1
|
Marques-Santos F, Faria RX, Amendoeira MRR. The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review. Curr Top Med Chem 2024; 24:1960-1999. [PMID: 38952156 DOI: 10.2174/0115680266299409240606062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Toxoplasmosis is a worldwide distributed zoonosis caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms. METHOD Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression. RESULTS The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.
Collapse
Affiliation(s)
- Fabielle Marques-Santos
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| | - Maria Regina Reis Amendoeira
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Dewan K, Lopez V, Jamal N. Complementary and Integrative Medicine and the Voice. Otolaryngol Clin North Am 2022; 55:1007-1016. [PMID: 36088156 DOI: 10.1016/j.otc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Dysphonia is a ubiquitous problem impacting a broad range of people. As communication is central to the human experience, any perturbation of the voice can be frustrating for the patient and the physician. Nutritional, psychological, and physical means of preventing and treating hoarseness have been used by humans since the beginning of written record. Today, we use a selection of these approaches, along with traditional medicine, to alleviate problems of the vocal tract.
Collapse
Affiliation(s)
- Karuna Dewan
- Department of Otolaryngology- Head and Neck Surgery, Louisiana State University Health Shreveport, Edinburg, TX 78541, USA
| | - Vanessa Lopez
- The University of Texas Rio Grande Valley School of Medicine, USA
| | - Nausheen Jamal
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Rio Grande Valley School of Medicine, 1210 West Schunior Street, EMEBL 3.145, Edinburg, TX 78541, USA.
| |
Collapse
|
3
|
Hioki K, Hayashi T, Natsume-Kitatani Y, Kobiyama K, Temizoz B, Negishi H, Kawakami H, Fuchino H, Kuroda E, Coban C, Kawahara N, Ishii KJ. Machine Learning-Assisted Screening of Herbal Medicine Extracts as Vaccine Adjuvants. Front Immunol 2022; 13:847616. [PMID: 35663999 PMCID: PMC9160479 DOI: 10.3389/fimmu.2022.847616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Adjuvants are important vaccine components, composed of a variety of chemical and biological materials that enhance the vaccine antigen-specific immune responses by stimulating the innate immune cells in both direct and indirect manners to produce a variety cytokines, chemokines, and growth factors. It has been developed by empirical methods for decades and considered difficult to choose a single screening method for an ideal vaccine adjuvant, due to their diverse biochemical characteristics, complex mechanisms of, and species specificity for their adjuvanticity. We therefore established a robust adjuvant screening strategy by combining multiparametric analysis of adjuvanticity in vivo and immunological profiles in vitro (such as cytokines, chemokines, and growth factor secretion) of various library compounds derived from hot-water extracts of herbal medicines, together with their diverse distribution of nano-sized physical particle properties with a machine learning algorithm. By combining multiparametric analysis with a machine learning algorithm such as rCCA, sparse-PLS, and DIABLO, we identified that human G-CSF and mouse RANTES, produced upon adjuvant stimulation in vitro, are the most robust biological parameters that can predict the adjuvanticity of various library compounds. Notably, we revealed a certain nano-sized particle population that functioned as an independent negative parameter to adjuvanticity. Finally, we proved that the two-step strategy pairing the negative and positive parameters significantly improved the efficacy of screening and a screening strategy applying principal component analysis using the identified parameters. These novel parameters we identified for adjuvant screening by machine learning with multiple biological and physical parameters may provide new insights into the future development of effective and safe adjuvants for human use.
Collapse
Affiliation(s)
- Kou Hioki
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Hideo Negishi
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J. Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Ding X, Zhang C, Gao Y, Bei Z, Yan X. Characterization of the complete chloroplast genome of Astragalus galactites (Fabaceae). Mitochondrial DNA B Resour 2021; 6:3278-3279. [PMID: 34712811 PMCID: PMC8547884 DOI: 10.1080/23802359.2021.1993105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/08/2021] [Indexed: 11/02/2022] Open
Abstract
Astragalus galactites is a medicinal plant. The total plastome length of A. galactites is 126,117 bp. It contains a large single-copy region of 69,805 bp, two inverted repeat regions of 20,638 bp, and a small single-copy region of 15,036 bp. The cp genome contains 110 complete genes, including 75 protein-coding genes (75 PCGs), 4 ribosomal RNA genes (4 rRNAs), and 30 tRNA genes (30 tRNAs). The overall GC content of cp DNA is 33.9%, the corresponding values of the LSC, SSC, and IR regions are 33.0%, 30.4%, and 43.3% respectively. The phylogenetic tree shows that A. galactites has the closest relationship with A. laxmannii.
