1
|
Guo Y, Han Y, Zhang J, Zhou Y, Wei M, Yu L. Identification and Experimental Validation of Prognostic miRNA Signature and Ferroptosis-Related Key Genes in Cervical Squamous Cell Carcinoma. Cancer Med 2024; 13:e70415. [PMID: 39526479 PMCID: PMC11551785 DOI: 10.1002/cam4.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the prognostic value of miRNAs and ferroptosis-related genes in cervical squamous cell carcinoma. METHODS We mined data from public databases for differentially expressed miRNAs, ferroptosis-related genes, and clinical parameters and constructed a prognostic risk model. The predictive performance of the model was evaluated using survival and receiver operating characteristic curve analyses. We combined the clinicopathological features to construct a nomogram and evaluated its efficacy using calibration and clinical decision curves. The correlation between miRNA characteristics, risk score, and the tumor microenvironment was also studied. Next, consensus and key genes were screened, and their biological functions were analyzed using KEGG, GO, GSEA, and drug sensitivity analysis. Finally, the expression of miRNAs and key genes was detected using qRT-PCR and western blotting to verify the prediction results. RESULTS Seven miRNA signatures (miR-100-3p, miR-301a-5p, miR-331-3p, miR-425-5p, miR-502-3p, miR-505-5p, and miR-629-3p) were generated, and prognostic risk and nomogram models were successfully constructed. These models exhibited good accuracy. miRNA signatures correlated with the tumor microenvironment. Twelve consensus genes and three key genes (SLC2A1, ANO6, and TXNIP) were screened and their biofunctional diversity was identified using various analytical methods. qRT-PCR and western blotting were used to verify the expression of miR-301a-5p, miR-505-5p, SLC2A1, and TXNIP in cervical squamous carcinoma. The results were consistent with those of bioinformatics analyses. CONCLUSIONS Seven miRNAs may serve as prognostic biomarkers of cervical squamous cell carcinoma. SLC2A1, ANO6, and TXNIP are associated with cervical squamous cell carcinoma and may serve as ferroptosis-related markers of the disease.
Collapse
Affiliation(s)
- Yan Guo
- Department of GynecologyShanxi Medical University First HospitalTaiyuanChina
| | - Yana Han
- Department of GynecologyShanxi Medical University First HospitalTaiyuanChina
| | - Junjie Zhang
- Department of NeurosurgeryShanxi Medical University Second HospitalTaiyuanChina
| | - Yanbin Zhou
- Department of Teaching Affairs SectionShanxi Medical University First HospitalTaiyuanChina
| | - Meiyan Wei
- Department of GynecologyShanxi Medical University First HospitalTaiyuanChina
| | - Lijun Yu
- Department of GynecologyShanxi Medical University First HospitalTaiyuanChina
| |
Collapse
|
2
|
Pustylnyak VO, Alekseenok EY, Perevalova AM, Kozlov VV, Gulyaeva LF. Tumor suppressor PTEN regulation by tobacco smoke in lung squamous-cell carcinoma based on bioinformatics analysis. Heliyon 2023; 9:e19044. [PMID: 37609416 PMCID: PMC10440530 DOI: 10.1016/j.heliyon.2023.e19044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), is a tumor suppressor inactivated in a variety of human cancers. PTEN alteration correlates with lung squamous-cell carcinoma (LUSC) histology. However, it is still unclear how tobacco smoke regulates PTEN in LUSC tissues. In this study, we used free online databases and online tools to analyze PTEN expression and the role of smoking on PTEN alteration in patients with LUSC. We validated bioinformatics data by performing RT-PCR analysis using LUSC patient samples. Our results showed a correlation between the downregulation of PTEN in LUSC tissues compared to normal tissues and smoking exposure. In silico results using online platforms suggest that hsa-mir-301a down-regulates PTEN expression level in smoking patients with LUSC. RT-PCR analysis demonstrated that the PTEN expression was significantly decreased, whereas expression of hsa-mir-301a was up-regulated in the smoker cohort of LUSC tissue compared to adjacent non-cancerous tissues. A significant negative correlation between PTEN and hsa-mir-301a levels was observed in tumour tissues in our cohort of LUSC patients. Our results suggest that the downregulation PTEN gene caused by tobacco smoke-mediated increase of hsa-mir-301a may play an important role in LUSC tumorigenesis.
