent prognostic predictor in glioma patients.
Collapse
|
8
|
Zang WJ, Wang ZN, Hu YL, Huang H, Ma P. Expression of fatty acid-binding protein-4 in gastrointestinal stromal tumors and its significance for prognosis. J Clin Lab Anal 2021; 35:e24017. [PMID: 34558731 PMCID: PMC8605140 DOI: 10.1002/jcla.24017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fatty acid‐binding proteins (FABPs) have been found to be involved in tumorigenesis and development. However, the role of FABP4, a member of the FABPs, in GISTs (Gastrointestinal stromal tumors) remains unclear. This study aimed to investigate the expression of FABP4 and its prognostic value in GISTs. Methods FABP4 expression in 125 patients with GISTs was evaluated by immunohistochemical analysis of tissue microarrays. The relationship between FABP4 expression and clinicopathological features and prognosis of GISTs was analyzed. Results Multiple logistic regression analysis showed that expression of FABP4 correlated with tumor size and mitotic index. Furthermore, FABP4 level, tumor size, mitotic index, and high AFIP‐Miettinen risk were independent prognostic factors in GISTs. The Kaplan‐Meier survival curve showed that the 5‐year survival rate of patients with high‐FABP4 expression GISTs was lower. Conclusions These results suggested that high‐FABP4 expression might be a marker of malignant phenotype of GISTs and poor prognosis.
Collapse
Affiliation(s)
- Wei-Jie Zang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of Clinical Biobank, Nantong University, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nan Tong, China
| | - Zi-Niu Wang
- Medical School of Nantong University, Nan Tong, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 34056625 PMCID: PMC8162199 DOI: 10.1016/j.crneur.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including Fabp7. We confirmed that Rev-erbα binds to the Fabp7 promoter in multiple brain areas, including hippocampus, hypothalamus, and VTA, and showed that Fabp7 gene expression is upregulated in Rev-erbα knock-out mice. Compared to Fabp7 mRNA levels, Fabp3 and Fabp5 mRNA were unaffected by Rev-erbα depletion in hippocampus, suggesting that these effects are specific to Fabp7. To determine whether these effects of Rev-erbα depletion occur broadly throughout the brain, we also evaluated Fabp mRNA expression levels in multiple brain areas, including cerebellum, cortex, hypothalamus, striatum, and VTA in Rev-erbα knock-out mice. While small but significant changes in Fabp5 mRNA expression exist in some of these areas, the magnitude of these effects are minimal to that of Fabp7 mRNA expression, which was over 6-fold across all brain regions. These studies suggest that Rev-erbα is a transcriptional repressor of Fabp7 gene expression throughout mammalian brain. The transcriptional repressor Rev-erbα binds to the Fabp7 promoter across brain areas. Multiple Rev-erbα response element binding sites exist on the Fabp7 promoter. Rev-erbα is required for Fabp7 transcriptional repression and circadian expression. Rev-erbα depletion does not affect other Fabp-type gene expression in brain.
