1
|
Ayalew LE, Mekuria ZH, Despres B, Saab ME, Ojha S. Genome Sequence Comparisons between Small and Large Colony Phenotypes of Equine Clinical Isolates of Arcanobacterium hippocoleae. Animals (Basel) 2024; 14:1609. [PMID: 38891657 PMCID: PMC11171008 DOI: 10.3390/ani14111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Arcanobacterium hippocoleae is a Gram-positive fastidious bacterium and is occasionally isolated from the reproductive tract of apparently healthy mares (Equus caballus) or from mares with reproductive tract abnormalities. Apart from a few 16S rRNA gene-based GenBank sequences and one recent report on complete genome assembly, detailed genomic sequence and clinical experimental data are not available on the bacterium. Recently, we observed an unusual increase in the detection of the organism from samples associated with mare reproductive failures in Atlantic Canada. Two colony morphotypes (i.e., small, and large) were detected in culture media, which were identified as A. hippocoleae by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Here, we report the whole genome sequencing and characterization of the morphotype variants. The genome length of the large phenotypes was between 2.42 and 2.43, and the small phenotype was 1.99 Mbs. The orthologous nucleotide identity between the large colony phenotypes was ~99%, and the large and small colony phenotypes was between 77.86 and 78.52%, which may warrant the classification of the two morphotypes into different species. Phylogenetic analysis based on 16S rRNA genes or concatenated housekeeping genes grouped the small and large colony variants into two different genotypic clusters. The UvrA protein, which is part of the nucleotide excision repair (NER) system, and 3-isopropoylmalate dehydratase small subunit protein expressed by the leuD gene were identified as potential virulence factors in the large and small colony morphotypes, respectively. However, detailed functional studies will be required to determine the exact roles of these and other identified hypothetical proteins in the cellular metabolism and potential pathogenicity of A. hippocoleae in mares.
Collapse
Affiliation(s)
- Lisanework E. Ayalew
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Zelalem H. Mekuria
- Global One Health Initiative (GOHI), The Ohio State University (OSU), Columbus, OH 43210, USA;
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University (OSU), Columbus, OH 43210, USA
| | - Beatrice Despres
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Matthew E. Saab
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| | - Shivani Ojha
- Atlantic Veterinary College, University of Prince Edward Island (UPEI), 550 University Ave, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
2
|
Brenner EP, Sreevatsan S. Attenuated but immunostimulatory Mycobacterium tuberculosis variant bovis strain Ravenel shows variation in T cell epitopes. Sci Rep 2023; 13:12402. [PMID: 37524777 PMCID: PMC10390569 DOI: 10.1038/s41598-023-39578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.
Collapse
Affiliation(s)
- Evan P Brenner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Hadi SA, Brenner EP, Palmer MV, Waters WR, Thacker TC, Vilchèze C, Larsen MH, Jacobs WR, Sreevatsan S. Mycobacterium bovis Strain Ravenel Is Attenuated in Cattle. Pathogens 2022; 11:1330. [PMID: 36422582 PMCID: PMC9699013 DOI: 10.3390/pathogens11111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 08/02/2023] Open
Abstract
Mycobacterium tuberculosis variant bovis (MBO) has one of the widest known mammalian host ranges, including humans. Despite the characterization of this pathogen in the 1800s and whole genome sequencing of a UK strain (AF2122) nearly two decades ago, the basis of its host specificity and pathogenicity remains poorly understood. Recent experimental calf infection studies show that MBO strain Ravenel (MBO Ravenel) is attenuated in the cattle host compared to other pathogenic strains of MBO. In the present study, experimental infections were performed to define attenuation. Whole genome sequencing was completed to identify regions of differences (RD) and single nucleotide polymorphisms (SNPs) to explain the observed attenuation. Comparative genomic analysis of MBO Ravenel against three pathogenic strains of MBO (strains AF2122-97, 10-7428, and 95-1315) was performed. Experimental infection studies on five calves each, with either MBO Ravenel or 95-1315, revealed no visible lesions in all five animals in the Ravenel group despite robust IFN-γ responses. Out of 486 polymorphisms in the present analysis, 173 were unique to MBO Ravenel among the strains compared. A high-confidence subset of nine unique SNPs were missense mutations in genes with annotated functions impacting two major MBO survival and virulence pathways: (1) Cell wall synthesis & transport [espH (A103T), mmpL8 (V888I), aftB (H484Y), eccC5 (T507M), rpfB (E263G)], and (2) Lipid metabolism & respiration [mycP1(T125I), pks5 (G455S), fadD29 (N231S), fadE29 (V360G)]. These substitutions likely contribute to the observed attenuation. Results from experimental calf infections and the functional attributions of polymorphic loci on the genome of MBO Ravenel provide new insights into the strain's genotype-disease phenotype associations.