Collapse
Affiliation(s)
- Vladimir O. Pustylnyak
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | - Efim Y. Alekseenok
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| | | | - Vadim V. Kozlov
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
- Novosibirsk Regional Oncology Center, 630108, Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Novosibirsk State University, 630090, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, 630117, Novosibirsk, Russia
| |
Collapse
|
3
|
Gao K, Li X, Ni J, Wu B, Guo J, Zhang R, Wu G. Non-coding RNAs in enzalutamide resistance of castration-resistant prostate cancer. Cancer Lett 2023; 566:216247. [PMID: 37263338 DOI: 10.1016/j.canlet.2023.216247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Enzalutamide (Enz) is a next-generation androgen receptor (AR) antagonist used to treat castration-resistant prostate cancer (CRPC). Unfortunately, the relapsing nature of CRPC results in the development of Enz resistance in many patients. Non-coding RNAs (ncRNAs) are RNA molecules that do not encode proteins, which include microRNAs (miRNA), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs with known and unknown functions. Recently, dysregulation of ncRNAs in CRPC, particularly their regulatory function in drug resistance, has attracted more and more attention. Herein, we introduce the roles of dysregulation of different ncRNAs subclasses in the development of CRPC progression and Enz resistance. Recently determined mechanisms of Enz resistance are discussed, focusing mainly on the role of AR-splice variant-7 (AR-V7), mutations, circRNAs and lncRNAs that act as miRNA sponges. Also, the contributions of epithelial-mesenchymal transition and glucose metabolism to Enz resistance are discussed. We summarize the different mechanisms of miRNAs, lncRNAs, and circRNAs in the progression of CRPC and Enz resistance, and highlight the prospect of future therapeutic strategies against Enz resistance.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/therapeutic use
- RNA, Circular/genetics
- Drug Resistance, Neoplasm/genetics
- Neoplasm Recurrence, Local
- Nitriles
- Androgen Receptor Antagonists/therapeutic use
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Cell Line, Tumor
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Bin Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China; The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
4
|
Role of MicroRNAs in Neuroendocrine Prostate Cancer. Noncoding RNA 2022; 8:ncrna8020025. [PMID: 35447888 PMCID: PMC9029336 DOI: 10.3390/ncrna8020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC/NEPC) is an aggressive variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC) under the selective pressure of androgen receptor (AR)-targeted therapies. This variant is extremely aggressive, metastasizes to visceral organs, tissues, and bones despite low serum PSA, and is associated with poor survival rates. It arises via a reversible trans-differentiation process, referred to as ‘neuroendocrine differentiation’ (NED), wherein PCa cells undergo a lineage switch and exhibit neuroendocrine features, characterized by the expression of neuronal markers such as enolase 2 (ENO2), chromogranin A (CHGA), and synaptophysin (SYP). The molecular and cellular mechanisms underlying NED in PCa are complex and not clearly understood, which contributes to a lack of effective molecular biomarkers for diagnosis and therapy of this variant. NEPC is thought to derive from prostate adenocarcinomas by clonal evolution. A characteristic set of genetic alterations, such as dual loss of retinoblastoma (RB1) and tumor protein (TP53) tumor suppressor genes and amplifications of Aurora kinase A (AURKA), NMYC, and EZH2, has been reported to drive NEPC. Recent evidence suggests that microRNAs (miRNAs) are important epigenetic players in driving NED in advanced PCa. In this review, we highlight the role of miRNAs in NEPC. These studies emphasize the diverse role that miRNAs play as oncogenes and tumor suppressors in driving NEPC. These studies have unveiled the important role of cellular processes such as the EMT and cancer stemness in determining NED in PCa. Furthermore, miRNAs are involved in intercellular communication between tumor cells and stromal cells via extracellular vesicles/exosomes that contribute to lineage switching. Recent studies support the promising potential of miRNAs as novel diagnostic biomarkers and therapeutic targets for NEPC.
