1
|
Vicidomini C, Borbone N, Roviello V, Roviello GN, Oliviero G. Summary of the Current Status of DNA Vaccination for Alzheimer Disease. Vaccines (Basel) 2023; 11:1706. [PMID: 38006038 PMCID: PMC10674988 DOI: 10.3390/vaccines11111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the most common and disabling neuropathies in the ever-growing aged population around the world, that especially affects Western countries. We are in urgent need of finding an effective therapy but also a valid prophylactic means of preventing AD. There is a growing attention currently paid to DNA vaccination, a technology particularly used during the COVID-19 era, which can be used also to potentially prevent or modify the course of neurological diseases, including AD. This paper aims to discuss the main features and hurdles encountered in the immunization and therapy against AD using DNA vaccine technology. Ultimately, this work aims to effectively promote the efforts in research for the development of safe and effective DNA and RNA vaccines for AD.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Valentina Roviello
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Gouveia FV, Lea‐Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer's mice. Ann Clin Transl Neurol 2023; 10:507-519. [PMID: 36715553 PMCID: PMC10109287 DOI: 10.1002/acn3.51737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is often associated with neuropsychiatric symptoms, including agitation and aggressive behavior. These symptoms increase with disease severity, ranging from 10% in mild cognitive impairment to 50% in patients with moderate-to-severe AD, pose a great risk for self-injury and injury to caregivers, result in high rates of institutionalization and great suffering for patients and families. Current pharmacological therapies have limited efficacy and a high potential for severe side effects. Thus, there is a growing need to develop novel therapeutics tailored to safely and effectively reduce agitation and aggressive behavior in AD. Here, we investigate for the first time the use of focused ultrasound combined with anesthetic-loaded nanodroplets (nanoFUS) targeting the amygdala (key structure in the neurocircuitry of agitation) as a novel minimally invasive tool to modulate local neural activity and reduce agitation and aggressive behavior in the TgCRND8 AD transgenic mice. METHODS Male and female animals were tested in the resident-intruder (i.e., aggressive behavior) and open-field tests (i.e., motor agitation) for baseline measures, followed by treatment with active- or sham-nanoFUS. Behavioral testing was then repeated after treatment. RESULTS Active-nanoFUS neuromodulation reduced aggressive behavior and agitation in male mice, as compared to sham-treated controls. Treatment with active-nanoFUS increased the time male mice spent in social-non-aggressive behaviors. INTERPRETATION Our results show that neuromodulation with active-nanoFUS may be a potential therapeutic tool for the treatment of neuropsychiatric symptoms, with special focus on agitation and aggressive behaviors. Further studies are necessary to establish cellular, molecular and long-term behavioral changes following treatment with nanoFUS.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioM5G 1X8Canada
| | - Harriet Lea‐Banks
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Isabelle Aubert
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
| | - Nir Lipsman
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| | - Kullervo Hynynen
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Institute of Biomedical Engineering, University of TorontoTorontoOntarioM5S 1A1Canada
| | - Clement Hamani
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| |
Collapse
|
3
|
Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol 2022; 12:803485. [PMID: 34975917 PMCID: PMC8716691 DOI: 10.3389/fimmu.2021.803485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million people aged 50 years and older worldwide. For many decades, glaucoma therapy has primarily focused on controlling intraocular pressure (IOP) and sound evidence supports its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting patients from vision loss. Meanwhile, accumulating data point to the immune-mediated attack of the neural retina as the underlying pathological process behind glaucoma that may come independent of raised IOP. Recently, some scholars have suggested autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief pathogenic process. This autoimmune process, as well as the pathological features of glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In addition, immune modulation therapy, which is regarded as a potential solution for glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus, novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative diseases may serve as valuable inspirations for ophthalmologists. This review focuses on the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses potential applications of relevant findings of CNS neurodegenerative diseases in future glaucoma research.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