Collapse
Affiliation(s)
- William M Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121
| | - Carlos C Flores
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA
| | - Jennifer Jager
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Jason R Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA.,Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA. 99202, USA
| |
Collapse
|
10
|
Giulietti M, Cecati M, Sabanovic B, Scirè A, Cimadamore A, Santoni M, Montironi R, Piva F. The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics (Basel) 2021; 11:206. [PMID: 33573278 PMCID: PMC7912267 DOI: 10.3390/diagnostics11020206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Monia Cecati
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Berina Sabanovic
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Francesco Piva
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| |
Collapse
|
11
|
Zeng F, Luo L, Song M, Li D. Silencing of circular RNA PUM1 inhibits clear cell renal cell carcinoma progression through the miR-340-5p/FABP7 axis. J Recept Signal Transduct Res 2021; 42:141-150. [PMID: 33472512 DOI: 10.1080/10799893.2020.1870494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Liumei Luo
- Division of Science and Education, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| |
Collapse
|
12
|
Xie Q, Xiao YS, Jia SC, Zheng JX, Du ZC, Chen YC, Chen MT, Liang YK, Lin HY, Zeng D. FABP7 is a potential biomarker to predict response to neoadjuvant chemotherapy for breast cancer. Cancer Cell Int 2020; 20:562. [PMID: 33292226 PMCID: PMC7684949 DOI: 10.1186/s12935-020-01656-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early prediction of response to neoadjuvant chemotherapy (NAC) is critical in choosing appropriate chemotherapeutic regimen for patients with locally advanced breast cancer. Herein, we sought to identify potential biomarkers to predict the response to neoadjuvant chemotherapy for breast cancer patients. METHODS Three genomic profiles acquired by microarray analysis from subjects with or without residual tumors after NAC downloaded from the GEO database were used to screen the differentially expressed genes (DEGs). An array of public databases, including ONCOMINE, cBioportal, Breast Cancer Gene Expression Miner v4.0, and the Kaplan Meir-plotter, etc., were used to evaluate the potential functions, related signaling pathway, as well as prognostic values of FABP7 in breast cancer. Anti-cancer drug sensitivity assay, real-time PCR, flow cytometry and western-blotting assays were used to investigate the function of FABP7 in breast cancer cells and examine the relevant mechanism. RESULTS Two differentially expressed genes, including FABP7 and ESR1, were identified to be potential indicators of response to anthracycline and taxanes for breast cancer. FABP7 was associated with better chemotherapeutic response, while ESR1 was associated with poorer chemotherapeutic effectiveness. Generally, the expression of FABP7 was significantly lower in breast cancer than normal tissue samples. FABP7 mainly high expressed in ER-negative breast tumor and might regulate cell cycle to enhance chemosensitivity. Moreover, elevated FABP7 expression increased the percentage of cells at both S and G2/M phase in MDA-MB-231-ADR cells, and decreased the percentage of cells at G0/G1 phase, as compared to control group. Western-blotting results showed that elevated FABP7 expression could increase Skp2 expression, while decrease Cdh1 and p27kip1 expression in MDA-MB-231-ADR cells. In addition, FABP7 was correlated to longer recurrence-free survival (RFS) in BC patients with ER-negative subtype of BC treated with chemotherapy. CONCLUSION FABP7 is a potential favorable biomarker and predicts better response to NAC in breast cancer patients. Future study on the predictive value and detail molecular mechanisms of FABP7 in contribution to chemosensitivity in breast cancer is warranted.
Collapse
Affiliation(s)
- Qin Xie
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515031, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515031, Guangdong, People's Republic of China
| | - Ying-Sheng Xiao
- Department of Thyroid Surgery, Shantou Central Hospital, 114 Waima Road, Shantou, 515031, People's Republic of China
| | - Shi-Cheng Jia
- Shantou University Medical College, Shantou, 515000, People's Republic of China
| | - Jie-Xuan Zheng
- Shantou University Medical College, Shantou, 515000, People's Republic of China
| | - Zhen-Chao Du
- Shantou University Medical College, Shantou, 515000, People's Republic of China
| | - Yi-Chun Chen
- Shantou University Medical College, Shantou, 515000, People's Republic of China
| | - Mu-Tong Chen
- Shantou University Medical College, Shantou, 515000, People's Republic of China
| | - Yuan-Ke Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, People's Republic of China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, People's Republic of China
| | - De Zeng
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515031, People's Republic of China.
