1
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, Rodríguez-Hilario A, González H, Bondy J, Lawson F, Folawiyo O, Michailidi C, Dziedzic A, Thangavel R, Hadar T, Noordhuis MG, Westra W, Koch W, Sidransky D. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2018; 7:51320-51334. [PMID: 27259999 PMCID: PMC5239478 DOI: 10.18632/oncotarget.9710] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection.The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors.
Collapse
Affiliation(s)
- Rafael Guerrero-Preston
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Filipa Godoy-Vitorino
- Natural Sciences Department, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Arnold Rodríguez-Hilario
- Natural Sciences Department, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Herminio González
- Natural Sciences Department, Microbial Ecology and Genomics Laboratory, Inter American University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico
| | - Jessica Bondy
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fahcina Lawson
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwasina Folawiyo
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christina Michailidi
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Rajagowthamee Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tal Hadar
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maartje G Noordhuis
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - William Westra
- Department of Pathology-Surgical Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wayne Koch
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
|
4
|
Han JX, Ng GZ, Cecchini P, Chionh YT, Saeed MA, Næss LM, Joachim M, Blandford LE, Strugnell RA, Colaco CA, Sutton P. Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism. Vaccine 2016; 34:1704-11. [DOI: 10.1016/j.vaccine.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022]
|
5
|
Connor DO, Zantow J, Hust M, Bier FF, von Nickisch-Rosenegk M. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display. PLoS One 2016; 11:e0148986. [PMID: 26859666 PMCID: PMC4747489 DOI: 10.1371/journal.pone.0148986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniel O. Connor
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
6
|
Sheikhi R, Amin M, Hamidinia M, Assarehzadegan MA, Rostami S, Mojtahedi Z. Comparative Proteomics Analysis of Two Strains of Neisseria meningitidis Serogroup B and Neisseria lactamica. Jundishapur J Microbiol 2015; 8:e25228. [PMID: 26855742 PMCID: PMC4735836 DOI: 10.5812/jjm.25228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
Background: Antigenic similarities between Neisseria lactamica as a commensal species and N. meningitidis serogroup B (NmB) as an important cause of meningitis infection have been considered for the development of an effective vaccine based on their common proteins to prevent life-threatening bacterial meningitis. Objectives: The main aims of this study were to determine whole proteome profiles of N. lactamica strains and to compare them with whole proteome profile of a reference strain of NmB for identification of some of common proteins between the two species. Materials and Methods: We compared the whole proteomic profiles of N. lactamica strains and a reference strain of NmB. Lysates from bacterial strains were resolved by two-dimensional gel electrophoresis (2-DE), followed by Coomassie Brilliant blue staining. Some of the protein spots were excised from the gel and subjected to matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis. Results: The analysis of Coomassie-stained gels using ImageMaster 2D Platinum software identified approximately 800 reproducible protein spots in the range of pI 4.5 - 9.5 and Mr of 8 - 100 kDa for each 2-DE gel of the studied bacterial strains. By comparing proteome maps of 2-DE gels, more than 200 common protein spots were recognized between the two species. Forty-eight common protein spots between the studied bacterial strains were identified by MALDI-TOF/TOF-MS. The results indicated that among the protein spots identified by MOLDI-TOF/TOF mass spectrometry, the groups of proteins included cell surface, energy metabolism, amino acid transport and metabolism, coenzyme metabolism, defense, multifunctional cellular processes, DNA, RNA and protein synthesis, ribosomal structure, regulatory functions, replication, transcription, translation, unknown and hypothetical proteins with unknown function. We found that N. lactamica strains have a proteome profile somewhat similar to each other and slightly different with NmB. Conclusions: These results show the usefulness of proteome analysis in successful identification of the common proteins between N. lactamica strains and NmB. This proteomics analysis is the starting point in the path of knowledge development about whole proteome profiles of N. lactamica strains.
