1
|
Chen H, Cao S, Zhou Y, Wang T, Jiao Y, Tan Y, Wu Y, Ren Y, Song Y, Zhang JR, Du Z, Yang R. Molecular turn in Yersinia pestis pathogenesis: implications of the gppA frameshift for bacterial survival in human macrophage. Emerg Microbes Infect 2025; 14:2467778. [PMID: 39945756 PMCID: PMC11878169 DOI: 10.1080/22221751.2025.2467778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
Yersinia pestis, the etiological agent of the devastating plague, has caused three pandemics in human history. While known for its fatality, it has long been intriguing that biovar microtus strains are highly attenuated to humans. The survival and replication within macrophages are critical in the early stages of the Y. pestis lifestyle within warm-blooded hosts. Here, we demonstrate that a frameshift truncation of gppA, a gene encoding the phosphohydrolase GppA that responsible for the conversion of stringent response alarmone pppGpp to ppGpp, significantly promotes Y. pestis to survive inside human macrophages. This frameshift mutation of gppA is present in all the evolutionary branches formed by the modern Y. pestis strains responsible for the plague pandemics, while the relative ancient microtus strains express a functional GppA showing high activity in catalyzing pppGpp to ppGpp conversion. This adaptive evolution potentially explains why microtus Y. pestis strains exhibit attenuated virulence in humans in contrast to the lethal pathogenicity of non-microtus strains. Transcriptome analysis suggests that the disturbed balance of the ratio of ppGpp to pppGpp caused by GppA inactivation results in an upregulation of genes involved in the synthesis of branched-chain amino acids, which are essential for bacterial growth. This enhanced survival ability within macrophages could be a key factor for the virulence of Y. pestis towards humans. Our work sheds light on the molecular mechanisms behind Y. pestis host-specific pathogenicity, offering significant implications for enhancing our ability to predict and counteract the emergence of new infectious diseases.
Collapse
Affiliation(s)
- Hongyan Chen
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yang Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jing-Ren Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Cao S, Wang T, Ren Y, Wu G, Zhang Y, Tan Y, Zhou Y, Chen H, Zhang Y, Song Y, Yang R, Du Z. A protein O-GlcNAc glycosyltransferase regulates the antioxidative response in Yersinia pestis. Nat Commun 2024; 15:7062. [PMID: 39152136 PMCID: PMC11329713 DOI: 10.1038/s41467-024-50959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins is commonly associated with a variety of stress responses and cellular processes in eukaryotes, but its potential roles in bacteria are unclear. Here, we show that protein HmwC acts as an O-GlcNAc transferase (OGT) responsible for O-GlcNAcylation of multiple proteins in Yersinia pestis, a flea-borne pathogen responsible for plague. We identify 64 O-GlcNAcylated proteins (comprising 65 sites) with differential abundance under conditions mimicking the mammalian host (Mh) and flea vector (Fv) environments. Deletion of hmwC, encoding a putative OGT, structurally distinct from any existing member of the GT41 family, results in reduced O-GlcNAcylation, reduced growth, and alterations in virulence properties and survival under stress. Purified HmwC can modify target proteins in vitro using UDP-GlcNAc as sugar donor. One of the target proteins, OsdY, promotes Y. pestis survival under oxidative stress conditions. Thus, our results support that regulation of antioxidative responses through O-GlcNAcylation may be a conserved process shared by prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Gengshan Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Cao S, Chen Y, Yan Y, Zhu S, Tan Y, Wang T, Song Y, Deng H, Yang R, Du Z. Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Mol Cell Proteomics 2021; 20:100066. [PMID: 33631294 PMCID: PMC7994543 DOI: 10.1016/j.mcpro.2021.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
4
|
Cao SY, Liu WB, Tan YF, Yang HY, Zhang TT, Wang T, Wang XY, Song YJ, Yang RF, Du ZM. An Interaction between the Inner Rod Protein YscI and the Needle Protein YscF Is Required to Assemble the Needle Structure of the Yersinia Type Three Secretion System. J Biol Chem 2017; 292:5488-5498. [PMID: 28196868 DOI: 10.1074/jbc.m116.743591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The type III secretion system is a highly conserved virulence mechanism that is widely distributed in Gram-negative bacteria. It has a syringe-like structure composed of a multi-ring basal body that spans the bacterial envelope and a projecting needle that delivers virulence effectors into host cells. Here, we showed that the Yersinia inner rod protein YscI directly interacts with the needle protein YscF inside the bacterial cells and that this interaction depends on amino acid residues 83-102 in the carboxyl terminus of YscI. Alanine substitution of Trp-85 or Ser-86 abrogated the binding of YscI to YscF as well as needle assembly and the secretion of effectors (Yops) and the needle tip protein LcrV. However, yscI null mutants that were trans-complemented with YscI mutants that bind YscF still assembled the needle and secreted Yops, demonstrating that a direct interaction between YscF and YscI is critical for these processes. Consistently, YscI mutants that did not bind YscF resulted in greatly decreased HeLa cell cytotoxicity. Together, these results show that YscI participates in needle assembly by directly interacting with YscF.