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515031, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Tian W, Zhang W, Zhang Y, Zhu T, Hua Y, Li H, Zhang Q, Xia M. FABP4 promotes invasion and metastasis of colon cancer by regulating fatty acid transport. Cancer Cell Int 2020; 20:512. [PMID: 33088219 PMCID: PMC7574203 DOI: 10.1186/s12935-020-01582-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background The prognosis of colon cancer is poor for metastasis, while the mechanism, especially adipocytes related, is not yet clear. The purpose of this study is to determine the effects of fatty acid binding protein 4 (FABP4), a transporter for lipids, on colon cancer progression. Methods The distribution of lipids and FABP4 was tested in the colon cancer tissues and adjacent normal tissues, and their relationship was also verified in vitro. Experiments about cellular invasion, migration and proliferation were performed to detect the impacts of FABP4 on the biological behaviors of colon cancer, and the positive results were checked in vivo. Meanwhile, the regulatory role of FABP4 in the energy and lipid metabolism was evaluated by the levels of triglyceride, ATP, LDH, glycerol and NEFA. At last, GO and KEGG analysis based on FABP4 overexpressed cells was performed, and the AKT pathway and epithelial-mesenchymal transition (EMT)-related proteins were determined by Western blot. Results Higher accumulation of lipids and stronger FABP4 transcription were observed in colon cancer tissues. Having been incubated with adipose tissue extract and overexpressed FABP4, colon cancer cells demonstrated enhanced lipid accumulation. In functional experiments, co-culture with adipose tissue extract significantly enhanced the invasion and migration of colon cancer cells, as well as the energy and lipid metabolism, and all these processes were reversed by FABP4 inhibitor. In addition, the metastasis of FABP4-overexpressed colon cancer cells was also significantly enhanced in vitro and in vivo. In terms of mechanism, the bioinformatics analysis showed that FABP4 was enriched in 11 pathways related to metabolic processes in FABP4 overexpressed cells. Finally, FABP4 overexpression improved EMT progression of colon cancer, as evidenced by the upregulation of Snail, MMP-2 and MMP-9, the downregulation of E-cadherin. The expression of p-Akt was also elevated. Conclusion FABP4 overexpression could increase FAs transport to enhance energy and lipid metabolism, and activate AKT pathway and EMT to promote the migration and invasion of colon cancer cells.
Collapse
Affiliation(s)
- Wenying Tian
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Wenjia Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Tianyue Zhu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Yuting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Hui Li
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Qinglin Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qing Yang Road, Wuxi, 214023 Jiangsu People's Republic of China
| |
Collapse
|
14
|
Sahar T, Nigam A, Anjum S, Waziri F, Biswas S, Jain SK, Wajid S. Interactome Analysis of the Differentially Expressed Proteins in Uterine Leiomyoma. Anticancer Agents Med Chem 2020; 19:1293-1312. [PMID: 30727917 DOI: 10.2174/1871520619666190206143523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent advances in proteomics present enormous opportunities to discover proteome related disparities and thus understanding the molecular mechanisms related to a disease. Uterine leiomyoma is a benign monoclonal tumor, located in the pelvic region, and affecting 40% of reproductive aged female. OBJECTIVE Identification and characterization of the differentially expressed proteins associated with leiomyogenesis by comparing uterine leiomyoma and normal myometrium. METHODS Paired samples of uterine leiomyoma and adjacent myometrium retrieved from twenty-five females suffering from uterine leiomyoma (n=50) were submitted to two-dimensional electrophoresis (2-DE), matrixassisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and to reverse transcription polymerase chain reaction (RT-PCR). RESULTS Comparison of protein patterns revealed seven proteins with concordantly increased spot intensities in leiomyoma samples. E3 ubiquitin-protein ligase MIB2 (MIB2), Mediator of RNA polymerase II transcription subunit 10 (MED10), HIRA-interacting protein (HIRP3) and Fatty acid binding protein brain (FABP7) were found to be upregulated. While, Biogenesis of lysosome-related organelles complex 1 subunit 2 (BL1S2), Shadow of prion protein (SPRN) and RNA binding motif protein X linked like 2 (RMXL2) were found to be exclusively present in leiomyoma sample. The expression modulations of the corresponding genes were further validated which corroborated with the 2-DE result showing significant upregulation in leiomyoma. We have generated a master network showing the interactions of the experimentally identified proteins with their close neighbors and further scrutinized the network to prioritize the routes leading to cell proliferation and tumorigenesis. CONCLUSION This study highlights the importance of identified proteins as potential targets for therapeutic purpose. This work provides an insight into the mechanism underlying the overexpression of the proteins but warrants further investigations.