Collapse
Affiliation(s)
- Raheleh Sheikhi
- Department of Microbiology, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Mansour Amin
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
- Department of Microbiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Maryam Hamidinia
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | | | - Soodabeh Rostami
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Zahra Mojtahedi, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, P. O. Box: 7134845794, Shiraz, IR Iran. Tel/Fax: +98-7112303687, E-mail:
| |
Collapse
|
7
|
Liu G, Tang CM, Exley RM. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. MICROBIOLOGY-SGM 2015; 161:1297-1312. [PMID: 25814039 DOI: 10.1099/mic.0.000086] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Neisseria contains the important pathogens Neisseria meningitidis and Neisseria gonorrhoeae. These Gram-negative coccoid bacteria are generally thought to be restricted to humans and inhabit mucosal surfaces in the upper respiratory and genito-urinary tracts. While the meningococcus and gonococcus have been widely studied, far less attention has been paid to other Neisseria species. Here we review current knowledge of the distribution of commensal Neisseria in humans and other hosts. Analysis of the microbiome has revealed that Neisseria is an abundant member of the oropharyngeal flora, and we review its potential impact on health and disease. Neisseria also exhibit remarkable diversity, exhibiting both coccoid and rod-shaped morphologies, as well as environmental strains which are capable of degrading complex organic molecules.
Collapse
Affiliation(s)
- Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
Abstract
Neisseria meningitidis (meningococcus) is a major causative organism of meningitis and sepsis and Neisseria gonorrhoeae (gonococcus) is the causative organism of the sexually transmitted disease gonorrhea. Infections caused by meningococci are vaccine-preventable, whereas gonococcal vaccine research and development has languished for decades and the correlates of protection are still largely unknown. In the past two decades, complementary 'omic' platforms have been developed to interrogate Neisseria genomes and gene products. Proteomic techniques applied to whole Neisseria bacteria, outer membranes and outer membrane vesicle vaccines have generated protein maps and also allowed the examination of environmental stresses on protein expression. In particular, immuno-proteomics has identified proteins whose expression is correlated with the development of human natural immunity to meningococcal infection and colonization and following vaccination. Neisseria proteomic techniques have produced a catalog of potential vaccine antigens and investigating the functional and biological properties of these proteins could finally provide 'universal' Neisseria vaccines.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| |
Collapse
|
9
|
Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 2014; 13:1299-317. [PMID: 24607996 PMCID: PMC4014286 DOI: 10.1074/mcp.m113.029538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 02/28/2014] [Indexed: 01/29/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.
Collapse
Affiliation(s)
- Ryszard A. Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Igor H. Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Jacob V. Weber
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Philip R. Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Aleksandra E. Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
10
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
11
|
Bernardini G, Braconi D, Martelli P, Santucci A. Postgenomics ofNeisseria meningitidisfor vaccines development. Expert Rev Proteomics 2014; 4:667-77. [DOI: 10.1586/14789450.4.5.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Newcombe J, Mendum TA, Ren CP, McFadden J. Identification of the immunoproteome of the meningococcus by cell surface immunoprecipitation and MS. MICROBIOLOGY-SGM 2013; 160:429-438. [PMID: 24275101 DOI: 10.1099/mic.0.071829-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most healthy adults are protected from meningococcal disease by the presence of naturally acquired anti-meningococcal antibodies; however, the identity of the target antigens of this protective immunity remains unclear, particularly for protection against serogroup B disease. To identify the protein targets of natural protective immunity we developed an immunoprecipitation and proteomics approach to define the immunoproteome of the meningococcus. Sera from 10 healthy individuals showing serum bactericidal activity against both a meningococcal C strain (L91543) and the B strain MC58, together with commercially available pooled human sera, were used as probe antisera. Immunoprecipitation was performed with each serum sample and live cells from both meningococcal strains. Immunoprecipitated proteins were identified by MS. Analysis of the immunoproteome from each serum demonstrated both pan-reactive antigens that were recognized by most sera as well as subject-specific antigens. Most antigens were found in both meningococcal strains, but a few were strain-specific. Many of the immunoprecipitated proteins have been characterized previously as surface antigens, including adhesins and proteases, several of which have been recognized as vaccine candidate antigens, e.g. factor H-binding protein, NadA and neisserial heparin-binding antigen. The data demonstrate clearly the presence of meningococcal antibodies in healthy individuals with no history of meningococcal infection and a wide diversity of immune responses. The identification of the immunoreactive proteins of the meningococcus provides a basis for understanding the role of each antigen in the natural immunity associated with carriage and may help to design vaccination strategies.
Collapse
Affiliation(s)
- Jane Newcombe
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Tom A Mendum
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Chuan-Peng Ren
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
13
|
Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 2012; 80:1948-57. [PMID: 22409932 PMCID: PMC3370574 DOI: 10.1128/iai.06014-11] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.
