1
|
Porter KR, Raviprakash K. Nucleic acid (DNA) immunization as a platform for dengue vaccine development. Vaccine 2015; 33:7135-40. [PMID: 26458805 DOI: 10.1016/j.vaccine.2015.09.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.
Collapse
Affiliation(s)
- Kevin R Porter
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States.
| | - Kanakatte Raviprakash
- Naval Medical Research Center, Infectious Diseases Directorate, Silver Spring, MD, United States
| |
Collapse
|
2
|
Fas ligand DNA enhances a vaccination effect by coadministered DNA encoding a tumor antigen through augmenting production of antibody against the tumor antigen. J Immunol Res 2015; 2015:743828. [PMID: 25759847 PMCID: PMC4352480 DOI: 10.1155/2015/743828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Interaction of Fas and Fas ligand (FasL) plays an important role in the regulation of immune responses by inducing apoptosis of activated cells; however, a possible role of FasL in DNA vaccination has not been well understood. We examined whether administration of DNA encoding FasL gene enhanced antitumor effects in mice that were vaccinated with DNA expressing a putative tumor antigen gene, β-galactosidase (β-gal). Growth of β-gal-positive Colon 26 tumors was retarded in the syngeneic mice immunized with β-gal and FasL DNA compared with those vaccinated with β-gal or FasL DNA. We did not detect increased numbers of β-gal-specific CD8(+) T cells in lymph node of mice that received combination of β-gal and FasL DNA, but amounts of anti-β-gal antibody increased with the combination but not with β-gal or FasL DNA injection alone. Subtype analysis of anti-β-gal antibody produced by the combination of β-gal and FasL DNA or β-gal DNA injection showed that IgG2a amounts were greater in mice injected with both DNA than those with β-gal DNA alone, but IgG2b amounts were lower in both DNA-injected than β-gal DNA-injected mice. These data suggest that FasL is involved in boosting humoral immunity against a gene product encoded by coinjected DNA and enhances the vaccination effects.
Collapse
|
3
|
Induction of antigen-positive cell death by the expression of perforin, but not DTa, from a DNA vaccine enhances the immune response. Immunol Cell Biol 2013; 92:359-67. [PMID: 24323081 DOI: 10.1038/icb.2013.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
The failure of traditional protein-based vaccines to prevent infection by viruses such as HIV or hepatitis C highlights the need for novel vaccine strategies. DNA vaccines have shown promise in small animal models, and are effective at generating anti-viral T cell-mediated immune responses; however, they have proved to be poorly immunogenic in clinical trials. We propose that the induction of necrosis will enhance the immune response to vaccine antigens encoded by DNA vaccines, as necrotic cells are known to release a range of intracellular factors that lead to dendritic cell (DC) activation and enhanced cross-presentation of antigen. Here we provide evidence that induction of cell death in DNA vaccine-targeted cells provides an adjuvant effect following intradermal vaccination of mice; however, this enhancement of the immune response is dependent on both the mechanism and timing of cell death after antigen expression. We report that a DNA vaccine encoding the cytolytic protein, perforin, resulted in DC activation, enhanced broad and multifunctional CD8 T-cell responses to the HIV-1 antigen GAG and reduced viral load following challenge with a chimeric virus, EcoHIV, compared with the canonical GAG DNA vaccine. This effect was not observed for a DNA vaccine encoding an apoptosis-inducing toxin, DTa, or when the level of perforin expression was increased to induce cell death sooner after vaccination. Thus, inducing lytic cell death following a threshold level of expression of a viral antigen can improve the immunogenicity of DNA vaccines, whereas apoptotic cell death has an inhibitory effect on the immune response.
Collapse
|
4
|
van Montfort T, Melchers M, Isik G, Menis S, Huang PS, Matthews K, Michael E, Berkhout B, Schief WR, Moore JP, Sanders RW. A chimeric HIV-1 envelope glycoprotein trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain induces enhanced antibody and T cell responses. J Biol Chem 2011; 286:22250-61. [PMID: 21515681 PMCID: PMC3121371 DOI: 10.1074/jbc.m111.229625] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/01/2011] [Indexed: 12/31/2022] Open
Abstract
An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.
Collapse
Affiliation(s)
- Thijs van Montfort
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Melchers
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gözde Isik
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sergey Menis
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195, and
| | - Po-Ssu Huang
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195, and
| | - Katie Matthews
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| | - Elizabeth Michael
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| | - Ben Berkhout
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - William R. Schief
- the Department of Biochemistry, University of Washington, Seattle, Washington 98195, and
| | - John P. Moore
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| | - Rogier W. Sanders
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
5
|
Evaluation of apoptotic and anti-apoptotic genes on efficacy of DNA vaccine encoding glycoprotein B of Herpes Simplex Virus type 1. Immunol Lett 2010; 128:137-42. [DOI: 10.1016/j.imlet.2009.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022]
|
6
|
Arrode G, Hegde R, Jin Y, Singh DK, Narayan O, Chebloune Y. Nef modulates the immunogenicity of Gag encoded in a non-infectious HIV DNA vaccine. Vaccine 2008; 26:3795-804. [PMID: 18586360 DOI: 10.1016/j.vaccine.2008.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/06/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022]
Abstract
Gag-CD8+ T cell responses are associated with immune control of HIV infection. Since during HIV infection Nef impairs T cell responses, we evaluated whether deletion of nef from a non-infectious HIV DNA vaccine (Delta4 Nef+), creating Delta5 Nef(-), would affect its immunogenicity. When compared with Delta4, mice injected with Delta5 developed significantly lower CD8+ T cell responses to Gag, but no significant change in the responses to Env was observed. In vitro, deletion of Nef abrogated the induced cell death, production of virus-like particles and release of Gag from transfected cells. Thus, the effect of Nef in causing extrusion of Gag might adjuvant the CD8+ T cell responses to Gag in DNA vaccine.
Collapse
Affiliation(s)
- Geraldine Arrode
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, 5000 Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
7
|
Behar SM, Woodworth JS, Wu Y. Next generation: tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev Vaccines 2007; 6:441-56. [PMID: 17542758 PMCID: PMC3134449 DOI: 10.1586/14760584.6.3.441] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tuberculosis continues to cause considerable human morbidity and mortality worldwide, particularly in people coinfected with HIV. The emergence of multidrug resistance makes the medical treatment of tuberculosis even more difficult. Thus, the development of a tuberculosis vaccine is a global health priority. Here we review the data concerning the role of CD8+ T cells in immunity to tuberculosis and consider how CD8+ T cells can be elicited by vaccination. Many immunization strategies have the potential to elicit CD8+ T cells and we critically review the data supporting a role for vaccine-induced CD8+ T cells in protective immunity. The synergy between CD4+ and CD8+ T cells suggests that a vaccine that elicits both T-cell subsets has the best chance at preventing tuberculosis.
Collapse
Affiliation(s)
- Samuel M. Behar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1033, Fax: (617)-525-1010
| | - Joshua S.M. Woodworth
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1065, Fax: (617)-525-1010
| | - Ying Wu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1042, Fax: (617)-525-1010
| |
Collapse
|