Collapse
Affiliation(s)
- Tahreem Sahar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Aruna Nigam
- Department of Obstetrics and Gynecology, HIMSR and HAH Centenary Hospital, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Anjum
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Farheen Waziri
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shipie Biswas
- Molecular Diagnostics, Genetix Biotech Asia Pvt. Ltd., New Delhi 110015, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.,Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
15
|
Wu G, Zhang Z, Tang Q, Liu L, Liu W, Li Q, Wang Q. Study of FABP's interactome and detecting new molecular targets in clear cell renal cell carcinoma. J Cell Physiol 2019; 235:3776-3789. [PMID: 31602654 DOI: 10.1002/jcp.29272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Guangzhen Wu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Zhiwei Zhang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qizhen Tang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Lei Liu
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Wei Liu
- Department of Nursing The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Quanlin Li
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Qifei Wang
- Department of Urology The First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
16
|
van der Plaat DA, Vonk JM, Lahousse L, de Jong K, Faiz A, Nedeljkovic I, Amin N, van Diemen CC, Brusselle GG, Bossé Y, Brandsma CA, Hao K, Paré PD, van Duijn CM, Postma DS, Boezen HM. Limited overlap in significant hits between genome-wide association studies on two airflow obstruction definitions in the same population. BMC Pulm Med 2019; 19:58. [PMID: 30845926 PMCID: PMC6407273 DOI: 10.1186/s12890-019-0811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airflow obstruction is a hallmark of chronic obstructive pulmonary disease (COPD), and is defined as either the ratio between forced expiratory volume in one second and forced vital capacity (FEV1/FVC) < 70% or < lower limit of normal (LLN). This study aimed to assess the overlap between genome-wide association studies (GWAS) on airflow obstruction using these two definitions in the same population stratified by smoking. METHODS GWASes were performed in the LifeLines Cohort Study for both airflow obstruction definitions in never-smokers (NS = 5071) and ever-smokers (ES = 4855). The FEV1/FVC < 70% models were adjusted for sex, age, and height; FEV1/FVC < LLN models were not adjusted. Ever-smokers models were additionally adjusted for pack-years and current-smoking. The overlap in significantly associated SNPs between the two definitions and never/ever-smokers was assessed using several p-value thresholds. To quantify the agreement, the Pearson correlation coefficient was calculated between the p-values and ORs. Replication was performed in the Vlagtwedde-Vlaardingen study (NS = 432, ES = 823). The overlapping SNPs with p < 10- 4 were validated in the Vlagtwedde-Vlaardingen and Rotterdam Study cohorts (NS = 1966, ES = 3134) and analysed for expression quantitative trait loci (eQTL) in lung tissue (n = 1087). RESULTS In the LifeLines cohort, 96% and 93% of the never- and ever-smokers were classified concordantly based on the two definitions. 26 and 29% of the investigated SNPs were overlapping at p < 0.05 in never- and ever-smokers, respectively. At p < 10- 4 the overlap was 4% and 6% respectively, which could be change findings as shown by simulation studies. The effect estimates of the SNPs of the two definitions correlated strongly, but the p-values showed more variation and correlated only moderately. Similar observations were made in the Vlagtwedde-Vlaardingen study. Two overlapping SNPs in never-smokers (NFYC and FABP7) had the same direction of effect in the validation cohorts and the NFYC SNP was an eQTL for NFYC-AS1. NFYC is a transcription factor that binds to several known COPD genes, and FABP7 may be involved in abnormal pulmonary development. CONCLUSIONS The definition of airflow obstruction and the population under study may be important determinants of which SNPs are associated with airflow obstruction. The genes FABP7 and NFYC(-AS1) could play a role in airflow obstruction in never-smokers specifically.