Collapse
Affiliation(s)
| | - Brad T. Cookson
- Department of Microbiology
- Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Williams JN, Christodoulides M, Heckels JE. Analysis of the immune response to Neisseria meningitidis using a proteomics approach. Methods Mol Biol 2012; 799:343-60. [PMID: 21993655 DOI: 10.1007/978-1-61779-346-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The availability of Neisseria genome sequences together with improvements in proteomic technologies provide the opportunity to study at high resolution the immune response to Neisseria meningitidis. In this chapter, we describe a protocol that combines two-dimensional (2D) SDS-PAGE of meningococcal outer membranes with western blotting of human antisera to identify proteins associated with the development of protective antibody responses. This methodology can identify putative vaccine candidates for incorporation in a multi-component serogroup B meningococcal vaccine.
Collapse
Affiliation(s)
- Jeannette N Williams
- Division of Infection, Inflammation, and Immunity, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton, UK.
| | | | | |
Collapse
|
15
|
Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011; 6:e26130. [PMID: 22028815 PMCID: PMC3197596 DOI: 10.1371/journal.pone.0026130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.
Collapse
Affiliation(s)
- Hazel En En Wong
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatrics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
|
17
|
Abstract
Meningococcal meningitis is feared because of the rapid onset of severe disease from mild symptoms and, therefore, is an important target for vaccine research. Five serogroups, defined by the structures of their capsular polysaccharides, are responsible for the vast majority of disease. Protection against four of these five serogroups can be obtained with polysaccharide or glycoconjugate vaccines, in which fragments of the capsular polysaccharides attached to a carrier protein generate anticarbohydrate immune responses, whilst protection against group B disease requires protein immunogens, often presented in vesicles containing outer membrane proteins. Glycoconjugate vaccines are now an established technology, but outer-membrane protein vaccines are still under development and present significant challenges. This review discusses physicochemical approaches to the characterization and quality control of these vaccines, as well as highlighting the problems and differences in vaccine design required for protection against different serogroups of the same species of pathogen.
Collapse
|
18
|
Human airway epithelial cell responses to Neisseria lactamica and purified porin via Toll-like receptor 2-dependent signaling. Infect Immun 2010; 78:5314-23. [PMID: 20937766 DOI: 10.1128/iai.00681-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin's surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Collapse
|
19
|
Gupta SK, Smita S, Sarangi AN, Srivastava M, Akhoon BA, Rahman Q, Gupta SK. In silico CD4+ T-cell epitope prediction and HLA distribution analysis for the potential proteins of Neisseria meningitidis Serogroup B—A clue for vaccine development. Vaccine 2010; 28:7092-7. [DOI: 10.1016/j.vaccine.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/22/2010] [Accepted: 08/02/2010] [Indexed: 01/11/2023]
|
20
|
Yero D, Vipond C, Climent Y, Sardiñas G, Feavers IM, Pajón R. Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. MICROBIOLOGY-SGM 2010; 156:3596-3608. [PMID: 20817647 DOI: 10.1099/mic.0.043182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular diversity of a novel Neisseria meningitidis antigen, encoded by the ORF NMB0088 of MC58 (FadL-like protein), was assessed in a panel of 64 diverse meningococcal strains. The panel consisted of strains belonging to different serogroups, serotypes, serosubtypes and MLST sequence types, of different clinical sources, years and countries of isolation. Based on the sequence variability of the protein, the FadL-like protein has been divided into four variant groups in this species. Antigen variants were associated with specific serogroups and MLST clonal complexes. Maximum-likelihood analyses were used to determine the relationships among sequences and to compare the selection pressures acting on the encoded protein. Furthermore, a model of population genetics and molecular evolution was used to detect natural selection in DNA sequences using the non-synonymous : synonymous substitution (d(N) : d(S)) ratio. The meningococcal sequences were also compared with those of the related surface protein in non-pathogenic commensal Neisseria species to investigate potential horizontal gene transfer. The N. meningitidis fadL gene was subject to only weak positive selection pressure and was less diverse than meningococcal major outer-membrane proteins. The majority of the variability in fadL was due to recombination among existing alleles from the same or related species that resulted in a discrete mosaic structure in the meningococcal population. In general, the population structuring observed based on the FadL-like membrane protein indicates that it is under intermediate immune selection. However, the emergence of a new subvariant within the hyperinvasive lineages demonstrates the phenotypic adaptability of N. meningitidis, probably in response to selective pressure.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Gretel Sardiñas