Collapse
|
5
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
6
|
Saran U, Chandrasekaran B, Kolluru V, Tyagi A, Nguyen KD, Valadon CL, Shaheen SP, Kong M, Poddar T, Ankem MK, Damodaran C. Diagnostic molecular markers predicting aggressive potential in low-grade prostate cancer. Transl Res 2021; 231:92-101. [PMID: 33279680 DOI: 10.1016/j.trsl.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Currently, clinicians rely on clinical nomograms to stratify progression risk at the time of diagnosis in patients with prostate cancer (CaP). However, these tools may not accurately distinguish aggressive potential in low-grade CaP. The current study determined the diagnostic potential of 3 molecular markers (ROCK1, RUNX3, and miR-301a) in terms of their ability to identify which low-grade tumors are likely to progress. Real-time PCR and immunohistochemical analysis were used to assess ROCK1, RUNX3, and miR-301a expression profiles in 118 serum and needle biopsy specimens. Expressions of ROCK1 and miR-301a were found to be significantly higher in Gleason 6 and 7 CaP as compared to BPH, while an inverse trend was observed with RUNX3. Further, incorporation of all 3 molecular markers significantly improved clinical nomograms' diagnostic accuracy and correlated with disease progression. Hence, in conclusion, the inclusion of these 3 molecular markers identified aggressive phenotype and predicted disease progression in low-grade CaP tumors at the time of diagnosis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY
| | | | | | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY
| | - Kristy D Nguyen
- Department of Urology, University of Louisville, Louisville, KY
| | | | - Saad P Shaheen
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | | | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY
| | | |
Collapse
|
7
|
Zhen L, Zhao Q, Lü J, Deng S, Xu Z, Zhang L, Zhang Y, Fan H, Chen X, Liu Z, Gu Y, Yu Z. miR-301a-PTEN-AKT Signaling Induces Cardiomyocyte Proliferation and Promotes Cardiac Repair Post-MI. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:251-262. [PMID: 33230431 PMCID: PMC7515978 DOI: 10.1016/j.omtn.2020.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022]
Abstract
Adult hearts are hard to recover after cardiac injury due to the limited proliferative ability of cardiomyocytes. Emerging evidence indicates the induction of cell cycle reentry of cardiomyocytes by special treatment or stimulation, which offers adult heart regenerative potential. Herein, a microRNA (miRNA) screening in cardiomyocytes identified miR-301a enriched specially in the neonatal cardiomyocytes from rats and mice. Overexpression of miR-301a in primary neonatal cardiomyocytes and H9C2 cells induced G1/S transition of the cell cycle, promoted cellular proliferation, and protected cardiomyocytes against hypoxia-induced apoptosis. Adeno-associated virus (AAV)9-mediated cardiac delivery of miR-301a to the mice model with myocardial infarction (MI) dramatically promoted cardiac repair post-MI in vivo. Phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was confirmed to mediate miR-301a-induced cell proliferation in cardiomyocytes. Loss of function of PTEN mimicked the miR-301a-induced phenotype, while gain of function of PTEN attenuated the miR-301a-induced cell proliferation in cardiomyocytes. Application of RG7440, a small molecule inhibitor of AKT, blocked the function of miR-301a in cardiomyocytes. The current study revealed a miRNA signaling in inducing the cell cycle reentry of cardiomyocytes in the injured heart, and it demonstrated the miR-301a/PTEN/AKT signaling as a potential therapeutic target to reconstitute lost cardiomyocytes in mammals.
Collapse
Affiliation(s)
- Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Shengqiong Deng
- Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Zhen Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Lin Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Huimin Fan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19122, USA
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Yuying Gu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| |
Collapse
|
8
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Bhagirath D, Liston M, Patel N, Akoto T, Lui B, Yang TL, To DM, Majid S, Dahiya R, Tabatabai ZL, Saini S. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer. Oncogene 2020; 39:7209-7223. [PMID: 33037409 PMCID: PMC7718386 DOI: 10.1038/s41388-020-01493-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
Therapy-induced neuroendocrine prostate cancer (NEPC), an extremely aggressive variant of castration-resistant prostate cancer (CRPC), is increasing in incidence with the widespread use of highly potent androgen receptor (AR)-pathway inhibitors (APIs) such as Enzalutamide (ENZ) and Abiraterone and arises via a reversible trans-differentiation process, referred to as neuroendocrine differentiation (NED). The molecular basis of NED is not completely understood leading to a lack of effective molecular markers for its diagnosis. Here, we demonstrate for the first time, that lineage switching to NE states is accompanied by key miRNA alterations including downregulation of miR-106a~363 cluster and upregulation of miR-301a and miR-375. To systematically investigate the key miRNAs alterations driving therapy-induced NED, we performed small RNA-NGS in a retrospective cohort of human metastatic CRPC clinical samples + PDX models with adenocarcinoma features (CRPC-adeno) vs those with neuroendocrine features (CRPC-NE). Further, with the application of machine learning algorithms to sequencing data, we trained a 'miRNA classifier' that could robustly classify 'CRPC-NE' from 'CRPC-Adeno' cases. The performance of classifier was validated in an additional cohort of mCRPC patients and publicly available PCa cohorts. Importantly, we demonstrate that miR-106a~363 cluster pleiotropically regulate cardinal nodal proteins instrumental in driving NEPC including Aurora Kinase A, N-Myc, E2F1 and STAT3. Our study has important clinical implications and transformative potential as our 'miRNA classifier' can be used as a molecular tool to stratify mCRPC patients into those with/without NED and guide treatment decisions. Further, we identify novel miRNA NED drivers that can be exploited for NEPC therapeutic targeting.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Michael Liston