Collapse
Affiliation(s)
- Syeda A. Hadi
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| | - Evan P. Brenner
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| | - Mitchell V. Palmer
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | - W. Ray Waters
- National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, US Department of Agriculture, Ames, IA 50010, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10475, USA
| | - Srinand Sreevatsan
- Pathobiology and Diagnostic Investigation Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
5
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
6
|
Genome Sequences of Mycobacterium tuberculosis Biovar bovis Strains Ravenel and 10-7428. Microbiol Resour Announc 2021; 10:e0041121. [PMID: 34137637 PMCID: PMC8210702 DOI: 10.1128/mra.00411-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genomes of two Mycobacterium tuberculosis biovar bovis strains. Strain Ravenel was isolated in the 1900s and has been shown to be attenuated in cattle. Strain 10-7428 is considered highly pathogenic in cattle and was isolated from a bovine tuberculosis outbreak.
Collapse
|
7
|
Rizzi C, Peiter AC, Oliveira TL, Seixas ACP, Leal KS, Hartwig DD, Seixas FK, Borsuk S, Dellagostin OA. Stable expression of Mycobacterium bovis antigen 85B in auxotrophic M. bovis bacillus Calmette-Guérin. Mem Inst Oswaldo Cruz 2017; 112:123-130. [PMID: 28177046 PMCID: PMC5293121 DOI: 10.1590/0074-02760160360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium
bovis, responsible for causing major losses in livestock. A cost
effective alternative to control the disease could be herd vaccination. The
bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB,
but can improved by over-expression of protective antigens. The M.
bovis antigen 85B demonstrates ability to induce protective immune
response against bovine TB in animal models. However, current systems for the
construction of recombinant BCG expressing multiple copies of the gene result in
strains of low genetic stability that rapidly lose the plasmid in vivo. Employing
antibiotic resistance as selective markers, these systems also compromise vaccine
safety. We previously reported the construction of a stable BCG expression system
using auxotrophic complementation as a selectable marker. OBJECTIVES The fundamental aim of this study was to construct strains of M.
bovis BCG Pasteur and the auxotrophic M. bovis BCG
ΔleuD expressing Ag85B and determine their stability in
vivo. METHODS Employing the auxotrophic system, we constructed rBCG strains that expressed
M. bovis Ag85B and compared their stability with a
conventional BCG strain in mice. Stability was measured in terms of bacterial
growth on the selective medium and retention of antigen expression. FINDINGS The auxotrophic complementation system was highly stable after 18 weeks, even
during in vivo growth, as the selective pressure and expression of antigen were
maintained comparing to the conventional vector. MAIN CONCLUSION The Ag85B continuous expression within the host may generate a stronger and
long-lasting immune response compared to conventional systems.
Collapse
Affiliation(s)
- Caroline Rizzi
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Ana Carolina Peiter
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Thaís Larré Oliveira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Amilton Clair Pinto Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Karen Silva Leal
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Daiane Drawanz Hartwig
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil.,Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, RS, Brasil
| | - Fabiana Kommling Seixas
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Sibele Borsuk
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| | - Odir Antônio Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil
| |
Collapse
|
8
|
Abstract
In this article we present experimental Mycobacterium bovis infection models in domestic livestock species and how these models were applied to vaccine development, biomarker discovery, and the definition of specific antigens for the differential diagnosis of infected and vaccinated animals. In particular, we highlight synergies between human and bovine tuberculosis (TB) research approaches and data and propose that the application of bovine TB models could make a valuable contribution to human TB vaccine research and that close alignment of both research programs in a one health philosophy will lead to mutual and substantial benefits.