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Rolando Pajón
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
21
|
Vaughan AT, Brackenbury LS, Massari P, Davenport V, Gorringe A, Heyderman RS, Williams NA. Neisseria lactamicaSelectively Induces Mitogenic Proliferation of the Naive B Cell Pool via Cell Surface Ig. THE JOURNAL OF IMMUNOLOGY 2010; 185:3652-60. [DOI: 10.4049/jimmunol.0902468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
23
|
Frequency of factor H-binding protein modular groups and susceptibility to cross-reactive bactericidal activity in invasive meningococcal isolates. Vaccine 2009; 28:2122-9. [PMID: 20044056 DOI: 10.1016/j.vaccine.2009.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/03/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
Abstract
Meningococcal factor H-binding protein (fHbp) is a promising vaccine candidate that elicits serum bactericidal antibodies in humans. Based on sequence variability of the entire protein, fHbp has been divided into three variant groups or two sub-families. We recently reported that the fHbp architecture was modular, consisting of five variable segments, each encoded by genes from one of two lineages. Based on combinations of segments from different lineages, all 70 known fHbp sequence variants could be classified into one of six modular groups. In this study, we analyzed sequences of 172 new fHbp variants that were available from public databases. All but three variants could be classified into one of the six previously described modular groups. Among systematically collected invasive group B isolates from the U.S. and Europe, modular group I overall was most common (60%) but group IV (natural chimeras) accounted for 23% of UK isolates and <1% of U.S. isolates (P<0.0001). Mouse antisera to recombinant fHbp from each of the modular groups showed modular group-specific bactericidal activity against strains with low fHbp expression but had broader activity against strains with higher fHbp expression. Thus both modular group and relative expression of fHbp affected strain susceptibility to anti-fHbp bactericidal activity. The results confirmed the modular architecture of fHbp and underscored its importance for the design of broadly protective group B vaccines in different regions.
Collapse
|
24
|
Pajon R, Yero D, Niebla O, Climent Y, Sardiñas G, García D, Perera Y, Llanes A, Delgado M, Cobas K, Caballero E, Taylor S, Brookes C, Gorringe A. Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes. Vaccine 2009; 28:532-41. [PMID: 19837092 DOI: 10.1016/j.vaccine.2009.09.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/22/2009] [Accepted: 09/29/2009] [Indexed: 12/13/2022]
Abstract
The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.
Collapse
Affiliation(s)
- Rolando Pajon
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Ave 31, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sardiñas G, Climent Y, Rodríguez Y, González S, García D, Cobas K, Caballero E, Pérez Y, Brookes C, Taylor S, Gorringe A, Delgado M, Pajón R, Yero D. Assessment of vaccine potential of the Neisseria-specific protein NMB0938. Vaccine 2009; 27:6910-7. [PMID: 19751688 DOI: 10.1016/j.vaccine.2009.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/19/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Immunoproteomic analysis of the development of natural immunity in subjects colonized by Neisseria meningitidis reveals potential vaccine candidates. Infect Immun 2009; 77:5080-9. [PMID: 19737898 DOI: 10.1128/iai.00701-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The potential protective effect of existing vaccines against serogroup B meningococci, based on outer membrane proteins, is limited by strain restriction and apparent short duration of immune responses. In contrast, meningococcal colonization is known to stimulate the production of cross-protective antibodies as defined by the development of serum bactericidal activity (SBA) against heterologous serogroup B strains. In the current study, a resource of human serum samples and meningococcal carriage strains from studies of longitudinal carriage has been subjected to immunoproteomic analysis to investigate the outer membrane protein antigens associated with the development of SBA to both homologous and heterologous meningococcal serogroup B strains. Proteins from outer membranes of homologous and heterologous strains were separated by two-dimensional electrophoresis and reacted with paired sera which showed an increase in SBA following colonization. Individuals showed differing patterns of reactivity upon colonization, with an increase in SBA being associated with increases in the number of spots detected before and after colonization and/or with increases in the intensity of individual spots. Analysis of immunoreactive spots by mass spectrometry resulted in the identification of 43 proteins potentially associated with the development of SBA against both homologous and heterologous strains. The list of protein immunogens generated included not only well-established antigens but also novel proteins that represent potentially new candidates for inclusion in defined, multicomponent serogroup B vaccines.