4
|
Arora S, Sharma D, Layek B, Singh J. A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Mol Pharm 2021; 18:4237-4255. [PMID: 34705472 DOI: 10.1021/acs.molpharmaceut.1c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseases of the central nervous system (CNS) are difficult to treat owing to the complexity of the brain and the presence of a natural blood-brain-barrier (BBB). Alzheimer's disease (AD) is one of the major progressive and currently incurable neurodegenerative disorders of the CNS, which accounts for 60-80% of cases of dementia. The pathophysiology of AD involves the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. Additionally, synaptic loss and imbalance of neuronal signaling molecules are characterized as important markers of AD. Existing treatments of AD help in the management of its symptoms and aim toward the maintenance of cognitive functions, behavior, and attenuation of gradual memory loss. Over the past decade, nonviral gene therapy has attracted increasing interest due to its various advantages over its viral counterparts. Moreover, advancements in nonviral gene technology have led to their increasing contributions in clinical trials. However, brain-targeted nonviral gene delivery vectors come across various extracellular and intracellular barriers, limiting their ability to transfer the therapeutic gene into the target cells. Chief barriers to nonviral gene therapy have been discussed briefly in this review. We have also highlighted the rapid advancement of several nonviral gene therapies for AD, which are broadly categorized into physical and chemical methods. These methods aim to modulate Aβ, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), apolipoprotein E, or neurotrophic factors' expression in the CNS. Overall, this review discusses challenges and recent advancements of nonviral gene therapy for AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
5
|
Lin X, Bai G, Lin L, Wu H, Cai J, Ugen KE, Cao C. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease. Hum Vaccin Immunother 2016; 10:2024-31. [PMID: 25424812 DOI: 10.4161/hv.28735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD development and progression as well as having potential therapeutic implications.
Collapse
Affiliation(s)
- Xiaoyang Lin
- a Department of Pharmacuetical Sciences College of Pharmacy; University of South Florida; Tampa, FL USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Azizi G, Navabi SS, Al-Shukaili A, Seyedzadeh MH, Yazdani R, Mirshafiey A. The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer's Disease. Sultan Qaboos Univ Med J 2015; 15:e305-16. [PMID: 26357550 DOI: 10.18295/squmj.2015.15.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/17/2014] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder associated with advanced age, is the most common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic research aims in the field of AD and similar diseases.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran; ; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi S Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Al-Shukaili
- Health & Social Services Sector, The Research Council Oman, Muscat, Oman
| | - Mir H Seyedzadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran ; Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Guo W, Sha S, Jiang T, Xing X, Cao Y. A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta. Neural Regen Res 2014; 8:2581-90. [PMID: 25206569 PMCID: PMC4145937 DOI: 10.3969/j.issn.1673-5374.2013.27.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/02/2013] [Indexed: 01/11/2023] Open
Abstract
To enhance anti-amyloid-beta (Aβ) antibody generation and induce a Th2 immune response, we constructed a new DNA vaccine p(Aβ3–10)10-C3d-p28.3 encoding ten repeats of Aβ3–10 and three copies of C3d-p28 as a molecular adjuvant. In this study, we administered this adjuvant cularly to female C57BL/6J mice at 8–10 weeks of age. Enzyme linked immunosorbent assay was used to detect the titer of serum anti-Aβ antibody, isotypes, and cytokines in splenic T cells. A 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to detect the prolifera-tion rate of splenic T cells. Brain sections from a 12-month-old APP/PS1 transgenic mouse were used for detecting the binding capacities of anti-Aβ antibodies to Aβ plaques. The p(Aβ3–10)10-C3d-p28.3 vaccine induced high titers of anti-amyloid-β antibodies, which bound to Aβ plaques in APP/PS1 transgenic mouse brain tissue, demonstrating that the vaccine is effective against plaques in a mouse model of Alzheimer's disease. Moreover, the vaccine elicited a predo-minantly IgG1 humoral response and low levels of interferon-γ in ex vivo cultured splenocytes, dicating that the vaccine could shift the cellular immune response towards a Th2 phenotype. This indicated that the vaccine did not elicit a detrimental immune response and had a favorable safety profile. Our results indicate that the p(Aβ3–10)10-C3d-p28.3 vaccine is a promising immunothe-peutic option for Aβ vaccination in Alzheimer's disease.