Collapse
|
9
|
Pandey A, Cabello A, Akoolo L, Rice-Ficht A, Arenas-Gamboa A, McMurray D, Ficht TA, de Figueiredo P. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 2016; 10:e0004572. [PMID: 27537413 PMCID: PMC4990199 DOI: 10.1371/journal.pntd.0004572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| | - Ana Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lavoisier Akoolo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Allison Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Angela Arenas-Gamboa
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| |
Collapse
|
10
|
Park HT, Yoo HS. Development of vaccines to Mycobacterium avium subsp. paratuberculosis infection. Clin Exp Vaccine Res 2016; 5:108-16. [PMID: 27489800 PMCID: PMC4969274 DOI: 10.7774/cevr.2016.5.2.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
Abstract
Johne's disease or paratuberculosis is a chronic debilitating disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease causes significant economic losses in livestock industries worldwide. There are no effective control measures to eradicate the disease because there are no appropriate diagnostic methods to detect subclinically infected animals. Therefore, it is very difficult to control the disease using only test and cull strategies. Vaccination against paratuberculosis has been considered as an alternative strategy to control the disease when combined with management interventions. Understanding host-pathogen interactions is extremely important to development of vaccines. It has long been known that Th1-mediated cellular immune responses are play a crucial role in protection against MAP infection. However, recent studies suggested that innate immune responses are more closely related to protective effects than adaptive immunity. Based on this understanding, several attempts have been made to develop vaccines against paratuberculosis. A variety of ideas for designing novel vaccines have emerged, and the tests of the efficacy of these vaccines are conducted constantly. However, no effective vaccines are commercially available. In this study, studies of the development of vaccines for MAP were reviewed and summarized.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea.; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
11
|
Waters WR, Palmer MV. Mycobacterium bovis Infection of Cattle and White-Tailed Deer: Translational Research of Relevance to Human Tuberculosis. ILAR J 2016; 56:26-43. [PMID: 25991696 DOI: 10.1093/ilar/ilv001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances in the study of bovine TB have been applied to human TB, and vice versa. For instance, landmark discoveries on the use of Koch's tuberculin and interferon-γ release assays for diagnostic purposes, as well as Calmette and Guérin's attenuated M. bovis strain as a vaccine, were first evaluated in cattle for control of bovine TB prior to wide-scale use in humans. Likewise, recent discoveries on the role of effector/memory T cell subsets and polyfunctional T cells in the immune response to human TB, particularly as related to vaccine efficacy, have paved the way for similar studies in cattle. Over the past 15 years, substantial funding for development of human TB vaccines has led to the emergence of multiple promising candidates now in human clinical trials. Several of these vaccines are being tested for immunogenicity and efficacy in cattle. Also, the development of population-based vaccination strategies for control of M. bovis infection in wildlife reservoirs will undoubtedly have an impact on our understanding of herd immunity with relevance to the control of both bovine and human TB in regions of the world with high prevalence of TB. Thus, the one-health approach to research on TB is mutually beneficial for our understanding and control of TB in humans, livestock, and wildlife.
Collapse
Affiliation(s)
- W Ray Waters
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| | - Mitchell V Palmer
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| |
Collapse
|
12
|
Parlane NA, Buddle BM. Immunity and Vaccination against Tuberculosis in Cattle. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Buddle BM, Parlane NA, Wedlock DN, Heiser A. Overview of vaccination trials for control of tuberculosis in cattle, wildlife and humans. Transbound Emerg Dis 2014; 60 Suppl 1:136-46. [PMID: 24171859 DOI: 10.1111/tbed.12092] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Vaccination is a key strategy for control of tuberculosis (TB), and considerable progress has been made in the past 5 years to develop improved vaccines for humans and animals, differentiate vaccinated animals from those infected with Mycobacterium bovis and deliver vaccines to wildlife. Studies have moved from testing vaccines in small animal models to clinical trials in humans and from experimental challenge studies in cattle and wildlife to evaluation of vaccines in the field. Candidate vaccines undergoing testing in humans include live mycobacterial vaccines to replace bacille Calmette Guérin (BCG), subunit vaccines (virus vector or protein) to boost BCG and therapeutic vaccines used as an adjunct to chemotherapy. In cattle, a number of diagnostic tests have been developed and successfully tested for differentiating infected from vaccinated animals, which will facilitate the use of BCG vaccine in cattle. Encouraging results have been obtained from recent field trials in cattle using BCG vaccine to protect against natural exposure to M. bovis. To date, no subunit TB vaccines have induced improved protection compared with that for BCG, but prime-boost combinations of BCG with DNA, protein or virus-vectored vaccines have induced better protection than BCG vaccine alone. Development of an oral bait BCG formulation has demonstrated the practicality of delivering TB vaccines to wildlife. Oral BCG preparations have induced protection against experimental challenge of M. bovis in possums, badgers, wild boar and white-tailed deer and against natural exposure to M. bovis in possums. Recent progress in TB vaccine development has provided much impetus for their future use.