Collapse
|
27
|
Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, Kelleher DP, Windle HJ. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin Appl 2009; 3:785-796. [DOI: 10.1002/prca.200800192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 12/28/2022]
Abstract
AbstractThe gastric pathogen Helicobacter pylori causes a spectrum of gastro‐duodenal diseases, which may be mediated in part by the outer membrane vesicles (OMVs) constitutively shed by the pathogen. We aimed to determine the proteome of H. pylori OMV to help evaluate the mechanisms whereby these structures confer their known immuno‐modulatory and cytotoxic activities to host cells, as such disease‐associated activities are also conferred by the bacterium from which the vesicles are derived. We also evaluated the effect of the OMV on gastric/colonic epithelial cells, duodenal explants and neutrophils. A proteomic analysis of the OMV proteins separated by SDS‐PAGE from two strains of H. pylori (J99 and NCTC 11637) was undertaken and 162 OMV‐associated proteins were identified in J99 and 91 in NCTC 11637 by LC‐MS/MS. The vesicles are rich in membrane proteins, porins, adhesins and several molecules known to modulate chemokine secretion, cell proliferation and other host cellular processes. Further, the OMVs are also vehicles for the carriage of the cytotoxin‐associated gene A cytotoxin in addition to the previously documented toxin, vacuolating cytotoxin. Taken together, it is evident from the proteome of H. pylori OMV that these structures are equipped with the molecules required to interact with host cells in a manner not dissimilar from the intact pathogen.
Collapse
|
28
|
Mendum TA, Newcombe J, McNeilly CL, McFadden J. Towards the immunoproteome of Neisseria meningitidis. PLoS One 2009; 4:e5940. [PMID: 19529772 PMCID: PMC2691954 DOI: 10.1371/journal.pone.0005940] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/29/2009] [Indexed: 01/18/2023] Open
Abstract
Despite the introduction of conjugated polysaccharide vaccines for many of the Neisseria meningitidis serogroups, neisserial infections continue to cause septicaemia and meningitis across the world. This is in part due to the difficulties in developing a, cross-protective vaccine that is effective against all serogroups, including serogroup B meningococci. Although convalescent N. meningitidis patients develop a natural long-lasting cross-protective immunity, the antigens that mediate this response remain unknown. To help define the target of this protective immunity we identified the proteins recognized by IgG in sera from meningococcal patients by a combination of 2D protein gels, western blots and mass spectrometry. Although a number of outer membrane antigens were identified the majority of the antigens were cytoplasmic, with roles in cellular processes and metabolism. When recombinant proteins were expressed and used to raise sera in mice, none of the antigens elicited a positive SBA result, however flow cytometry did demonstrate that some, including the ribosomal protein, RplY were localised to the neisserial cell surface.
Collapse
Affiliation(s)
- Tom A. Mendum
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jane Newcombe
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Celia L. McNeilly
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
29
|
Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT. Biogenesis of bacterial membrane vesicles. Mol Microbiol 2009; 72:1395-407. [PMID: 19432795 DOI: 10.1111/j.1365-2958.2009.06731.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Membrane vesicle (MV) release remains undefined, despite its conservation among replicating Gram-negative bacteria both in vitro and in vivo. Proteins identified in Salmonella MVs, derived from the envelope, control MV production via specific defined domains that promote outer membrane protein-peptidoglycan (OM-PG) and OM protein-inner membrane protein (OM-PG-IM) interactions within the envelope structure. Modulation of OM-PG and OM-PG-IM interactions along the cell body and at division septa, respectively, maintains membrane integrity while co-ordinating localized release of MVs with distinct size distribution and protein content. These data support a model of MV biogenesis, wherein bacterial growth and division invoke temporary, localized reductions in the density of OM-PG and OM-PG-IM associations within the envelope structure, thus releasing OM as MVs.
