1
|
Herrera CM, Schmitt JS, Chowdhry EI, Riddle MS. From Kiyoshi Shiga to Present-Day Shigella Vaccines: A Historical Narrative Review. Vaccines (Basel) 2022; 10:645. [PMID: 35632401 PMCID: PMC9145194 DOI: 10.3390/vaccines10050645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/20/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
We are at an exciting moment in time with the advancement of many vaccines, including a shigella vaccine for the world. It is instructive to look at the long road that some vaccines have traveled to recognize the remarkable accomplishments of those who were pioneers, appreciate the evolution of scientific and applied technology, and inform the future history of a vaccine that would have great potential for global health. To achieve this valuable retrospective, a narrative historical literature review was undertaken utilizing PubMed and Embase databases with relevant search terms. Retrieved articles were reviewed and information was organized into historical themes, landmark discoveries, and important vaccine development parallels. The literature reviewed was synthesized into major eras of shigella vaccine development from pathogen discovery and first attempts to empirical approaches of killed whole-cell and live-attenuated approaches, and a modern era that applied recombinant DNA engineering and structural vaccinology. The history of shigella vaccine development has largely followed the evolutionary path of vaccine development over the last 120 years, but with important lessons learned that should be considered as we embark on the future chapters of bringing to the world a safe and effective vaccine for global health.
Collapse
Affiliation(s)
| | | | | | - Mark S. Riddle
- Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (C.M.H.); (J.S.S.); (E.I.C.)
| |
Collapse
|
2
|
Tian H, Li B, Xu T, Yu H, Chen J, Yu H, Li S, Zeng L, Huang X, Liu Q. Outer Membrane Vesicles Derived from Salmonella enterica Serotype Typhimurium Can Deliver Shigella flexneri 2a O-Polysaccharide Antigen To Prevent Shigella flexneri 2a Infection in Mice. Appl Environ Microbiol 2021; 87:e0096821. [PMID: 34319809 PMCID: PMC8432525 DOI: 10.1128/aem.00968-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Shigellosis has become a serious threat to health in many developing countries due to the severe diarrhea it causes. Shigella flexneri 2a is the principal species responsible for this endemic disease. Despite multiple attempts to design a vaccine against shigellosis, no effective vaccine has been developed yet. Lipopolysaccharide (LPS) is both an essential virulence factor and an antigen protective against Shigella, due to its outer domain, termed O-polysaccharide antigen. In the present study, S. flexneri 2a O-polysaccharide antigen was innovatively biosynthesized in Salmonella and attached to core-lipid A via the ligase WaaL, with purified outer membrane vesicles (OMVs) utilized as vaccine vectors. Here, we identified the expression of the heterologous O-antigen and have described the isolation, characterization, and immune protection efficiency of the OMV vaccine. Furthermore, the results of animal experiments indicated that immunization of mice with the OMV vaccine induced significant specific anti-Shigella LPS antibodies in the serum, with similar trends in IgA levels from vaginal secretions and fluid from bronchopulmonary lavage, both intranasally and intraperitoneally. The OMV vaccine derived from both routes of administration provided significant protection against virulent S. flexneri 2a infection, as judged by a serum bactericidal assay, opsonization assay, and challenge test. This vaccination strategy represents a novel and improved approach to control shigellosis by the combination of Salmonella glycosyl carrier lipid bioconjugation with OMVs. IMPORTANCEShigella, the cause of shigellosis or bacillary dysentery, is a major public health concern, especially for children in developing countries. An effective vaccine would control the spread of the disease to some extent. However, no licensed vaccine against Shigella infection in humans has so far been developed. The Shigella O-antigen polysaccharide is effective in stimulating the production of protective antibodies and so could represent a vaccine antigen candidate. In addition, bacterial outer membrane vesicles (OMVs) have been used as antigen delivery platforms due to their nanoscale properties and ease of antigen delivery to trigger an immune response. Therefore, the present study provides a new strategy for vaccine design, combining a glycoconjugated vaccine with OMVs. The design concept of this strategy is the expression of Shigella O-antigen via the LPS synthesis pathway in recombinant Salmonella, from which the OMV vaccine is then isolated. Based on these findings, we believe that the novel vaccine design strategy in which polysaccharide antigens are delivered via bacterial OMVs will be effective for the development and clinical application of an effective Shigella vaccine.