Collapse
Affiliation(s)
- Wanshu Guo
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Sha Sha
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tongzi Jiang
- Department of Neurology, First People's Hospital of Shenyang City, Shenyang 110041, Liaoning Province, China
| | - Xiaona Xing
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yunpeng Cao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
8
|
Lambracht-Washington D, Rosenberg RN. Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease. Immunotargets Ther 2013; 2013:105-114. [PMID: 24926455 PMCID: PMC4051350 DOI: 10.2147/itt.s31428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy might provide an effective treatment for Alzheimer’s disease (AD). A unique feature of AD immunotherapies is that an immune response against a self-antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focused on two possible targets in this regard. One is the inhibition of accumulation and deposition of amyloid beta 1–42 (Aβ42), which is one of the major peptides found in senile plaques, and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau-based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phosphorylated tau have been found, high interest has again focused on further development of tau-based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. Last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects, as these two pathologies are likely synergistic; this is an approach that has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, and present an overview on halted, ongoing, and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, Alzheimer's Disease Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
A peptide prime-DNA boost immunization protocol provides significant benefits as a new generation Aβ42 DNA vaccine for Alzheimer disease. J Neuroimmunol 2012; 254:63-8. [PMID: 23036592 DOI: 10.1016/j.jneuroim.2012.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
Immunotherapy has the potential to provide a possible treatment therapy to prevent or delay Alzheimer disease. In a clinical trial (AN1792) in which patients received this immunotherapy and received active Aβ1-42 peptide immunizations, treatment was stopped when 6% of patients showed signs of meningoencephalitis. Follow up on these patients led to the conclusion that the antibody response was beneficial in removing Aβ1-42 from brain but an accompanying inflammatory Th1 T cell response was harmful. As a safe alternative treatment targeting the same self protein, Aβ1-42, in brain, we and others are working on a DNA Aβ1-42 immunization protocol as the immune response to DNA immunizations differs in many aspects from immunizations with peptide antigens. Because the immune response to DNA vaccination has different kinetics and has a significantly lower antibody production, we evaluated two different prime boost regimens, Aβ1-42 DNA prime/Aβ1-42 peptide boost and Aβ1-42 peptide prime/Aβ1-42 DNA boost for their effectiveness in antibody production and possible side effects due to inflammatory T cell responses. While both boost regimes significantly enhanced the specific antibody production with comparable antibody concentrations, the absence of the Aβ1-42 T cell response (no proliferation and no cytokine production) is consistent with our previous findings using this DNA Aβ1-42 trimer immunization and greatly enhances the safety aspect for possible clinical use.
Collapse
|
10
|
Abstract
As a neurodegenerative disorder, Alzheimer disease (AD) is the most common form of dementia found in the aging population. Immunotherapy with passive or active immunizations targeting amyloid beta (Aβ) build-up in the brain may provide a possible treatment option and may help prevent AD from progressing. A number of passive immunizations with anti-Aβ42 antibodies are in different phases of clinical trials. One active immunization approach, AN-1792, was stopped after the development of autoimmune encephalitis in 6% of patients and a second one, CAD106, in which a small Aβ epitope is used, is currently in safety and tolerability studies. Besides active immunizations with proteins or peptides, active immunizations using DNA which codes for the protein against which the immune response will be directed, so called genetic immunizations, provide additional safety as the immune response in DNA immunizations differs quantitatively and qualitatively from the response elicited by peptide immunizations. In this review, we summarize our data using DNA Aβ42 immunizations in mouse models and discuss the results together with the results presented by other groups working on a DNA vaccine as treatment option for AD.