Collapse
Affiliation(s)
- Diana A. van der Plaat
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kim de Jong
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cleo C. van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Guy G. Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yohan Bossé
- Department of Molecular Medicine, Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Québec, Canada
| | - Corry-Anke Brandsma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ke Hao
- Merck Research Laboratories, Boston, MA USA
| | - Peter D. Paré
- Department of Medicine, Center for Heart Lung Innovation and Institute for Heart and Lung Health, University of British Columbia, St. Paul’s Hospital, Vancouver, Canada
| | | | - Dirkje S. Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Kagawa Y, Umaru BA, Ariful I, Shil SK, Miyazaki H, Yamamoto Y, Ogata M, Owada Y. Role of FABP7 in tumor cell signaling. Adv Biol Regul 2019; 71:206-218. [PMID: 30245263 DOI: 10.1016/j.jbior.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Lipids are major molecules for the function of organisms and are involved in the pathophysiology of various diseases. Fatty acids (FAs) signaling and their metabolism are some of the most important pathways in tumor development, as lipids serve as energetic sources during carcinogenesis. Fatty acid binding proteins (FABPs) facilitate FAs transport to different cell organelles, modulating their metabolism along with mediating other physiological activities. FABP7, brain-typed FABP, is thought to be an important molecule for cell proliferation in healthy as well as diseased organisms. Several studies on human tumors and tumor-derived cell lines put FABP7 in the center of tumorigenesis, and its high expression level has been reported to correlate with poor prognosis in different tumor types. Several types of FABP7-expressing tumors have shown an up-regulation of cell signaling activity, but molecular mechanisms of FABP7 involvement in tumorigenesis still remain elusive. In this review, we focus on the expression and function of FABP7 in different tumors, and possible mechanisms of FABP7 in tumor proliferation and migration.
Collapse
Affiliation(s)
- Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Banlanjo A Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Islam Ariful
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Nagao K, Shinohara N, Smit F, de Weijert M, Jannink S, Owada Y, Mulders P, Oosterwijk E, Matsuyama H. Fatty acid binding protein 7 may be a marker and therapeutic targets in clear cell renal cell carcinoma. BMC Cancer 2018; 18:1114. [PMID: 30442117 PMCID: PMC6238291 DOI: 10.1186/s12885-018-5060-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To identify potential therapeutic target in clear cell renal cell carcinoma (ccRCC), we performed a transcriptome analysis. Our analysis showed that fatty acid binding protein 7 (FABP7) has the highest mean differential overexpression in ccRCC compared to normal kidney. We aimed to investigate the significance of FABP7 in ccRCC. METHODS Immunohistochemical staining for 40 advanced ccRCC cases was performed to investigate correlation between clinicopathological parameters and FABP7. They were composed of 40-83 years old cases with 33 male, 22 cases with pT ≥ 3, 19 cases with M1, and 16 cases with grade 3. The effect of gene knockdown was analysed by a cell viability assay and invasion assay in FABP7-overexpressing cell lines (SKRC7 and SKRC10). RESULTS Our immunohistochemical analysis showed that higher FABP7 expression significantly correlated with distant metastasis and poor cancer-specific survival (CSS; both p < 0.05). Functional suppression of FABP7 significantly inhibited SKRC10 cell growth (p < 0.05) and resulted in a significant reduction of the invasive potential (p < 0.01), but did not cause growth inhibition of SKRC7 cells. We found that The Cancer Genome Atlas Research Network (TCGA) database shows FABP6 and 7 as equally overexpressed in the FABP family. Functional suppression of fatty acid binding protein 6 (FABP6) resulted in significant growth inhibition of SKRC7 cells (p < 0.005). CONCLUSIONS Functional suppression of FABP7 significantly reduced cell viability and invasive potential in a ccRCC cell line. FABP7 may play a role in progression in some metastatic ccRCCs. The suppressed function may be compensated by another FABP family member.
Collapse
Affiliation(s)
- Kazuhiro Nagao
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan. .,Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands.
| | - Nachi Shinohara
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Frank Smit
- Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands
| | - Mirjam de Weijert
- Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands
| | - Sander Jannink
- Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen 267 Experimental Urology, Geert Grooteplein, 26-28, P.O. Box 9101, NL-6525, GA, Nijmegen, The Netherlands
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
19
|
FABP7 promotes cell proliferation and survival in colon cancer through MEK/ERK signaling pathway. Biomed Pharmacother 2018; 108:119-129. [PMID: 30218856 DOI: 10.1016/j.biopha.2018.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
Colon cancer (CC), one of the most frequently diagnosed malignancies deriving from the digestive system, has greatly threatened human health and life. Fatty acid binding protein 7 (FABP7), an intracellular protein with the tissue-specific expression pattern, has been reported to be implicated in diverse types of human tumors. However, the biological role of FABP7 in CC is still poorly understood. The current study aimed to investigate the role of FABP7 in CC and illuminate the potential molecular mechanisms. In this present study, we found that FABP7 was highly expressed in CC tissues and cell lines, suggesting the possible involvement of FABP7 in CC tumorigenesis. Moreover, functional investigations showed that FABP7-overexpression promoted CC cell proliferation, colony formation, cell cycle progression and inhibited cell apoptosis; on the contrary, FABP7 knockdown produced an inhibitory effects on CC cell proliferation and survival. Notably, FABP7 knockdown inhibited colon tumor growth in vivo. In addition, mechanistic investigations demonstrated that FABP7 exerted its promoting effects on CC cell proliferation and survival through activation of the MEK/ERK signaling pathway. Collectively, our data indicate that FABP7 may be used as a novel diagnostic bio-marker and a potential therapeutic target for CC.