Collapse
Affiliation(s)
- Huizhen Tian
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Haolin Yu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Jingxuan Chen
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Haiyan Yu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Shan Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Su H, Liu Q, Wang S, Curtiss R, Kong Q. Regulated Delayed Shigella flexneri 2a O-antigen Synthesis in Live Recombinant Salmonella enterica Serovar Typhimurium Induces Comparable Levels of Protective Immune Responses with Constitutive Antigen Synthesis System. Am J Cancer Res 2019; 9:3565-3579. [PMID: 31281498 PMCID: PMC6587160 DOI: 10.7150/thno.33046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/21/2019] [Indexed: 12/02/2022] Open
Abstract
Shigella flexneri (S. flexneri), a leading cause of bacillary dysentery, is a major public health concern particularly affecting children in developing nations. We have constructed a novel attenuated Salmonella vaccine system based on the regulated delayed antigen synthesis (RDAS) and regulated delayed expression of attenuating phenotype (RDEAP) systems for delivering the S. flexneri 2a (Sf2a) O-antigen. Methods: The new Salmonella vaccine platform was constructed through chromosomal integration of the araC PBAD lacI and araC PBAD wbaP cassettes, resulting in a gradual depletion of WbaP enzyme. An expression vector, encoding Sf2a O-antigen biosynthesis under the control of the LacI-repressible Ptrc promoter, was maintained in the Salmonella vaccine strain through antibiotic-independent selection. Mice immunized with the vaccine candidates were evaluated for cell-mediate and humoral immune responses. Results: In the presence of exogenous arabinose, the Salmonella vaccine strain synthesized native Salmonella LPS as a consequence of WbaP expression. Moreover, arabinose supported LacI expression, thereby repressing Sf2a O-antigen production. In the absence of arabinose in vivo, native Salmonella LPS synthesis is repressed whilst the synthesis of the Sf2a O-antigen is induced. Murine immunization with the Salmonella vaccine strain elicited robust Sf2a-specific protective immune responses together with long term immunity. Conclusion: These findings demonstrate the protective efficacy of recombinant Sf2a O-antigen delivered by a Salmonella vaccine platform.
Collapse
|
4
|
Hong EH, Song JH, Kang KB, Sung SH, Ko HJ, Yang H. Anti-Influenza Activity of Betulinic Acid from Zizyphus jujuba on Influenza A/PR/8 Virus. Biomol Ther (Seoul) 2015; 23:345-9. [PMID: 26157551 PMCID: PMC4489829 DOI: 10.4062/biomolther.2015.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
Betulinic acid, a pentacyclic triterpene isolated from Jujube tree (Zizyphus jujuba Mill), has been known for a wide range of biological and medicinal properties such as antibacterial, antimalarial, anti-inflammatory, antihelmintic, antinociceptive, and anticancer activities. In the study, we investigated the antiviral activity on influenza A/PR/8 virus infected A549 human lung adenocarcinoma epithelial cell line and C57BL/6 mice. Betulinic acid showed the anti-influenza viral activity at a concentration of 50 μM without a significant cytotoxicity in influenza A/PR/8 virus infected A549 cells. Also, betulinic acid significantly attenuated pulmonary pathology including increased necrosis, numbers of inflammatory cells and pulmonary edema induced by influenza A/PR/8 virus infection compared with vehicle- or oseltamivir-treated mice in vivo model. The down-regulation of IFN-γ level, which is critical for innate and adaptive immunity in viral infection, after treating of betulinic acid in mouse lung. Based on the obtained results, it is suggested that betulinic acid can be the potential therapeutic agent for virus infection via anti-inflammatory activity.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Jae Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Kyo Bin Kang
- Laboratory of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 151-742
| | - Sang Hyun Sung
- Laboratory of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul 151-742
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
5
|
Coadministration of Hedera helix L. Extract Enabled Mice to Overcome Insufficient Protection against Influenza A/PR/8 Virus Infection under Suboptimal Treatment with Oseltamivir. PLoS One 2015; 10:e0131089. [PMID: 26098681 PMCID: PMC4476699 DOI: 10.1371/journal.pone.0131089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