Collapse
Affiliation(s)
- Shi-Yang Cao
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wan-Bin Liu
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Fang Tan
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui-Ying Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ting-Ting Zhang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yi Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Jun Song
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Fu Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zong-Min Du
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
5
|
Yang H, Wang T, Tian G, Zhang Q, Wu X, Xin Y, Yan Y, Tan Y, Cao S, Liu W, Cui Y, Yang R, Du Z. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice. Int J Med Microbiol 2017; 307:64-74. [DOI: 10.1016/j.ijmm.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023] Open
|
6
|
Demeure CE, Derbise A, Carniel E. Oral vaccination against plague using Yersinia pseudotuberculosis. Chem Biol Interact 2016; 267:89-95. [PMID: 27046452 DOI: 10.1016/j.cbi.2016.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism.
Collapse
Affiliation(s)
- Christian E Demeure
- Unité de recherche Yersinia, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| | - Anne Derbise
- Unité de recherche Yersinia, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| | - Elisabeth Carniel
- Unité de recherche Yersinia, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
7
|
Cui Y, Yang X, Xiao X, Anisimov AP, Li D, Yan Y, Zhou D, Rajerison M, Carniel E, Achtman M, Yang R, Song Y. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. INFECTION GENETICS AND EVOLUTION 2014; 26:172-9. [PMID: 24905600 DOI: 10.1016/j.meegid.2014.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
Abstract
Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives.
Collapse
Affiliation(s)
- Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | | | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | - Elisabeth Carniel
- Yersinia Research Unit, National Reference Laboratory, Institut Pasteur, Paris, France
| | - Mark Achtman
- Environmental Research Institute, University College Cork, Cork, Ireland, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Environmental Research Institute, University College Cork, Cork, Ireland, United Kingdom.
| |
Collapse
|
8
|
Wang X, Zhang X, Zhou D, Yang R. Live-attenuatedYersinia pestisvaccines. Expert Rev Vaccines 2014; 12:677-86. [DOI: 10.1586/erv.13.42] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
Vaccinology is a combinatorial science which studies the diversity of pathogens and the human immune system, and formulations that can modulate immune responses and prevent or cure disease. Huge amounts of data are produced by genomics and proteomics projects and large-scale screening of pathogen-host and antigen-host interactions. Current developments in computational vaccinology mainly support the analysis of antigen processing and presentation and the characterization of targets of immune response. Future development will also include systemic models of vaccine responses. Immunomics, the large-scale screening of immune processes which includes powerful immunoinformatic tools, offers great promise for future translation of basic immunology research advances into successful vaccines.
Collapse
Affiliation(s)
- Vladimir Brusic
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613, Singapore.
| | | | | |
Collapse
|
10
|
Derbise A, Cerdà Marín A, Ave P, Blisnick T, Huerre M, Carniel E, Demeure CE. An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague. PLoS Negl Trop Dis 2012; 6:e1528. [PMID: 22348169 PMCID: PMC3279354 DOI: 10.1371/journal.pntd.0001528] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/29/2011] [Indexed: 12/31/2022] Open
Abstract
Background Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined. Methodology and Principal Findings The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer's patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells) and the mucosal levels (IgA and Th17 cells). A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD50 of the fully virulent Y. pestis CO92 strain) and 94% against a high challenge dose (3,300×LD50). Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis. Conclusions and Significance The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality. Plague, among the most deadly infections of mankind's history, is present in Africa, Asia and America, and is currently re-emerging, recently causing cases in areas from where it had disappeared for decades. Pneumonic plague, its most deadly and contagious form, is responsible for human-to-human spreading of the infection. Vaccination would be an effective means to control the disease, but no efficient vaccine is currently available. Because live vaccines are potent inducers of protective immunity, our strategy was to use a Yersinia pseudotuberculosis, closely related to Y. pestis but genetically more stable, to make it suitable for use as live oral vaccine. We have developed a genetically defined Y. pseudotuberculosis strain strongly attenuated by deletion of virulence factors genes, which was also induced to produce the Y. pestis F1 pseudocapsule. A single oral dose was harmless and provided high- level protection against pneumonic plague. Such a candidate vaccine offers promising perspectives to control pneumonic plague mortality and transmission.