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Theresa Akoto
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Byron Lui
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Thao Ly Yang
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Dat My To
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Shahana Majid
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Rajvir Dahiya
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Li J, Jiang D, Zhang Q, Peng S, Liao G, Yang X, Tang J, Xiong H, Pang J. MiR-301a Promotes Cell Proliferation by Repressing PTEN in Renal Cell Carcinoma. Cancer Manag Res 2020; 12:4309-4320. [PMID: 32606927 PMCID: PMC7294045 DOI: 10.2147/cmar.s253533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022] Open
Abstract
Objective Renal cell carcinoma (RCC) displays an increasing incidence and mortality rate worldwide in recent years. More and more evidence demonstrated microRNAs function as positive or negative regulatory factors in many cancers, while the role of miR-301a in RCC is still unclear. Material and Methods The expression and clinical significance of miR-301a were assessed via bioinformatic software on open microarray datasets of the Cancer Genome Atlas (TCGA) and then confirmed by quantitative real-time PCR (qRT-PCR) in RCC cell lines. Loss of function assays were performed in RCC cell lines both in vitro and in vivo. Cell Counting Kit-8 (CCK-8), flow cytometry, luciferase reporter assays, Western blotting, and immunohistochemistry were employed to explore the mechanisms of the effect of miR-301a on RCC. Results By analyzing RCC clinical specimens and cell lines, we found a uniform increased miR-301a in expression in comparison with normal renal tissue or normal human proximal tubule epithelial cell line (HK-2). In addition, miR-301a upregulation correlated advanced stage and poor prognosis of clear cell RCC (ccRCC). Anti-miR-301a could inhibit growth and cell cycle G1/S transition in RCC cell lines. Moreover, we found that PTEN was identified as a direct target of miR-301a that might partially interrupt miR-301a-induced G1/S transition. Importantly, nude-mouse models revealed that knockdown of miR-301a delayed tumor growth. Conclusion These results indicate that miR-301a functions as a tumor-promoting miRNA through regulating PTEN expression, representing a novel therapeutic target for RCC.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Donggen Jiang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Qian Zhang
- Department of Rehabilitation Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Shubin Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Guolong Liao
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xiangwei Yang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Jiani Tang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Haiyun Xiong
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Jun Pang
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|
11
|
Verma S, Pandey M, Shukla GC, Singh V, Gupta S. Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer. PLoS One 2019; 14:e0224071. [PMID: 31756185 PMCID: PMC6874298 DOI: 10.1371/journal.pone.0224071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of miRNAs has been demonstrated in several human malignancies including prostate cancer. Due to tissue limitation and variable disease progression, stage-specific miRNAs changes in prostate cancer is unknown. Using chip-based microarray, we investigated global miRNA expression in human prostate cancer LNCaP, PC3, DU145 and 22Rv1 cells representing early-stage, advanced-stage and castration resistant prostate cancer in comparison with normal prostate epithelial cells. A total of 292 miRNAs were differentially expressed with 125 upregulated and 167 downregulated. These miRNAs were involved in pathways including drug resistance drug-efflux, adipogenesis, epithelial-to-mesenchymal transition, bone metamorphosis, and Th1/Th2 signaling. Regulation of miRNAs were interlinked with upstream regulators such as Argonaut 2 (AGO2), Double-Stranded RNA-Specific Endoribonuclease (DICER1), Sjogren syndrome antigen B (SSB), neurofibromatosis 2 (NF2), and peroxisome proliferator activated receptor alpha (PPARA), activated during stage-specific disease progression. Candidate target genes and pathways dysregulated in stage-specific prostate cancer were identified using CS-miRTar database and confirmed in clinical specimens. Integrative network analysis suggested some genes targeted by miRNAs include miR-17, let7g, miR-146, miR-204, miR-205, miR-221, miR-301 and miR-520 having a major effect on their dysregulation in prostate cancer. MiRNA-microarray analysis further identified miR-130a, miR-181, miR-328, miR146 and miR-200 as a panel of novel miRNAs associated with drug resistance drug-efflux and epithelial-to-mesenchymal transition in prostate cancer. Our findings provide evidence on miRNA dysregulation and its association with key functional components in stage-specific prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
| | - Mitali Pandey
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
| | - Girish C. Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, United States of America
| | - Vaibhav Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States of America
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, United States of America