Collapse
Affiliation(s)
- Brooke L Deatherage
- Department of Microbiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
30
|
O'Dwyer CA, Li MS, Langford PR, Kroll JS. Meningococcal biofilm growth on an abiotic surface - a model for epithelial colonization? MICROBIOLOGY-SGM 2009; 155:1940-1952. [PMID: 19383679 DOI: 10.1099/mic.0.026559-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis colonizes the human nasopharynx asymptomatically, often for prolonged periods, but occasionally invades from this site to cause life-threatening infection. In the nasopharynx aggregated organisms are closely attached to the epithelial surface, in a state in which the expression of components of the bacterial envelope differs significantly from that found in organisms multiplying exponentially in liquid phase culture or in the blood. We and others have hypothesized that here they are in the biofilm state, and to explore this we have investigated biofilm formation by the serogroup B strain MC58 on an abiotic surface, in a sorbarod system. Transcriptional changes were analysed, focusing on alteration in gene expression relevant to polysaccharide capsulation, lipooligosaccharide and outer-membrane protein synthesis - all phenotypes of importance in epithelial colonization. We report downregulation of genes controlling capsulation and the production of core oligosaccharide, and upregulation of genes encoding a range of outer-membrane components, reflecting phenotypic changes that have been established to occur in the colonizing state. A limited comparison with organisms recovered from an extended period of co-cultivation with epithelial cells suggests that this model system may better mirror natural colonization than do short-term meningococcal/epithelial cell co-cultivation systems. Modelling prolonged meningococcal colonization with a sorbarod system offers insight into gene expression during this important, but experimentally relatively inaccessible, phase of human infection.
Collapse
Affiliation(s)
- Clíona A O'Dwyer
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Ming-Shi Li
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - J Simon Kroll
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
31
|
Vaughan AT, Gorringe A, Davenport V, Williams NA, Heyderman RS. Absence of mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage. THE JOURNAL OF IMMUNOLOGY 2009; 182:2231-40. [PMID: 19201877 DOI: 10.4049/jimmunol.0802531] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The normal flora that colonizes the mucosal epithelia has evolved diverse strategies to evade, modulate, or suppress the immune system and avoid clearance. Neisseria lactamica and Neisseria meningitidis are closely related obligate inhabitants of the human upper respiratory tract. N. lactamica is a commensal but N. meningitidis is an opportunistic pathogen that occasionally causes invasive disease such as meningitis and septicemia. We demonstrate that unlike N. meningitidis, N. lactamica does not prime the development of mucosal T or B cell memory during the peak period of colonization. This cannot be explained by the induction of peripheral tolerance or regulatory CD4(+)CD25(+) T cell activity. Instead, N. lactamica mediates a B cell-dependent mitogenic proliferative response that is absent to N. meningitidis. This mitogenic response is associated with the production of T cell-independent polyclonal IgM that we propose functions by shielding colonizing N. lactamica from the adaptive immune system, maintaining immunological ignorance in the host. We conclude that, in contrast to N. meningitidis, N. lactamica maintains a commensal relationship with the host in the absence of an adaptive immune response. This may prolong the period of susceptibility to colonization by both pathogenic and nonpathogenic Neisseria species.
Collapse
Affiliation(s)
- Andrew T Vaughan
- Department of Cellular and Molecular Medicine, School of Medical Science, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 2009; 58:196-208. [DOI: 10.1099/jmm.0.004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Evelin Caballero
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Karem Cobas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Olivia Niebla
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| |
Collapse
|
33
|
Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: Current perspectives. Proteomics 2008; 8:4083-99. [DOI: 10.1002/pmic.200800109] [Citation(s) in RCA: 641] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Karched M, Ihalin R, Eneslätt K, Zhong D, Oscarsson J, Wai SN, Chen C, Asikainen SE. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form. BMC Microbiol 2008; 8:18. [PMID: 18226201 PMCID: PMC2257964 DOI: 10.1186/1471-2180-8-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL) among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S) and in its spontaneous laboratory variant (D7SS) resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm), AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm) were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP) receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The PorB porin from commensal Neisseria lactamica induces Th1 and Th2 immune responses to ovalbumin in mice and is a potential immune adjuvant. Vaccine 2007; 26:786-96. [PMID: 18191311 DOI: 10.1016/j.vaccine.2007.11.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 12/20/2022]
Abstract
Porins from pathogenic Neisseriae are among several bacterial products with immune adjuvant activity. Neisseria meningitidis (Nme) PorB, has been shown to induce immune cells activation in a TLR2-dependent manner and acts as a vaccine immune adjuvant. The PorB porin from Neisseria lactamica (Nlac), a common nasopharyngeal commensal, shares significant structural and functional similarities with Nme PorB. In this work we ask whether the immune adjuvant ability of porins from pathogenic Neisserial strains is a characteristic shared with porins from non-pathogenic Neisserial species or whether it is unique for bacterial products derived from microorganisms capable of inducing inflammation and disease. We evaluated the potential immune adjuvant effect of Nlac PorB in mice using ovalbumin (OVA) as a prototype antigen. Immunization with Nlac PorB/OVA induced high OVA-specific IgG and IgM titers compared to OVA alone, similar to other adjuvants such as Nme PorB and alum. High titers of IgG1 and IgG2b were detected as well as production of IL-4, IL-10, IL-12 and INF-gamma in response to Nlac PorB, consistent with induction of both a Th1-type and a Th2-type immune response. OVA-specific proliferation was also determined in splenocytes from Nlac PorB/OVA-immunized mice. In addition, B cell activation in vitro and cytokine production in response to Nlac PorB was found to be mediated by TLR2, in a similar manner to Nme PorB.