Collapse
|
20
|
Li P, Ren H, Zhang Y, Zhou Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine (Baltimore) 2018; 97:e11839. [PMID: 30113474 PMCID: PMC6113007 DOI: 10.1097/md.0000000000011839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the major renal cell carcinoma subtype, but its postsurgical prognosis varies among individual patients.We used gene expression, machine learning (random forest variable hunting), and Cox regression analysis to develop a risk score model based on 15 genes to predict survival of patients with ccRCC in the The Cancer Genome Atlas dataset (N = 533). We validated this model in another cohort, and analyzed correlations between risk score and other clinical indicators.Patients in the high-risk group had significantly worse overall survival (OS) than did those in the low-risk group (P = 5.6e-16); recurrence-free survival showed a similar pattern. This result was reproducible in another dataset, E-MTAB-1980 (N = 101, P = .00029). We evaluated correlations between risk score and other clinical indicators. Risk was independent of age and sex, but was significantly associated with hemoglobin level, primary tumor size, and grade. Radiation therapy also had no effect on the prognostic value of the risk score. Cox multivariate regression showed risk score to be an important indicator for ccRCC prognosis. We plotted a nomogram for 3-year OS to facilitate use of risk score and other indicators.The risk score model based on expression of the 15 selected genes can predict survival of patients with ccRCC.
Collapse
Affiliation(s)
- Ping Li
- Shanghai University of Medicine & Health Sciences School of Optical-electrical and Computer Engineer of University of Shanghai for Science and Technology Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science Department of Pharmacology, School of Pharmacy, Shanghai University of Medicine & Health Science, Shanghai, China
| | | | | | | |
Collapse
|
21
|
Sahakyan V, Duelen R, Tam WL, Roberts SJ, Grosemans H, Berckmans P, Ceccarelli G, Pelizzo G, Broccoli V, Deprest J, Luyten FP, Verfaillie CM, Sampaolesi M. Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model. Sci Rep 2018; 8:2942. [PMID: 29440666 PMCID: PMC5811493 DOI: 10.1038/s41598-018-21103-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches.
Collapse
Affiliation(s)
- Vardine Sahakyan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wai Long Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, The Royal National Orthopaedic Hospital, London, UK
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Berckmans
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Istituto Mediterraneo di Eccellenza Pediatrica (ISMEP), Children's Hospital "G di Cristina", Palermo, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Jan Deprest
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospitals KU Leuven, Leuven, Belgium
- Institute for Women's Health (IWH), University College London, London, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, and Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute and Stem Cell Biology and Embryology Unit, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
22
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
23
|
Martins ER, de Lima TM, Barbeiro HV, Machado MCC, Pinheiro da Silva F. High serum levels of fatty acid–binding protein 7 in diabetic rats with experimental sepsis. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218764235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sepsis is a disease that affects a wide variety of individuals, including the young, the elderly, and those admitted to the hospital with diverse acute or chronic conditions. Because sepsis is such a heterogeneous disease, some researchers believe that personalized medicine may represent a promising means of improving the prognosis for certain patients. Of those who develop sepsis, diabetic patients remain a significant proportion, because diabetes is a metabolic disorder that is associated with disturbances in the immune system, which facilitates bacterial infections. Fatty acid–binding proteins (FABPs) are a family of transport proteins with an important role in metabolism; therefore, we decided to measure their levels in diabetic rats, as part of a search for a novel biomarker of sepsis. Diabetes was experimentally induced in male Wistar rats, some of which then underwent cecal ligation and puncture, and the levels of FABP4 and FABP7 were measured in their serum and key tissues. Serum FABP7 levels in diabetic septic rats were significantly higher than those in non-diabetic septic rats. Consequently, we propose that FABP7 should be further investigated as a potential biomarker of sepsis in diabetic patients.