Collapse
|
11
|
Genetic animal models of cerebral vasculopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:25-55. [PMID: 22137428 DOI: 10.1016/b978-0-12-394596-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are genetic cerebrovasculopathies associated with neurodegeneration and vascular cognitive impairment. Linked to autosomal dominant mutations in diverse genes that encode cell-surface receptors (i.e., amyloid precursor protein in CAA and NOTCH3 in CADASIL), both diseases are associated with accumulation of abnormal material around cerebral vessels, such as amyloid in CAA or granular osmiophilic material in CADASIL. Both CAA and CADASIL share clinical features of white matter degeneration and infarcts, and vascular dementia in the human adult; microbleeds occur in both CADASIL and CAA, but large intracerebral hemorrhages are more characteristic for the latter. While the mechanisms are poorly understood, wall thickening, luminal narrowing, and eventual loss of vascular smooth muscle cells are overlapping pathologies involving leptomeningeal, and pial or penetrating small arteries and arterioles in CAA and CADASIL. Dysregulation of cerebral blood flow and eventual hypoperfusion are believed to be the key pathophysiological steps in neurodegeneration and cognitive impairment. Although animal models expressing CAA or CADASIL mutations have partially reproduced the human pathology, there has been marked heterogeneity in the phenotypic spectrum, possibly due to genetic background differences among mouse models, and obvious species differences between mouse and man. Here, we provide an overview of animal models of CAA and CADASIL and the insight on molecular and physiological mechanisms of disease gained from these models.
Collapse
|
12
|
|
13
|
Shah S, Federoff HJ. Therapeutic potential of vaccines for Alzheimer's disease. Immunotherapy 2011; 3:287-98. [PMID: 21322764 DOI: 10.2217/imt.10.94] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles. Although the relationship between neuronal loss and the presence of plaques/tangles is not well understood, the prevailing Aβ hypothesis posits that excessive accumulation of conformers and assemblies of Aβ protein precedes AD-related dementia and neuronal loss. Consequently, most disease-modifying immunotherapy approaches are directed towards modulating the levels of Aβ. The first AD vaccine clinical trial (AN1792) was suspended after the patients developed meningoencephalitis. In spite of the setback, the trial provided insights to refine development second-generation vaccines, which are attempting to resolve the side effects observed in the trial. This article provides an analysis of these efforts.
Collapse
Affiliation(s)
- Salim Shah
- Georgetown University Medical Center, 4000 Reservoir Road, NW 120 Building D, Washington, DC 20007, USA
| | | |
Collapse
|
14
|
Lambracht-Washington D, Qu BX, Fu M, Anderson LD, Stüve O, Eagar TN, Rosenberg RN. DNA immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer's disease as it diminishes antigen-specific Th1 and Th17 cell proliferation. Cell Mol Neurobiol 2011; 31:867-74. [PMID: 21625960 DOI: 10.1007/s10571-011-9680-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been strongly associated with the accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. A clinical trial in which AD patients were immunized with Aβ42 peptide was stopped when 6% of participants showed meningoencephalitis, apparently due to an inflammatory Th1 immune response. Previously, we and other have shown that Aβ42 DNA vaccination via gene gun generates a Th2 cellular immune response, which was shown by analyses of the respective antibody isotype profiles. We also determined that in vitro T cell proliferation in response to Aβ42 peptide re-stimulation was absent in DNA Aβ42 trimer-immunized mice when compared to Aβ42 peptide-immunized mice. To further characterize this observation prospectively and longitudinally, we analyzed the immune response in wild-type mice after vaccination with Aβ42 trimer DNA and Aβ42 peptide with Quil A adjuvant. Wild-type mice were immunized with short-term (1-3× vaccinations) or long-term (6× vacinations) immunization strategies. Antibody titers and isotype profiles of the Aβ42 specific antibodies, as well as cytokine profiles and cell proliferation studies from this longitudinal study were determined. Sufficient antibody titers to effectively reduce Aβ42, but an absent T cell proliferative response and no IFNγ or IL-17 secretion after Aβ42 DNA trimer immunization minimizes the risk of inflammatory activities of the immune system towards the self antigen Aβ42 in brain. Therefore, Aβ42 DNA trimer immunization has a high probability to be effective and safe to treat patients with early AD.