Several anti-influenza drugs that reduce disease manifestation exist, and although these drugs provide clinical benefits in infected patients, their efficacy is limited by the emergence of drug-resistant influenza viruses. In the current study, we assessed the therapeutic strategy of enhancing the antiviral efficacy of an existing neuraminidase inhibitor, oseltamivir, by coadministering with the leaf extract from Hedera helix L, commonly known as ivy. Ivy extract has anti-inflammatory, antibacterial, antifungal, and antihelminthic properties. In the present study, we investigated its potential antiviral properties against influenza A/PR/8 (PR8) virus in a mouse model with suboptimal oseltamivir that mimics a poor clinical response to antiviral drug treatment. Suboptimal oseltamivir resulted in insufficient protection against PR8 infection. Oral administration of ivy extract with suboptimal oseltamivir increased the antiviral activity of oseltamivir. Ivy extract and its compounds, particularly hedrasaponin F, significantly reduced the cytopathic effect in PR8-infected A549 cells in the presence of oseltamivir. Compared with oseltamivir treatment alone, coadministration of the fraction of ivy extract that contained the highest proportion of hedrasaponin F with oseltamivir decreased pulmonary inflammation in PR8-infected mice. Inflammatory cytokines and chemokines, including tumor necrosis factor-alpha and chemokine (C-C motif) ligand 2, were reduced by treatment with oseltamivir and the fraction of ivy extract. Analysis of inflammatory cell infiltration in the bronchial alveolar of PR8-infected mice revealed that CD11b+Ly6G+ and CD11b+Ly6Cint cells were recruited after virus infection; coadministration of the ivy extract fraction with oseltamivir reduced infiltration of these inflammatory cells. In a model of suboptimal oseltamivir treatment, coadministration of ivy extract fraction that includes hedrasaponin F increased protection against PR8 infection that could be explained by its antiviral and anti-inflammatory activities.
Collapse
|
6
|
Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect Immun 2013; 81:4470-7. [PMID: 24060976 DOI: 10.1128/iai.00859-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion.
Collapse
|
7
|
Ashkenazi S, Cohen D. An update on vaccines against Shigella. THERAPEUTIC ADVANCES IN VACCINES 2013; 1:113-23. [PMID: 24757519 PMCID: PMC3967666 DOI: 10.1177/2051013613500428] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite intensive research efforts for more than 60 years, utilizing diverse vaccine strategies, a safe and efficacious vaccine against shigellosis is not available yet. We are currently witnessing innovative approaches based on elucidation of the virulence mechanisms of Shigella, understanding the immune response to the pathogen and progress in molecular technology for developing Shigella vaccines. It is hoped that these will lead to a licensed effective Shigella vaccine to protect humans against the significant worldwide morbidity and mortality caused by this microorganism.
Collapse
Affiliation(s)
- Shai Ashkenazi
- Department of Pediatrics A, Schneider Children's Medical Center, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
8
|
Yang JY, Lee SN, Chang SY, Ko HJ, Ryu S, Kweon MN. A mouse model of shigellosis by intraperitoneal infection. J Infect Dis 2013; 209:203-15. [PMID: 23904297 DOI: 10.1093/infdis/jit399] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In human and nonhuman primates, Shigella spp. cause bacillary dysentery by invading colon epithelium and promoting a strong inflammatory response; however, adult mice are resistant to oral Shigella infection. In this study, intraperitoneal challenge with virulent S. flexneri 2a (YSH6000) resulted in diarrhea and severe body weight loss in adult B6 mice. Of note, virulent S. flexneri 2a could invade and colonize not only systemic tissues but also the serosa and lamina propria region of the large intestine. In addition, epithelial shedding, barrier integrity, and goblet cell hyperplasia were found in the large intestine by 24 hours post-intraperitoneal Shigella infection. Of note, predominant expression of proinflammatory cytokines and chemokines were found in the large intestine after intraperitoneal challenge. Monocytes played a critical role in attenuating diarrhea and in providing protective efficacy against intraperitoneal Shigella infection. Most importantly, mice prevaccinated with attenuated S. flexneri 2a (SC602) strain were protected against intraperitoneal challenge with YSH6000. When taken together, these findings show that intraperitoneal challenge with virulent S. flexneri 2a can provoke bacillary dysentery and severe pathogenesis in adult mice. This model may be helpful for understanding the induction mechanism of bacillary dysentery and for evaluating Shigella vaccine candidates.