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yin J, Chen D, Luo K, Lu M, Gu Y, Zeng S, Chen X, Song Y, Zhang Z, Zheng G, He Z, Liu H. Cip2a/miR-301a feedback loop promotes cell proliferation and invasion of triple-negative breast cancer. J Cancer 2019; 10:5964-5974. [PMID: 31762806 PMCID: PMC6856592 DOI: 10.7150/jca.35704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype and lacks effective targeted therapies. Cancerous inhibitor of protein phosphatase 2A (Cip2a) is an oncogene that is known to inhibit PP2A tumor suppressor activity in human malignancies. We previously demonstrated that Cip2a is a novel target for the treatment of TNBC. However, the functional roles of Cip2a in TNBC progression are still not fully characterized. In this study, we identified that miR-301a is a novel target of Cip2a in TNBC cell lines by miRNA microarray analysis. We found that Cip2a increases E2F1 expression, which in turn transcriptional activates miR-301a by occupying the miR-301a host gene SKA2 promoter. Moreover, we found that miR-301a level is significantly increased in TNBC tissues, and up-regulation of miR-301a is responsible for Cip2a-induced cell proliferation and invasion of TNBC cells. Furthermore, miR-301a feedback promotes the expression of Cip2a via activation of ERK/CREB signaling. Together, our study suggests an auto-regulatory feedback loop between Cip2a and miR-301a and this auto-regulatory loop might play an important role in TNBC progression.
Collapse
Affiliation(s)
- Jiang Yin
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Danyang Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Kai Luo
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Minying Lu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Yixue Gu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Shanshan Zeng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Xiangzhou Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Ying Song
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhijie Zhang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Guopei Zheng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Zhimin He
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| | - Hao Liu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, PR China
| |
Collapse
|
13
|
Cheng G, Song Z, Liu Y, Xiao H, Ruan H, Cao Q, Wang K, Xiao W, Xiong Z, Liu D, Chen K, Zhang X. Long noncoding RNA SNHG12 indicates the prognosis of prostate cancer and accelerates tumorigenesis via sponging miR-133b. J Cell Physiol 2019; 235:1235-1246. [PMID: 31267540 DOI: 10.1002/jcp.29039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of death among American men. Increasing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in tumorigenesis of PCa. In this study, we explored the biological functions of small nucleolar RNA host gene 12 (SNHG12) and investigated the interaction between miR-133b and SNHG12 in the progression of PCa. Data was downloaded from The Cancer Genome Atlas and Human Cancer Metastasis Database, and clinicopathological characteristics were analyzed with relapse-free survival rate. We detected SNHG12 expression level in PCa cells and tissues, and then analyzed its clinical significance, which revealed that SNHG12 has the potent to predict prognosis of PCa. Bioinformatic analysis revealed that SNHG12 was closely related to the progression of PCa and could target candidate microRNA (miR-133b). After transfecting SNHG12 silencing plasmid and miR-133b mimic/sponge, biological function assays were conducted and results illustrated that SNHG12 associated with miR-133b exerted biological effects on cancer cell growth, migration, and invasion. Direct interactions between miR-133b and SNHG12 have been found and SNHG12 acts as an oncogene to promote tumorigenesis of PCa by sponging tumor suppressor gene miR-133b.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengshuai Song
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibing Xiao
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Gene 2018; 679:274-281. [DOI: 10.1016/j.gene.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
|
15
|
Kolluru V, Chandrasekaran B, Tyagi A, Dervishi A, Ankem M, Yan X, Maiying K, Alatassi H, Shaheen SP, C Messer J, Edwards A, Haddad A, Damodaran C. miR-301a expression: Diagnostic and prognostic marker for prostate cancer. Urol Oncol 2018; 36:503.e9-503.e15. [PMID: 30195463 DOI: 10.1016/j.urolonc.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate-specific antigen screening for prostate cancer (CaP) remains controversial. This study establishes the role of microRNA 301a (miR-301a) as a supplemental biomarker that can distinguish between patients with benign prostate hyperplasia and clinically significant CaP. We evaluate the ability of miR-301a to predict the adverse pathology of CaP. METHODS In the first cohort, serum and prostate tumor samples were obtained from thirteen patients with Benign prostate hyperplasia (BPH), twelve patients with Gleason 6, and sixteen patients with Gleason 7 prostate adenocarcinoma. In the second cohort, 40 prostatectomy cases were selected (BPH:12, Gleason 6:12 and Gleason 7:16). MiRNA was extracted from serum and tumor samples. Quantitative reverse transcription-polymerase chain reaction was performed for detection of miR-301a. To understand the molecular role of miR-301a, we performed cell viability, Western blots, promoter analysis, overexpression, and silencing studies in BPH and DU-145 cell lines. RESULTS MiR-301a demonstrated a significantly higher expression in both serum and tumor tissue in patients with CaP when compared to patients with BPH (P = 0.011 and 0.013 for serum and tissue expression, respectively). Expression of miR-301a in prostatectomy specimens correlated with increased Gleason score. We demonstrated that miR-301a inhibited the pro-apoptotic function of RUNX3, and activated ROCK1-mediated pro-survival signal in CaP. Silencing miR-301a initiated the pro-apoptotic function of RUNX3 by inhibiting ROCK1 expression in CaP cells. CONCLUSIONS Expression of miR-301a could be a valuable adjunct tool for stratifying patients with elevated prostate-specific antigen, as well as those diagnosed with CaP. Including the miR-301a as an additional variable in MSKCC post-prostatectomy nomogram improved its ability in facilitating clinical decision-making.