Collapse
Affiliation(s)
- Anne Derbise
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
D27-pLpxL, an avirulent strain of Yersinia pestis, primes T cells that protect against pneumonic plague. Infect Immun 2009; 77:4295-304. [PMID: 19620344 DOI: 10.1128/iai.00273-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinating with live, conditionally attenuated, pigmentation (Pgm)-deficient Yersinia pestis primes T cells that protect mice against pneumonic plague. However, Pgm-deficient strains are not considered safe for human use because they retain substantial virulence in animal models. Y. pestis strains engineered to express Escherichia coli LpxL are avirulent owing to constitutive production of lipopolysaccharide with increased Toll-like receptor 4-activating ability. We generated an LpxL-expressing Pgm-deficient strain (D27-pLpxL) and demonstrate here that this avirulent strain retains the capacity to prime protective T cells. Compared with unvaccinated controls, mice immunized intranasally with live D27-pLpxL exhibit a decreased bacterial burden and increased survival when challenged intranasally with virulent Y. pestis. T cells provide a substantial degree of this protection, as vaccine efficacy is maintained in B-cell-deficient muMT mice unless those animals are depleted of CD4 and CD8 T cells at the time of challenge. Upon challenge with Y. pestis, pulmonary T-cell numbers decline in naive mice, whereas immunized mice show increased numbers of CD44(high) CD43(high) effector T cells and T cells primed to produce tumor necrosis factor alpha and gamma interferon; neutralizing these cytokines at the time of challenge abrogates protection. Immunization does not prevent dissemination of Y. pestis from the lung but limits bacterial growth and pathology in visceral tissue, apparently by facilitating formation of granuloma-like structures. This study describes a new model for studying T-cell-mediated protection against pneumonic plague and demonstrates the capacity for live, highly attenuated, Y. pestis vaccine strains to prime protective memory T-cell responses safely.
Collapse
|
12
|
Oral vaccination against bubonic plague using a live avirulent Yersinia pseudotuberculosis strain. Infect Immun 2008; 76:3808-16. [PMID: 18505804 DOI: 10.1128/iai.00034-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the possibility of using Yersinia pseudotuberculosis as a live vaccine against plague because it shares high genetic identity with Y. pestis while being much less virulent, genetically much more stable, and deliverable orally. A total of 41 Y. pseudotuberculosis strains were screened by PCR for the absence of the high pathogenicity island, the superantigens YPM, and the type IV pilus and the presence of the pYV virulence plasmid. One strain (IP32680) fulfilled these criteria. This strain was avirulent in mice upon intragastric or subcutaneous inoculation and persisted for 2 months in the mouse intestine without clinical signs of disease. IP32680 reached the mesenteric lymph nodes, spleen, and liver without causing major histological lesions and was cleared after 13 days. The antibodies produced in vaccinated animals recognized both Y. pseudotuberculosis and Y. pestis antigens efficiently. After a subcutaneous challenge with Y. pestis CO92, bacteria were found in low amounts in the organs and rarely in the blood of vaccinated animals. One oral IP32680 inoculation protected 75% of the mice, and two inoculations induced much higher antibody titers and protected 88% of the mice. Our results thus validate the concept that an attenuated Y. pseudotuberculosis strain can be an efficient, inexpensive, safe, and easy-to-produce live vaccine for oral immunization against bubonic plague.