Collapse
Affiliation(s)
- B M Buddle
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
14
|
Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD mutant as a vaccine candidate against challenge in a caprine model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:572-81. [PMID: 23408524 DOI: 10.1128/cvi.00653-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Johne's disease (JD) is prevalent worldwide and has a significant impact on the global agricultural economy. In the present study, we evaluated the protective efficacy of a leuD (Δleud) mutant and gained insight into differential immune responses after challenge with virulent M. avium subsp. paratuberculosis in a caprine colonization model. The immune response and protective efficacy were compared with those of the killed vaccine Mycopar. In vitro stimulation of peripheral blood mononuclear cells with johnin purified protein derivative showed that Mycopar and ΔleuD generated similar levels of gamma interferon (IFN-γ) but significantly higher levels than unvaccinated and challenged phosphate-buffered saline controls. However, only with ΔleuD was the IFN-γ response maintained. Flow cytometric analysis showed that the increase in IFN-γ correlated with proliferation and activation (increased expression of CD25) of CD4, CD8, and γδT cells, but this response was significantly higher in ΔleuD-vaccinated animals at some time points after challenge. Both Mycopar and ΔleuD vaccines upregulated Th1/proinflammatory and Th17 cytokines and downregulated Th2/anti-inflammatory and regulatory cytokines at similar levels at almost all time points. However, significantly higher levels of IFN-γ (at weeks 26 and 30), interleukin-2 (IL-2; week 18), IL-1b (weeks 14 and 22), IL-17 (weeks 18 and 22), and IL-23 (week 18) and a significantly lower level of IL-10 (weeks 14 and 18) and transforming growth factor β (week 18) were detected in the ΔleuD-vaccinated group. Most importantly, ΔleuD elicited an immune response that significantly limited colonization of tissues compared to Mycopar upon challenge with wild-type M. avium subsp. paratuberculosis. In conclusion, the ΔleuD mutant is a promising vaccine candidate for development of a live attenuated vaccine for JD in ruminants.
Collapse
|
15
|
Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress. PLoS One 2012; 7:e37884. [PMID: 22675497 PMCID: PMC3366959 DOI: 10.1371/journal.pone.0037884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of severe gastroenteritis in cattle. To gain a better understanding of MAP virulence, we investigated the role of leuD gene in MAP metabolism and stress response. For this, we have constructed an auxotrophic strain of MAP by deleting the leuD gene using allelic exchange. The wildtype and mutant strains were then compared for metabolic phenotypic changes using Biolog phenotype microarrays. The responses of both strains to physiologically relevant stress conditions were assessed using DNA microarrays. Transcriptomic data was then analyzed in the context of cellular metabolic pathways and gene networks. Our results showed that deletion of leuD gene has a global effect on both MAP phenotypic and transcriptome response. At the metabolic level, the mutant strain lost the ability to utilize most of the carbon, nitrogen, sulphur, phosphorus and nutrient supplements as energy source. At the transcriptome level, more than 100 genes were differentially expressed in each of the stress condition tested. Systems level network analysis revealed that the differentially expressed genes were distributed throughout the gene network, thus explaining the global impact of leuD deletion in metabolic phenotype. Further, we find that leuD deletion impacted metabolic pathways associated with fatty acids. We verified this by experimentally estimating the total fatty acid content of both mutant and wildtype. The mutant strain had 30% less fatty acid content when compared to wildtype, thus supporting the results from transcriptional and computational analyses. Our results therefore reveal the intricate connection between the metabolism and virulence in MAP.
Collapse
|
16
|
Chen JW, Faisal SM, Chandra S, McDonough SP, Moreira MAS, Scaria J, Chang CF, Bannantine JP, Akey B, Chang YF. Immunogenicity and protective efficacy of the Mycobacterium avium subsp. paratuberculosis attenuated mutants against challenge in a mouse model. Vaccine 2011; 30:3015-25. [PMID: 22107851 DOI: 10.1016/j.vaccine.2011.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis (MAP), results in serious economic losses worldwide especially in cattle, sheep and goats. To control the impact of JD on the animal industry, an effective vaccine with minimal adverse effects is urgently required. In order to develop an effective vaccine, we used allelic exchange to construct three mutant MAP strains, leuD, mpt64 and secA2. The mutants were attenuated in a murine model and induced cytokine responses in J774A.1 cell. The leuD mutant was the most obviously attenuated of the three constructed mutant strains. Our preliminary vaccine trial in mice demonstrated different levels of protection were induced by these mutants based on the acid-fast bacilli burden in livers and spleens at 8 and 12 weeks postchallenge. In addition, vaccination with leuD mutant induced a high level of IFN-γ production and significant protective efficacy in both the reduction of inflammation and clearance of acid-fast bacilli, as compared with the mock vaccinated group.