Collapse
Affiliation(s)
- Emerson R Martins
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Thais M de Lima
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Hermes V Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Marcel C César Machado
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Takaoka N, Takayama T, Ozono S. Functional analysis of fatty acid binding protein 7 and its effect on fatty acid of renal cell carcinoma cell lines. BMC Cancer 2017; 17:192. [PMID: 28292269 PMCID: PMC5351052 DOI: 10.1186/s12885-017-3184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Renal cell carcinomas (RCCs) overexpress fatty acid binding protein 7 (FABP7). We chose to study the TUHR14TKB cell line, because it expresses higher levels of FABP7 than other cell lines derived from renal carcinomas (OS-RC-2, 786-O, 769-P, Caki-1, and ACHN). Methods FABP7 expression was detected using western blotting and real-time PCR. Cell proliferation was determined using an MTS assay and by directly by counting cells. The cell cycle was assayed using flow cytometry. Cell migration was assayed using wound-healing assays. An FABP7 expression vector was used to transfect RCC cell lines. Results The levels of FABP7 expressed by TUHR14TKB cells and their doubling times decreased during passage. High-passage TUHR14TKB cells comprised fewer G0/G1-phase and more S-phase cells than low-passage cells. Cell proliferation differed among subclones isolated from cultures of low-passage TUHR14TKB cells. The proliferation of TUHR14TKB cells decreased when FABP7 was overexpressed, and the cell migration property of TUHR14TKB cells were decreased when FABP7 was overexpressed. High concentrations of docosatetraenoic acid and eicosapentaenoic acid accumulated in TUHR14TKB cells that overexpressed FABP7, and docosatetraenoic acid enhanced cell proliferation. Conclusions The TUHR14TKB cell line represents a heterogeneous population that does not express FABP7 when it rapidly proliferates. The differences in FABP7 function between RCC cell lines suggests that FABP7 affects cell proliferation depending on cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3184-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naohisa Takaoka
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tatsuya Takayama
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Seiichiro Ozono
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
25
|
Zheng J, Wang L, Peng Z, Yang Y, Feng D, He J. Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma. EBioMedicine 2016; 15:62-72. [PMID: 27993630 PMCID: PMC5233812 DOI: 10.1016/j.ebiom.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most lethal neoplasm of the urologic system. Clinical therapeutic effect varies greatly between individual ccRCC patients, so there is an urgent need to develop prognostic molecular biomarkers to help clinicians identify patients in need of early aggressive management. In this study, samples from primary ccRCC tumor and their corresponding nontumor adjacent tissues (n=18) were analyzed by quantitative proteomic assay. Proteins downregulated in tumors were studied by GO and KEGG pathways enrichment analyses. Six proteins were found both downregulated and annotated with cell proliferation in ccRCC patients. Of these proteins, PDZK1 and FABP1 were also involved in the lipid metabolism pathway. The downregulation of PDZK1 was further validated in TCGA_KIRC dataset (n=532) and independent set (n=202). PDZK1 could discriminate recurrence, metastasis and prognosis between ccRCC patients. Low level of PDZK1 in both mRNA and protein was associated with reduced overall survival (OS) and disease-free survival (DFS) in two independent sets. In univariate and multivariate analyses, PDZK1 was defined as an independent prognostic factor for both OS and DFS. These findings indicated that low level of PDZK1 could predict poor clinical outcome in patients with ccRCC.