Collapse
|
13
|
Wang X, Han Y, Li Y, Guo Z, Song Y, Tan Y, Du Z, Rakin A, Zhou D, Yang R. Yersinia genome diversity disclosed by Yersinia pestis genome-wide DNA microarray. Can J Microbiol 2008; 53:1211-21. [PMID: 18026215 DOI: 10.1139/w07-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Yersinia includes 11 species, 3 of which (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) are pathogenic for humans. The remaining 8 species (Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. bercovieri, Y. mollaretii, Y. rohdei, Y. ruckeri, and Y. aldovae) are merely opportunistic pathogens found mostly in the environment. In this work, the genomic differences among Yersinia were determined using a Y. pestis-specific DNA microarray. The results revealed 292 chromosomal genes that were shared by all Yersinia species tested, constituting the conserved gene pool of the genus Yersinia. Hierarchical clustering analysis of the microarray data revealed the genetic relationships among all 11 species in this genus. The microarray analysis in conjunction with PCR screening greatly reduced the number of chromosomal genes (32) specific for Y. pestis to 16 genes and uncovered a high level of genomic plasticity within Y. pseudotuberculosis, indicating that its different serotypes have undergone an extensively parallel loss or acquisition of genetic content, which is likely to be important for its adaptation to changes in environmental niches.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Bubonic plague is an often fulminant systemic zoonosis, caused by Yersinia pestis. Conventional microbiology, bacterial population genetics, and genome sequence data, all suggest that Y pestis is a recently evolved clone of the enteric pathogen Yersinia pseudotuberculosis. The genetic basis of this organism's rapid adaptation to its insect vector (the flea) with transmission between mammalian hosts by novel subcutaneous and pneumonic routes of infection is becoming clearer. This transition provides a paradigm for the way in which new pathogens could emerge. Plague in humans is controlled by suppression of rodent reservoir hosts and their fleas and by early detection and treatment of cases of disease. Detection systems for plague in non-endemic regions might now be needed because of a bioterrorism threat. Rapid diagnostic tests are available and a subunit vaccine is in clinical trials.
Collapse
|
15
|
Taboada EN, Luebbert CC, Nash JHE. Studying bacterial genome dynamics using microarray-based comparative genomic hybridization. Methods Mol Biol 2007; 396:223-53. [PMID: 18025696 DOI: 10.1007/978-1-59745-515-2_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome sequencing has revealed the remarkable amount of genetic diversity that can be encountered in bacterial genomes. In particular, the comparison of genome sequences from closely related strains has uncovered significant differences in gene content, hinting at the dynamic nature of bacterial genomes. The study of these genome dynamics is crucial to leveraging genomic information because the genome sequence of a single bacterial strain may not accurately represent the genome of the species. The dynamic nature of bacterial genome content has required us to apply the concepts of comparative genomics (CG) at the species level. Although direct genome sequence comparisons are an ideal method of performing CG, one current constraint is the limited availability of multiple genome sequences from a given bacterial species. DNA microarray-based comparative genomic hybridization (MCGH), which can be used to determine the presence or absence of thousands of genes in a single hybridization experiment, provides a powerful alternative for determining genome content and has been successfully used to investigate the genome dynamics of a wide number of bacterial species. Although MCGH-based studies have already provided a new vista on bacterial genome diversity, original methods for MCGH have been limited by the absence of novel gene sequences included in the microarray. New applications of the MCGH platform not only promise to accelerate the pace of novel gene discovery but will also help provide an integrated microarray-based approach to the study of bacterial CG.
Collapse
|
16
|
Lindroos H, Vinnere O, Mira A, Repsilber D, Näslund K, Andersson SGE. Genome rearrangements, deletions, and amplifications in the natural population of Bartonella henselae. J Bacteriol 2006; 188:7426-39. [PMID: 16936024 PMCID: PMC1636255 DOI: 10.1128/jb.00472-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cats are the natural host for Bartonella henselae, an opportunistic human pathogen and the agent of cat scratch disease. Here, we have analyzed the natural variation in gene content and genome structure of 38 Bartonella henselae strains isolated from cats and humans by comparative genome hybridizations to microarrays and probe hybridizations to pulsed-field gel electrophoresis (PFGE) blots. The variation in gene content was modest and confined to the prophage and the genomic islands, whereas the PFGE analyses indicated extensive rearrangements across the terminus of replication with breakpoints in areas of the genomic islands. We observed no difference in gene content or structure between feline and human strains. Rather, the results suggest multiple sources of human infection from feline B. henselae strains of diverse genotypes. Additionally, the microarray hybridizations revealed DNA amplification in some strains in the so-called chromosome II-like region. The amplified segments were centered at a position corresponding to a putative phage replication initiation site and increased in size with the duration of cultivation. We hypothesize that the variable gene pool in the B. henselae population plays an important role in the establishment of long-term persistent infection in the natural host by promoting antigenic variation and escape from the host immune response.
Collapse
Affiliation(s)
- Hillevi Lindroos
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, S-752 36 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|