Collapse
Affiliation(s)
- Xiaodong Ding
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Chaopan Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Yangqiong Gao
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Zhanlin Bei
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - XingFu Yan
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Cheraghipour K, Masoori L, Ezzatpour B, Roozbehani M, Sheikhian A, Malekara V, Niazi M, Mardanshah O, Moradpour K, Mahmoudvand H. The Experimental Role of Medicinal Plants in Treatment of Toxoplasma gondii Infection: A Systematic Review. Acta Parasitol 2021; 66:303-328. [PMID: 33159263 DOI: 10.1007/s11686-020-00300-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Toxoplasma gondii is the global protozoa that could cause contamination in warm-blooded animals and is considered among the opportunistic pathogens in immunocompromised patients. Among the people at risk, toxoplasmosis infection can lead to the incidence of severe clinical manifestations, encephalitis, chorioretinitis, and even death. PURPOSE The present research is focused on the new research for the treatment of toxoplasmosis parasitic disease using medicinal herbs. METHODS The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar up from 2010 to December 2019. Studies in any language were entered in the searching step if they had an English abstract. The words and terms were used as a syntax with specific tags of each database. RESULTS Out of 1832 studies, 36 were eligible to be reviewed. The findings showed that 17 studies (47%) were performed in vitro, 14 studies (39%) in vivo, and 5 studies (14%) both in vivo and in vitro. CONCLUSION The studies showed that the plant extracts can be a good alternative in reducing the toxoplasmosis effects in the host and the herbal extracts can be used to produce natural product-based drugs affecting toxoplasmosis with fewer side-effects than synthetic drugs.
Collapse
Affiliation(s)
- Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Masoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behrooz Ezzatpour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mona Roozbehani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sheikhian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahid Malekara
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Massumeh Niazi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, School of Medical Sciences, Sirjan Faculty of Medical Sciences, Kerman, Iran
| | | | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
6
|
Liu Y, Chen Y, Fu X. The complete chloroplast genome sequence of medicinal plant: Astragalus laxmannii (Fabaceae). Mitochondrial DNA B Resour 2020; 5:3661-3662. [PMID: 33367050 PMCID: PMC7646590 DOI: 10.1080/23802359.2020.1829122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
Astragalus laxmannii is a traditional Chinese medicine. The complete chloroplast genome sequence is 122,844 bp in length, contains 110 complete genes, including 75 protein-coding genes (75 PCGs), 8 ribosomal RNA genes (4 rRNAs), and 30 tRNA genes (30 tRNAs). The overall GC content of cp DNA is 34.1%. Phylogenetic tree shows that A. laxmannii is a sister to A. strictus.
Collapse
Affiliation(s)
- Yi Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Yang Chen
- Department of Nephropathy, Sichuan Integrative Medicine Hospital, Chengdu, Sichuan, P. R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| |
Collapse
|
7
|
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao P, Yang Y, Li X, Tang X, Wang S, Wang Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112895. [PMID: 32330511 DOI: 10.1016/j.jep.2020.112895] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR, Huangqi in Chinese), the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge., possesses diverse therapeutic effects against fatigue, dyspepsia, diarrhea, heart diseases, hepatitis, and anemia. In recent years, increasing evidence has indicated the multiple immunomodulatory activities of AR in preclinical and clinical studies. AIM OF THE REVIEW This review attempts to elaborate the immunomodulatory effects of AR and its potential application in the treatment of immune related diseases. MATERIALS AND METHODS A comprehensive literature search AR was carried out using multiple internationally recognized databases (including Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, Taylor & Francis, and CNKI). RESULTS The immunomodulatory effects of AR are closely attributed to its active constituents such as polysaccharides, saponins, and flavonoids. We also demonstrate that AR can be used as a potential therapeutic intervention for immune related diseases through regulating immune organs, mucosal immune, and immune system (innate immunity and acquired immunity). CONCLUSION AR promotes the development of immune organs, enhances mucosal immune function, increases the quantity and phagocytic capacity of innate immunity, promotes the maturation and differentiation of acquired immunity cells, and improves the expression of antibodies in acquired immunity. We believe that AR has a broad research space in the adjuvant treatment of immune related diseases, which could be a breakthrough point to improve the application value of AR.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Tang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
8
|