Collapse
Affiliation(s)
- Junfang Zheng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing 100069, China
| | - Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhiqiang Peng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing 100069, China
| | - Duiping Feng
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Beijing International Cooperation Base for Science and Technology on China-UK Cancer Research, Beijing 100069, China.
| |
Collapse
|
26
|
Paulucci DJ, Sfakianos JP, Yadav SS, Badani KK. BAP1 is overexpressed in black compared with white patients with Mx-M1 clear cell renal cell carcinoma: A report from the cancer genome atlas. Urol Oncol 2016; 34:259.e9-259.e14. [DOI: 10.1016/j.urolonc.2015.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
|
27
|
Zhou J, Zhu G, Huang J, Li L, Du Y, Gao Y, Wu D, Wang X, Hsieh JT, He D, Wu K. Non-canonical GLI1/2 activation by PI3K/AKT signaling in renal cell carcinoma: A novel potential therapeutic target. Cancer Lett 2015; 370:313-23. [PMID: 26577809 DOI: 10.1016/j.canlet.2015.11.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Renal cell carcinoma (RCC) is the most lethal urologic malignancy; however, the molecular events supporting RCC carcinogenesis and progression remain poorly understood. In this study, based on the analysis of gene expression profile data from human clear cell RCC (ccRCC) and the corresponding normal tissues, we discovered that Hedgehog (HH) pathway component genes GLI1 and GLI2 were significantly elevated in ccRCC. Survival analysis of a large cohort of ccRCC samples demonstrated that the expression of GLI1 and GLI2 was negatively correlated with patient overall survival. Clinical sample-based VHL mutation and cell model-based VHL manipulation studies all indicated that the activation of GLI1 and GLI2 was not affected by VHL status. Further signaling pathway dissections demonstrated that GLI1 and GLI2 were activated by the phosphoinositide 3-kinase (PI3K)/AKT pathway, but not mediated by the canonical HH/SMO/GLI signaling. Up-regulation of GLI1 and GLI2 promoted RCC proliferation and clonogenic ability, whereas, a combination of GLIs inhibitor Gant61 and AKT inhibitor Perifosine synergistically suppressed RCC growth and induced apoptosis in vitro and in vivo. Therefore, this study identifies that GLI1 and GLI2 are critical for RCC carcinogenesis, and also provides an alternative therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guodong Zhu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Huang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuefeng Du
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dapeng Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
28
|
Deng Z, Wang L, Hou H, Zhou J, Li X. Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/β-catenin signaling. Int J Oncol 2015; 48:153-60. [PMID: 26549344 DOI: 10.3892/ijo.2015.3228] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/18/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and most cases are diagnosed at an advanced stage with metastases; however, the molecular events supporting ovarian cancer development and progression remain poorly understood. In this study, by analysis of the genome-scale DNA methylation profiles of 8 healthy ovaries, 89 ovarian cancers and the corresponding 4 normal ovaries from The Cancer Genome Atlas, we unveiled the abnormalities in gene methylation of ovarian cancers, and found that IQGAP2 one of the most frequently altered genes, was significantly hypermethylated in ovarian cancer. There was an inverse correlation between IQGAP2 DNA methylation and mRNA expression, and IQGAP2 expression was downregulated in ovarian cancer. Further survival analysis indicated that decreased IQGAP2 was associated with a worse progression-free survival of patient with ovarian cancer, and biological function studies demonstrated that IQGAP2 inhibited ovarian cancer cell epithelial-mesenchymal transition, migration and invasion via suppression of Wnt-induced β-catenin nuclear translocation and transcriptional activity. Thus, these data identified IQGAP2 as a novel tumor suppressor for ovarian cancer to inhibit cell invasion through regulating Wnt/β-catenin signaling, and provided a new biomarker and potential therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Zhuo Deng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Lijie Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Huilian Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| | - Jiancheng Zhou
- Department of Urology, Shaanxi Provincal People's Hospital, Xi'an 710068, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an 710061, P.R. China
| |
Collapse
|
29
|
Abstract
The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 activation correlates with Gleason score and pathological stage and modulates cancer stem cells and epithelial-mesenchymal transition. In addition, STAT3 promotes the progression from carcinoma in situ to invasive bladder cancer and modulates renal cell carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients with metastatic renal cell carcinoma, and to second-generation androgen receptor inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we describe the role of STAT3 in genitourinary tumors, thus describing its potential for future therapeutic strategies.
Collapse
|