Collapse
|
15
|
Lindhagen-Persson M, Brännström K, Vestling M, Steinitz M, Olofsson A. Amyloid-β oligomer specificity mediated by the IgM isotype--implications for a specific protective mechanism exerted by endogenous auto-antibodies. PLoS One 2010; 5:e13928. [PMID: 21085663 PMCID: PMC2978096 DOI: 10.1371/journal.pone.0013928] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/18/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alzheimers disease (AD) has been strongly linked to an anomalous self-assembly of the amyloid-β peptide (Aβ). The correlation between clinical symptoms of AD and Aβ depositions is, however, weak. Instead small and soluble Aβ oligomers are suggested to exert the major pathological effects. In strong support of this notion, immunological targeting of Aβ oligomers in AD mice-models shows that memory impairments can be restored without affecting the total burden of Aβ deposits. Consequently a specific immunological targeting of Aβ oligomers is of high therapeutic interest. METHODOLOGY/PRINCIPAL FINDINGS Previously the generation of conformational-dependent oligomer specific anti-Aβ antibodies has been described. However, to avoid the difficult task of identifying a molecular architecture only present on oligomers, we have focused on a more general approach based on the hypothesis that all oligomers expose multiple identical epitopes and therefore would have an increased binding to a multivalent receptor. Using the polyvalent IgM immunoglobulin we have developed a monoclonal anti-Aβ antibody (OMAB). OMAB only demonstrates a weak interaction with Aβ monomers and dimers having fast on and off-rate kinetics. However, as an effect of avidity, its interaction with Aβ-oligomers results in a strong complex with an exceptionally slow off-rate. Through this mechanism a selectivity towards Aβ oligomers is acquired and OMAB fully inhibits the cytotoxic effect exerted by Aβ(1-42) at highly substoichiometric ratios. Anti-Aβ auto-antibodies of IgM isotype are frequently present in the sera of humans. Through a screen of endogenous anti-Aβ IgM auto-antibodies from a group of healthy individuals we show that all displays a preference for oligomeric Aβ. CONCLUSIONS/SIGNIFICANCE Taken together we provide a simple and general mechanism for targeting of oligomers without the requirement of conformational-dependent epitopes. In addition, our results suggest that IgM anti-Aβ auto-antibodies may exert a more specific protective mechanism in vivo than previously anticipated.
Collapse
Affiliation(s)
| | | | - Monika Vestling
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Michael Steinitz
- Department of Pathology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Cui L, Huang X, Wang J, Zhang Y. Specific and efficient anti-Aβ42 antibodies induced by sixteen tandem repeats of Aβ9. J Neuroimmunol 2010; 227:18-25. [DOI: 10.1016/j.jneuroim.2010.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/08/2010] [Accepted: 06/02/2010] [Indexed: 11/25/2022]
|
17
|
Qu BX, Lambracht-Washington D, Fu M, Eagar TN, Stüve O, Rosenberg RN. Analysis of three plasmid systems for use in DNA A beta 42 immunization as therapy for Alzheimer's disease. Vaccine 2010; 28:5280-7. [PMID: 20562015 PMCID: PMC2926979 DOI: 10.1016/j.vaccine.2010.05.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/26/2010] [Accepted: 05/20/2010] [Indexed: 01/01/2023]
Abstract
In an effort to optimize DNA immunization-elicited antibody production responses against A beta 1-42 (A beta 42) as a therapy for Alzheimer's disease (AD), comparisons were made between three distinct plasmid systems using gene gun delivery. Plasmids encoding A beta 42 monomer and a novel A beta 42 trimeric fusion protein were evaluated in conjunction with CMV or Gal4/UAS promoter elements. It was found that vaccination A beta 42 trimer under the Gal4/UAS promoter elicited high levels of anti-A beta 42 antibody production. Serum antibody levels from Gal4/UAS-A beta 42 trimer immunized mice were found to be 16.6+/-5.5 microg/ml compared to 6.5+/-2.5 microg/ml with Gal4/UAS-A beta 42 monomer or even less with CMV-A beta 42 trimer. As compared to monomeric A beta 42 or A beta 42 trimer expressed under the CMV promoter, injection of the Gal4/UAS-A beta 42 trimer induced high levels of A beta 42 antigen expression in tissue suggesting a mechanism for the increase in anti-A beta 42 antibody. Antibodies were found to be primarily IgG1 suggesting a predominant Th2 response (IgG1/IgG2a ratio of 9). Serum from A beta 42 trimer-vaccinated mice was also found to identify amyloid plaques in the brains of APP/PS1 transgenic mice. These results demonstrate the potential therapeutic use of Gal4/UAS DNA A beta 42 trimer immunization in preventing Alzheimer's disease.