Collapse
Affiliation(s)
| | | | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY
| | - Adnan Dervishi
- Department of Urology, University of Louisville, Louisville, KY
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, KY
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | - Kong Maiying
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY
| | - Houda Alatassi
- Department of Pathology, University of Louisville, Louisville, KY
| | | | - Jamie C Messer
- Department of Urology, University of Louisville, Louisville, KY
| | | | - Ahmed Haddad
- Department of Urology, University of Louisville, Louisville, KY
| | | |
Collapse
|
16
|
Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model. J Transl Med 2018; 16:134. [PMID: 29784056 PMCID: PMC5963164 DOI: 10.1186/s12967-018-1506-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/05/2018] [Indexed: 02/05/2023] Open
Abstract
Background Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis of complex diseases. Methods In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of systems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regulation, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA unique targets. Results With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further confirmed by the assessment of their predictive power and biological function analysis. Conclusions Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other complex diseases. Electronic supplementary material The online version of this article (10.1186/s12967-018-1506-7) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Li X, Li J, Cai Y, Peng S, Wang J, Xiao Z, Wang Y, Tao Y, Li J, Leng Q, Wu D, Yang S, Ji Z, Han Y, Li L, Gao X, Zeng C, Wen X. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett 2018; 418:211-220. [PMID: 29331421 DOI: 10.1016/j.canlet.2018.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Hyperglycaemia promotes the development of Prostate cancer (PCa). However, the roles of miRNAs in this disease process and the underlying mechanisms are largely unknown. In this study, we recruited 391 PCa patients in China and found that PCa patients with high level blood glucose (≥100 mg/dL) trended to have high Gleason score (GS ≥ 7). miRNA-301a levels were significantly higher in prostate cancer than that in normal prostate tissues. Hyperglycaemia or high glucose treatment induced miR-301a expression in prostate tissues or PCa cell lines. miR-301a suppressed the expression of p21 and Smad4, and subsequently promoted G1/S cell cycle transition and cell proliferation in vitro and xenograft growth in nude mice in vivo. Furthermore, knockdown of p21 and Smad4 mimicked the effects of miR-301a overexpression. Restoration of p21 and smad4 could interrupt the effects of miR-301a overexpression. Importantly, inhibition of miR-301a severely blocked high glucose-induced PCa cell growth both in vitro and in vivo. These results revealed a novel molecular link between hyperglycaemia and PCa. The miR-301a plays an important role in the hyperglycaemia-associated cancer growth, and represents a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Health Care, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Jun Li
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, 518107, People's Republic of China.
| | - Yi Cai
- Department of Urology, Peking Union Medical College Hospital, 1 ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Shubin Peng
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Jun Wang
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Zhaoming Xiao
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Yu Wang
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Yiran Tao
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Jun Li
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Qu Leng
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Shaodong Yang
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Ziliang Ji
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Yuefu Han
- Department of Urology, Yue Bei People's Hospital, Huimin South Road, Shaoguan, 512025, People's Republic of China.
| | - Liren Li
- Department of Colon-rectum Cancer, Cancer Center, Sun Yat-sen University, 651 East Dongfeng Road, Guangzhou, 510800, People's Republic of China.
| | - Xin Gao
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Chunxian Zeng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| | - Xingqiao Wen
- Department of Urology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, People's Republic of China.