Collapse
Affiliation(s)
- Jin-Young Yang
- Mucosal Immunology Section, International Vaccine Institute, Seoul
| | | | | | | | | | | |
Collapse
|
9
|
Camacho AI, Irache JM, Gamazo C. Recent progress towards development of a Shigella vaccine. Expert Rev Vaccines 2013; 12:43-55. [PMID: 23256738 DOI: 10.1586/erv.12.135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The burden of dysentery due to shigellosis among children in the developing world is still a major concern. A safe and efficacious vaccine against this disease is a priority, since no licensed vaccine is available. This review provides an update of vaccine achievements focusing on subunit vaccine strategies and the forthcoming strategies surrounding this approach. In particular, this review explores several aspects of the pathogenesis of shigellosis and the elicited immune response as being the basis of vaccine requirements. The use of appropriate Shigella antigens, together with the right adjuvants, may offer safety, efficacy and more convenient delivery methods for massive worldwide vaccination campaigns.
Collapse
|
10
|
Desai SN, Sahastrabuddhe S, Ochiai RL, Wierzba TF. Enteric vaccines for resource-limited countries: current status and future prospects. Pediatr Ann 2011; 40:351-7. [PMID: 21736257 DOI: 10.3928/00904481-20110615-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sachin N Desai
- Intrenational Vaccine Institute, SNU Research Park, Seoul, Korea.
| | | | | | | |
Collapse
|
11
|
Seo SU, Kwon HJ, Ko HJ, Byun YH, Seong BL, Uematsu S, Akira S, Kweon MN. Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog 2011; 7:e1001304. [PMID: 21383977 PMCID: PMC3044702 DOI: 10.1371/journal.ppat.1001304] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/21/2011] [Indexed: 12/24/2022] Open
Abstract
Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1−/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1−/− mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1−/− mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1−/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1−/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1−/− mice. In contrast, WT mice that received Ifnar1−/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung. Type I interferon (IFN-I) was originally reported as a molecule that interferes with influenza virus replication. Various IFN-I inducible antiviral proteins contribute to dampening virus replication and dissemination. Thus, loss of IFN-I signaling attenuates antiviral response and aggravates disease. Recent studies suggest the possible role of IFN-I in hematopoiesis, which subsequently might have an effect on the immune cell response at the site of infection. Indeed, IFN-I signaling-defective mice have been shown to develop aberrant cell populations. The aim of this current study was to clarify the mechanisms of IFN-I signaling in the regulation of monocytes and neutrophils. We show that IFN-I is directly involved in monocyte differentiation and that loss of IFN-I signaling allows mice to generate monocytes whose gene profile is significantly different. We found that monocytes are an important source of chemokines for further monocyte recruitment, but IFN-I-defective monocytes produce chemokines for neutrophil recruitment. As a result, mice lacking IFN-I signaling recruit more neutrophils and a reduced number of alternatively generated monocytes. Thus, our findings indicate that authentic monocyte differentiation, which requires IFN-I signaling, is critical in controlling neutrophils and protecting mice against influenza virus infection.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Mucosal Immunology Section, International Vaccine Institute, Seoul, South Korea
| | - Hyung-Joon Kwon
- Mucosal Immunology Section, International Vaccine Institute, Seoul, South Korea
| | - Hyun-Jeong Ko
- Mucosal Immunology Section, International Vaccine Institute, Seoul, South Korea
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Young-Ho Byun
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, South Korea
| | - Satoshi Uematsu
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mi-Na Kweon
- Mucosal Immunology Section, International Vaccine Institute, Seoul, South Korea
- * E-mail:
| |
Collapse
|
12
|