Collapse
Affiliation(s)
- Bao-Xi Qu
- Alzheimer's Disease Center, Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9036, USA
| | | | | | | | | | | |
Collapse
|
18
|
Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease. PLoS One 2010; 5:e10549. [PMID: 20485502 PMCID: PMC2868024 DOI: 10.1371/journal.pone.0010549] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/11/2010] [Indexed: 01/02/2023] Open
Abstract
Immunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Abeta), which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB), allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.
Collapse
Affiliation(s)
- Jessica F. Jordão
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos A. Ayala-Grosso
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Unidad de Biología Molecular, Facultad de Farmacia, Universidad Central de Venezuela, Los Chaguaramos, Caracas, Venezuela
| | - Kelly Markham
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yuexi Huang
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Chopra
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Imaging, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Cribbs DH. Abeta DNA vaccination for Alzheimer's disease: focus on disease prevention. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:207-16. [PMID: 20205639 PMCID: PMC3153446 DOI: 10.2174/187152710791012080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/05/2010] [Indexed: 12/18/2022]
Abstract
Pre-clinical and clinical data suggest that the development of a safe and effective anti-amyloid-beta (Abeta) immunotherapy for Alzheimer's disease (AD) will require therapeutic levels of anti-Abeta antibodies, while avoiding proinflammatory adjuvants and autoreactive T cells which may increase the incidence of adverse events in the elderly population targeted to receive immunotherapy. The first active immunization clinical trial with AN1792 in AD patients was halted when a subset of patients developed meningoencephalitis. The first passive immunotherapy trial with bapineuzumab, a humanized monoclonal antibody against the end terminus of Abeta, also encountered some dose dependent adverse events during the Phase II portion of the study, vasogenic edema in 12 cases, which were significantly over represented in ApoE4 carriers. The proposed remedy is to treat future patients with lower doses, particularly in the ApoE4 carriers. Currently there are at least five ongoing anti-Abeta immunotherapy clinical trials. Three of the clinical trials use humanized monoclonal antibodies, which are expensive and require repeated dosing to maintain therapeutic levels of the antibodies in the patient. However in the event of an adverse response to the passive therapy antibody delivery can simply be halted, which may provide a resolution to the problem. Because at this point we cannot readily identify individuals in the preclinical or prodromal stages of AD pathogenesis, passive immunotherapy is reserved for those that already have clinical symptoms. Unfortunately those individuals have by that point accumulated substantial neuropathology in affected regions of the brain. Moreover, if Abeta pathology drives tau pathology as reported in several transgenic animal models, and once established if tau pathology can become self propagating, then early intervention with anti-Abeta immunotherapy may be critical for favorable clinical outcomes. On the other hand, active immunization has several significant advantages, including lower cost and the typical immunization protocol should be much less intrusive to the patient relative to passive therapy, in the advent of Abeta-antibody immune complex-induced adverse events the patients will have to receive immuno-supperssive therapy for an extended period until the anti Abeta antibody levels drop naturally as the effects of the vaccine decays over time. Obviously, improvements in vaccine design are needed to improve both the safety, as well as the efficacy of anti-Abeta immunotherapy. The focus of this review is on the advantages of DNA vaccination for anti-Abeta immunotherapy, and the major hurdles, such as immunosenescence, selection of appropriate molecular adjuvants, universal T cell epitopes, and possibly a polyepitope design based on utilizing existing memory T cells in the general population that were generated in response to childhood or seasonal vaccines, as well as various infections. Ultimately, we believe that the further refinement of our AD DNA epitope vaccines, possibly combined with a prime boost regime will facilitate translation to human clinical trials in either very early AD, or preferably in preclinical stage individuals identified by validated AD biomarkers.