| |
Collapse
|
18
|
Zheng JZ, Huang YN, Yao L, Liu YR, Liu S, Hu X, Liu ZB, Shao ZM. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Sci Rep 2018; 8:2225. [PMID: 29396508 PMCID: PMC5797194 DOI: 10.1038/s41598-018-20680-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Although microRNA-301a (miR-301a) has been reported to function as an oncogene in many human cancers, there are limited data regarding miR-301a and breast tumours. In this study, we first detected the expression of miR-301a using an in situ hybridization (ISH) -based classification system in 380 samples of BC tissue, including both non-TNBC (triple-negative breast cancer) and TNBC specimens. Our results suggest that analysing miR-301a expression in breast tissue biopsy specimens at the time of diagnosis could have the potential to identify patients who might be candidates for active surveillance. We validated our results that higher expression of miR-301a is associated with a decreased OS in independent public breast cancer databases, such as TCGA and METABRIC, using the online webtool Kaplan-Meier Plotter, which provided additional powerful evidence to confirm the prognostic value of miR-301a. MiR-301a may serve as a potential therapeutic target for patients with breast cancer. According to our results, miR-301a should be considered, and novel therapeutic options are needed to target this aggressive miR-301a-positive type of breast cancer to reduce recurrence and the mortality rate.
Collapse
Affiliation(s)
- Jin-Zhou Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China
- Department of General Surgery (Pudong Branch), Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
- Department of Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yan-Ni Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China
| | - Sheng Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China
- Department of General Surgery (Pudong Branch), Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
- Department of Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.
| | - Zhe-Bin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.
| | - Zhi-Min Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032, China.
| |
Collapse
|
19
|
Song CJ, Chen H, Chen LZ, Ru GM, Guo JJ, Ding QN. The potential of microRNAs as human prostate cancer biomarkers: A meta-analysis of related studies. J Cell Biochem 2017; 119:2763-2786. [PMID: 29095529 PMCID: PMC5814937 DOI: 10.1002/jcb.26445] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PC) is a very important kind of male malignancies. When PC evolves into a stage of hormone resistance or metastasis, the fatality rate is very high. Currently, discoveries and advances in miRNAs as biomarkers have opened the potential for the diagnosis of PC, especially early diagnosis. miRNAs not only can noninvasively or minimally invasively identify PC, but also can provide the data for optimization and personalization of therapy. Moreover, miRNAs have been shown to play an important role to predict prognosis of PC. The purpose of this meta‐analysis is to integrate the currently published expression profile data of miRNAs in PC, and evaluate the value of miRNAs as biomarkers for PC. All of relevant records were selected via electronic databases: Pubmed, Embase, Cochrane, and CNKI based on the assessment of title, abstract, and full text. we extracted mean ± SD or fold change of miRNAs expression levels in PC versus BPH or normal controls. Pooled hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS) and recurrence‐free survival (RFS), were also calculated to detect the relationship between high miRNAs expression and PC prognosis. Selected 104 articles were published in 2007‐2017. According to the inclusion criteria, 104 records were included for this meta‐analysis. The pooled or stratified analyze showed 10 up‐regulated miRNAs (miR‐18a, miR‐34a, miR‐106b, miR‐141, miR‐182, miR‐183, miR‐200a/b, miR‐301a, and miR‐375) and 14 down‐regulated miRNAs (miR‐1, miR‐23b/27b, miR‐30c, miR‐99b, miR‐139‐5p, miR‐152, miR‐187, miR‐204, miR‐205, miR‐224, miR‐452, miR‐505, and let‐7c) had relatively good diagnostic and predictive potential to discriminate PC from BPH/normal controls. Furthermore, high expression of miR‐32 and low expression of let‐7c could be used to differentiate metastatic PC from local/primary PC. Additional interesting findings were that the expression profiles of five miRNAs (miR‐21, miR‐30c, miR‐129, miR‐145, and let‐7c) could predict poor RFS of PC, while the evaluation of miR‐375 was associated with worse OS. miRNAs are important regulators in PC progression. Our results indicate that miRNAs are suitable for predicting the different stages of PC. The detection of miRNAs is an effective way to control patient's prognosis and evaluate therapeutic efficacy. However, large‐scale detections based on common clinical guidelines are still necessary to further validate our conclusions, due to the bias induced by molecular heterogeneity and differences in study design and detection methods.