Collapse
Affiliation(s)
- Jenn-Wei Chen
- Animal Health Diagnostic Center, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buddle BM, Wedlock DN, Denis M, Vordermeier HM, Hewinson RG. Update on vaccination of cattle and wildlife populations against tuberculosis. Vet Microbiol 2011; 151:14-22. [PMID: 21420804 DOI: 10.1016/j.vetmic.2011.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the status of vaccination strategies to reduce bovine tuberculosis of cattle and wildlife reservoirs of the disease is discussed, with a focus on recent developments. Recent work in vaccines to protect humans against tuberculosis has been followed by a similar surge of interest in developing vaccines against bovine tuberculosis. The human vaccine, bacille Calmette-Guérin (BCG) affords protection against tuberculosis in cattle, but this protection is variable. In addition, vaccination with BCG compromises control strategies based on skin testing animals. In general, no single vaccine approach has shown itself to be significantly superior to BCG alone, however, vaccine combinations of BCG and vaccinating moiety such as adjuvanted subunit, virus vectored or DNA vaccines have been shown to induce protection superior to that achieved by BCG alone. Vaccinating wildlife species against tuberculosis is also an area which has been subjected to scrutiny. Recent work has focused on vaccinating wildlife orally, via the use of BCG formulated in baits consumed by these species. Results from trials in a number of animal species indicate that oral BCG vaccination can reduce disease severity following experimental challenge with Mycobacterium bovis and in a recent field trial, oral BCG vaccination was shown to prevent infection of wild possums following natural exposure to M. bovis. In conclusion, recent studies in cattle and wildlife have demonstrated the practicality and effectiveness of vaccinating animals against tuberculosis and provide much impetus for future use of vaccines.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
18
|
Khare S, Alali W, Zhang S, Hunter D, Pugh R, Fang FC, Libby SJ, Adams LG. Vaccination with attenuated Salmonella enterica Dublin expressing E coli O157:H7 outer membrane protein Intimin induces transient reduction of fecal shedding of E coli O157:H7 in cattle. BMC Vet Res 2010; 6:35. [PMID: 20609252 PMCID: PMC2912257 DOI: 10.1186/1746-6148-6-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 07/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Escherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in humans. Beef and dairy cattle are considered the most important animal reservoirs for this pathogen. One of the important virulence characteristics of E. coli O157:H7 is the eaeA gene encoding the 97 kDa surface protein intimin. Intimin is required for attachment and effacement during the interaction of enterohemorrhagic E. coli with human and bovine neonatal enterocytes. The present study was undertaken to test the hypothesis that an adaptive mucosal immune response directed against intimin will reduce or prevent enteric colonization and fecal shedding of E. coli O157:H7 in cattle. Results Cattle were orally inoculated with either milk (control), milk with live attenuated Salmonella enterica serovar Dublin (vector), or milk with live attenuated recombinant S. Dublin expressing intimin (vaccinated) on days 0, 14 and 28. On day 98, all calves were challenged orally with E. coli O157:H7 to evaluate whether vaccination with the recombinant S. Dublin expressing intimin would reduce the level of E. coli O157:H7 fecal shedding. During the first 28 days, vaccinated calves shed both the vector strain and the intimin-expressing S. Dublin strain at a similar level. The vector strain was shed for a significantly longer period as compared to the level of recombinant vaccine strain. Calves that received the intimin-expressed vaccine ceased shedding S. Dublin from day 28 to day 63. All calves were challenged with E. coli O157:H7 on day 98 to determine the effect on fecal shedding of E. coli O157:H7. The amount of E. coli O157:H7 in feces was measured for 30 days post-challenge. We observed a transient clearance of E. coli O157:H7 from the feces in the vaccinated calves. The magnitude of fecal E. coli O157:H7 shedding did not correlate with the presence of intimin-specific fecal IgA. Conclusion Oral vaccination with live attenuated recombinant S. Dublin expressing intimin reduced enteric colonization and fecal shedding of E. coli O157:H7. However, the transient clearance of E. coli O157:H7 was not associated with an enhanced IgA-mediated mucosal immune response.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun 2009; 78:1383-9. [PMID: 20038535 DOI: 10.1128/iai.01020-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.
Collapse
|
20
|
Tomioka H. Development of new antituberculous agents based on new drug targets and structure–activity relationship. Expert Opin Drug Discov 2007; 3:21-49. [DOI: 10.1517/17460441.3.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|