Collapse
Affiliation(s)
- David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 92697-4540, USA.
| |
Collapse
|
20
|
Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:197-206. [PMID: 20205640 PMCID: PMC2895488 DOI: 10.2174/187152710791012017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/12/2009] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the brain and the most common form of dementia among the elderly. As the population grows and lifespan is extended, the number of AD patients will continue to rise. Current clinical therapies for AD provide partial symptomatic benefits for some patients; however, none of them modify disease progression. Amyloid-beta (Abeta) peptide, the major component of senile plaques in AD patients, is considered to play a crucial role in the pathogenesis of AD thereby leading to Abeta as a target for treatment. Abeta immunotherapy has been shown to induce a marked reduction in amyloid burden and an improvement in cognitive function in animal models. Although preclinical studies were successful, the initial human clinical trial of an active Abeta vaccine was halted due to the development of meningoencephalitis in approximately 6% of the vaccinated AD patients. Some encouraging outcomes, including signs of cognitive stabilization and apparent plaque clearance, were obtained in subset of patients who generated antibody titers. These promising preliminary data support further efforts to refine Abeta immunotherapy to produce highly effective and safer active and passive vaccines for AD. Furthermore, some new human clinical trials for both active and passive Abeta immunotherapy are underway. In this review, we will provide an update of Abeta immunotherapy in animal models and in human beings, as well as discuss the possible mechanisms underlying Abeta immunotherapy for AD.
Collapse
Affiliation(s)
- H J Fu
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
21
|
Tabira T. Immunization Therapy for Alzheimer Disease: A Comprehensive Review of Active Immunization Strategies. TOHOKU J EXP MED 2010; 220:95-106. [DOI: 10.1620/tjem.220.95] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takeshi Tabira
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Juntendo University
| |
Collapse
|
22
|
Lambracht-Washington D, Qu BX, Fu M, Eagar TN, Stüve O, Rosenberg RN. DNA beta-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model. JAMA 2009; 302:1796-802. [PMID: 19861672 PMCID: PMC2896011 DOI: 10.1001/jama.2009.1547] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT DNA beta-amyloid(1-42) (Abeta42) trimer immunization was developed to produce specific T helper 2 cell (T(H)2)-type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Abeta42 peptide that occur in the brain of patients with AD. OBJECTIVE To compare the immune response in wild-type mice after immunization with DNA Abeta42 trimer and Abeta42 peptide. DESIGN AND INTERVENTION Wild-type mice received either 4 microg of DNA Abeta42 trimer immunization administered with gene gun (n = 8) or intraperitoneal injection of 100 microg of human Abeta42 peptide with the adjuvant Quil A (n = 8). Titers, epitope mapping, and isotypes of the Abeta42-specific antibodies were analyzed. MAIN OUTCOME MEASURES Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Abeta42-specific antibodies, and T-cell activation. RESULTS DNA Abeta42 trimer immunization resulted in antibody titers with a mean of 15 microg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a T(H)2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed T(H)1/T(H)2 immune response (IgG1/IgG2a ratio of 1) (P < .001). No increased T-cell proliferation was observed in the DNA-immunized mice (P = .03). CONCLUSION In this preliminary study in a wild-type mouse model, DNA Abeta42 trimer immunization protocol produced a T(H)2 immune response and appeared to have low potential to cause an inflammatory T-cell response.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9108, USA
| | | | | | | | | | | |
Collapse
|