Collapse
Affiliation(s)
- Chun-Jiao Song
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Huan Chen
- Zhejiang Institute of Microbiology, Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Hangzhou, China
| | - Li-Zhong Chen
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Guo-Mei Ru
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jian-Jun Guo
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Qian-Nan Ding
- Medical Research Center, Shaoxing people's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
20
|
Rangrez AY, Hoppe P, Kuhn C, Zille E, Frank J, Frey N, Frank D. MicroRNA miR-301a is a novel cardiac regulator of Cofilin-2. PLoS One 2017; 12:e0183901. [PMID: 28886070 PMCID: PMC5590826 DOI: 10.1371/journal.pone.0183901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Calsarcin-1 deficient mice develop dilated cardiomyopathy (DCM) phenotype in pure C57BL/6 genetic background (Cs1-ko) despite severe contractile dysfunction and robust activation of fetal gene program. Here we performed a microRNA microarray to identify the molecular causes of this cardiac phenotype that revealed the dysregulation of several microRNAs including miR-301a, which was highly downregulated in Cs1-ko mice compared to the wild-type littermates. Cofilin-2 (Cfl2) was identified as one of the potential targets of miR-301a using prediction databases, which we validated by luciferase assay and mutation of predicted binding sites. Furthermore, expression of miR-301a contrastingly regulated Cfl2 expression levels in neonatal rat ventricular cardiomyocytes (NRVCM). Along these lines, Cfl2 was significantly upregulated in Cs1-ko mice, indicating the physiological association between miR-301a and Cfl2 in vivo. Mechanistically, we found that Cfl2 activated serum response factor response element (SRF-RE) driven luciferase activity in neonatal rat cardiomyocytes and in C2C12 cells. Similarly, knockdown of miR301a activated, whereas, its overexpression inhibited the SRF-RE driven luciferase activity, further strengthening physiological interaction between miR-301a and Cfl2. Interestingly, the expression of SRF and its target genes was strikingly increased in Cs1-ko suggesting a possible in vivo correlation between expression levels of Cfl2/miR-301a and SRF activation, which needs to be independently validated. In summary, our data demonstrates that miR-301a regulates Cofilin-2 in vitro in NRVCM, and in vivo in Cs1-ko mice. Our findings provide an additional and important layer of Cfl2 regulation, which we believe has an extended role in cardiac signal transduction and dilated cardiomyopathy presumably due to the reported involvement of Cfl2 in these mechanisms.
Collapse
Affiliation(s)
- Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Phillip Hoppe
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
| | - Christian Kuhn
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Elisa Zille
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
| | - Johanne Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| |
Collapse
|
21
|
Suman S, Das TP, Moselhy J, Pal D, Kolluru V, Alatassi H, Ankem MK, Damodaran C. Oral administration of withaferin A inhibits carcinogenesis of prostate in TRAMP model. Oncotarget 2016; 7:53751-53761. [PMID: 27447565 PMCID: PMC5288218 DOI: 10.18632/oncotarget.10733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
We previously reported that withaferin A (WA), a natural compound, deters prostate cancer by inhibiting AKT while inducing apoptosis. In the current study, we examined its chemopreventive efficacy against carcinogenesis in the prostate using the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Two distinct sets of experiments were conducted. To determine whether WA delays tumor progression, it was given before cancer onset, at week 6, and until week 44. To determine its effect after the onset of prostate cancer, it was given from weeks 12 to 35. In both strategies, oral administration of WA effectively suppressed tumor burden when compared to vehicle-treated animals. No toxicity was seen in treated animals at gross pathological examination. Western blot analysis and immunohistochemistry of tumor sections revealed that in TRAMP controls, AKT and pAKT were highly expressed while nuclear FOXO3a and Par-4 were downregulated. On the contrary, treated mice showed inhibition of AKT signaling and activation of FOX03a-Par-4-induced cell death. They also displayed inhibition of mesenchymal markers such as β-catenin, vimentin, and snail as well as upregulation of E-cadherin. Because expressions of the angiogenic markers factor VIII and retic were downregulated, an anti-angiogenic role of WA is suggested. Overall, our results suggest that WA could be a promising anti-cancer agent that effectively inhibits carcinogenesis of the prostate.
Collapse
Affiliation(s)
- Suman Suman
- Department of Urology, University of Louisville, KY, USA
| | - Trinath P. Das
- Department of Urology, University of Louisville, KY, USA
| | - Jim Moselhy
- Department of Urology, University of Louisville, KY, USA
| | - Deeksha Pal
- Department of Urology, University of Louisville, KY, USA
| | | | - Houda Alatassi
- Department of Pathology, University of Louisville, KY, USA
| | | | | |
Collapse
|