Salam MA, Katz J, Michalek SM. Role of Toll-like receptors in host responses to a virulence antigen of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vector vaccine. Vaccine 2010; 28:4928-36. [PMID: 20653102 DOI: 10.1016/j.vaccine.2010.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated the role of Toll-like receptors (TLRs) in host responses to the saliva-binding region (SBR) of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vaccine. C57BL/6 wild type (wt), TLR2-/-, TLR4-/- and MyD88-/- mice were immunized by the intranasal route on days 0, 18 and boosted on day 98 with Salmonella typhimurium BRD 509 containing a plasmid encoding SBR. Serum and saliva samples were collected throughout the experiment and assessed for antibody activity by ELISA. Evidence is provided that the induction of a serum IgG2a (Th1-type) anti-SBR antibody response involved TLR2 signaling, whereas the anti-Salmonella response involved signaling through TLR4. The adaptor molecule MyD88 was not essential for the induction of a primary Th1-type response to SBR or Salmonella, but was necessary for a secondary response to SBR. Furthermore, the absence of TLR2, TLR4 or MyD88 resulted in enhanced Th2-type serum IgG1 anti-SBR and anti-Salmonella responses. Mucosal IgA responses to SBR were TLR2-, TLR4- and MyD88-dependent, while IgA responses to Salmonella were TLR4- and MyD88-dependent.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, United States
| | | | | |
Collapse
|
13
|
Shim DH, Ko HJ, Volker G, Potter AA, Mutwiri G, Babiuk LA, Kweon MN. Efficacy of poly[di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine 2010; 28:2311-7. [DOI: 10.1016/j.vaccine.2009.12.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/22/2009] [Accepted: 12/25/2009] [Indexed: 02/06/2023]
|
14
|
Kaminski RW, Oaks EV. Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 2010; 8:1693-704. [PMID: 19943764 DOI: 10.1586/erv.09.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Shigellosis remains a formidable disease globally, with children of the developing world bearing the greatest number of infections. The need for an affordable, safe and efficacious vaccine has persisted for decades. Vaccines to prevent shigellosis can be divided into living and nonliving approaches. Several nonliving Shigella vaccines are currently at different stages of development and show substantial promise. Outlined here is an overview of multiple nonliving vaccine technologies, highlighting their current status and recent advances in testing. In addition, gaps in the knowledge base regarding immune mechanisms of protection are explored.
Collapse
Affiliation(s)
- Robert W Kaminski
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | |
Collapse
|
15
|
The efficacy and immunogenicity of a live transconjugant hybrid strain of Shigella dysenteriae type 1 in two animal models. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9937-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Abstract
PURPOSE OF REVIEW Shigellosis, a major form of bacillary dysentery, is caused by infection with Shigella organisms. In poor countries, Shigella-caused dysentery is endemic and causes an estimated 163 million illness episodes annually and more than one million deaths. Although several strategies have been used to develop vaccines targeting shigellosis, none has been licensed for use outside China. Owing to the wide range of Shigella serotypes and subtypes, there is a need for a multivalent vaccine representing prevalent species and serotypes. RECENT FINDINGS Vaccine development has been limited by the lack of a suitable animal model for vaccine testing. This review discusses the most advanced strategies for Shigella vaccine development including live attenuated, conjugate, broad spectrum, and proteosome-based vaccines and describes current animal models under study. SUMMARY The greatest barrier to the use of vaccine against shigellosis in developing areas is poor immune responses to oral vaccines in children who have minimal maternal antibodies. Clinical studies of promising shigellosis vaccine candidates are urgently needed after confirmation of safety, immunogenicity, and protection in volunteer challenge models.
Collapse
Affiliation(s)
- Mi-Na Kweon
- Mucosal Immunology Section, Laboratory Science Division, International Vaccine Institute, Kwanak-Gu, Seoul, Korea.
| |
Collapse
|