Collapse
|
36
|
Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate. Vaccine 2007; 25:8420-31. [DOI: 10.1016/j.vaccine.2007.09.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/20/2007] [Accepted: 09/23/2007] [Indexed: 11/15/2022]
|
37
|
Bernardini G, Braconi D, Santucci A. The analysis of Neisseria meningitidis proteomes: Reference maps and their applications. Proteomics 2007; 7:2933-46. [PMID: 17628027 DOI: 10.1002/pmic.200700094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neisseria meningitidis is an encapsulated Gram-negative bacterium responsible for significant morbidity and mortality worldwide. The availability of meningococcal genome sequences in combination with the rapid growth of proteomic techniques and other high-throughput methods, provided new approaches to the analysis of bacterial system biology. This review considers the meningococcal reference maps so far published as a starting point aimed to elucidate bacterial physiology and pathogenicity, paying particular attention to proteins with potential vaccine and diagnostic applications.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biologia Molecolare, via Fiorentina 1, Università degli Studi di Siena, Siena, Italy
| | | | | |
Collapse
|
38
|
Wheeler JX, Vipond C, Feavers IM. Exploring the proteome of meningococcal outer membrane vesicle vaccines. Proteomics Clin Appl 2007; 1:1198-210. [DOI: 10.1002/prca.200700204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Indexed: 11/06/2022]
|
39
|
Williams JN, Skipp PJ, Humphries HE, Christodoulides M, O'Connor CD, Heckels JE. Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. Infect Immun 2006; 75:1364-72. [PMID: 17158897 PMCID: PMC1828559 DOI: 10.1128/iai.01424-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current experimental vaccines against serogroup B Neisseria meningitidis are based on meningococcal outer membrane (OM) proteins present in outer membrane vesicles (OMV) in which toxic lipopolysaccharide is depleted by detergent extraction. Knowledge of the composition of OM and OMV is essential for developing new meningococcal vaccines based on defined antigens. In the current study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nanocapillary liquid chromatography-tandem mass spectrometry were used to investigate the proteomes of OM and OMV from meningococcal strain MC58 and OM from a lipopolysaccharide-deficient mutant. The analysis of OM revealed a composition that was much more complex than the composition that has been reported previously; a total of 236 proteins were identified, only 6.4% of which were predicted to be located in the outer membrane. The most abundant proteins included not only the well-established major OM proteins (PorA, PorB, Opc, Rmp, and Opa) but also other proteins, such as pilus-associated protein Q (PilQ) and a putative macrophage infectivity protein. All of these proteins were also present in OMV obtained by extraction of the OM with deoxycholate. There were markedly increased levels of some additional proteins in OM from the lipopolysaccharide-deficient mutant, including enzymes that contribute to the tricarboxylic acid cycle. In all the preparations, the proteins not predicted to have an OM location were predominantly periplasmic or cytoplasmic or had an unknown location, and relatively few cytoplasmic membrane proteins were detected. However, several proteins that have previously been identified as potential vaccine candidates were not detected in either OM preparations or in OMV. These results have important implications for the development and use of vaccines based on outer membrane proteins.
Collapse
Affiliation(s)
- Jeannette N Williams
- Molecular Microbiology Group, Division of Infection Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | |
Collapse
|