El-Ashram SA, Aboelhadid SM, Gadelhaq SM, Arafa WM, Abdel-Razik ARH, Abohamra S, Abdelaziz KT. Oral inoculation of ultraviolet-irradiated Eimeria species oocysts protects chickens against coccidiosis. Parasitol Res 2019; 118:3173-3183. [PMID: 31606835 DOI: 10.1007/s00436-019-06455-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Prevention of coccidiosis is one of the best ways of controlling disease. Therefore, the present study was carried out to evaluate the protective effect of ultraviolet (UV)-irradiated sporulated oocysts of Eimeria species against coccidiosis in layer chickens. One hundred forty-four one-day-old layer chicks were randomly divided into 4 groups (n = 36), including non-immunized/non-challenged negative control group (NC group), non-immunized/challenged control group (NIC group), non-irradiated sporulated oocyst/challenged group (CA group), and UV-irradiated sporulated oocyst/challenged (UV group). At the age of 4 days, chickens in groups UV and CA were both orally inoculated with 1.0 × 104 UV-irradiated and non-irradiated sporulated oocysts of Eimeria species, respectively. Chickens in groups NIC and NC were served as positive and negative controls, respectively. Chickens in all groups were orally challenged with 7.5 × 104 sporulated oocysts of Eimeria species except the NC group at the age of 21 days. The results revealed that chicks receiving UV-irradiated sporulated oocysts had no signs of illness with minimal or no changes in the cecal integrity and a significantly lower oocyst shedding (OPG) than in the NIC group. Additionally, the cytokine gene expression profiles were evaluated. Expression levels of IL-2, IL-12, and IFN-γ were significantly higher in the spleen of chicks in the UV and CA groups than in the NC group post-challenge. As expected, treatment with irradiated oocysts resulted in a significant reduction in oocyst shedding and maintenance of cecal mucosal integrity. Furthermore, the body weight was higher in chickens inoculated with UV-irradiated oocysts than their non-irradiated counterparts. In conclusion, our results demonstrate that inoculation with UV-irradiated sporulated oocysts of Eimeria species can produce a substantial reduction in infection symptoms.
Collapse
Affiliation(s)
- Saeed A El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China.
- Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, 33516, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Salama Abohamra
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Khaled T Abdelaziz
- Department of pathology, Ontario Veterinary College, University of Guelph, Ontario, N1G 2W1, Canada
- Department of pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
9
|
The enhanced immunological activity of Paulownia tomentosa flower polysaccharide on Newcastle disease vaccine in chicken. Biosci Rep 2019; 39:BSR20190224. [PMID: 30971500 PMCID: PMC6500895 DOI: 10.1042/bsr20190224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
The extracts of Paulownia tomentosa (P. tomentosa) exhibit multiple pharmacological activities. In the present study, P. tomentosa flower polysaccharides (PTFP) were extracted by water decoction and ethanol precipitation, and the immunologic modulations of PTFP against Newcastle disease (ND) vaccine was investigated in chickens. The results showed that in a certain range of concentrations, PTFP treatment can dose-dependently enhance lymphocyte proliferation. Then, 280 14-days-old chickens were randomly divided into seven groups, and vaccinated with ND vaccine except blank control (BC) group. At the first vaccination, chickens were orally administrated with PTFP at concentration ranging from 0 to 50 mg/kg once a day for 3 successive days, and the BC group was treated with physiological saline. The lymphocyte proliferation rate, serum antibody titer, and levels of interferon-γ (IFN-γ) were respectively measured on 7, 14, 21, and 28 days after the first vaccination. The results showed that PTFP at the suitable doses could significantly promote lymphocyte proliferation, enhance serum antibody titer, and improve serum IFN-γ concentrations. Taken together, these data indicated that PTFP could improve the immune efficacy against ND vaccine in chickens, and could be as the candidate of a new-type immune adjuvant.
Collapse
|
10
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
11
|
Li X, Wu Y, Huang S, Lu F. Disodium cromoglycate may act as a novel adjuvant for UV-attenuated Toxoplasma gondii vaccine in mouse model. Parasitol Int 2018; 67:351-356. [PMID: 29421521 DOI: 10.1016/j.parint.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/09/2017] [Accepted: 02/02/2018] [Indexed: 02/09/2023]
Abstract
We have proven the beneficial effects during acute Toxoplasma gondii infection when mast cells were inhibited by disodium cromoglycate (DSCG). Here we investigated the adjuvant effect of DSCG on the protective efficacy of UV-attenuated T. gondii (UV-Tg) vaccine. Mice were infected with 102Tg alone or infected with 102Tg plus DSCG (Tg + DSCG), immunized with 105 UV-Tg and challenged with 102Tg (UV-Tg + Tg) or immunized with 105 UV-Tg plus DSCG and challenged with 102Tg (UV-Tg + DSCG + Tg). Compared to Tg group, Tg + DSCG, UV-Tg + Tg, and UV-Tg + DSCG + Tg showed significantly prolonged survival times, decreased parasite burdens, reduced liver histopathologies, and increased levels of Th1 and Th2 cytokines and IL-17 in the livers and spleens by using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Compared to UV-Tg + Tg, UV-Tg + DSCG + Tg had significantly longer survival time, lower tissue parasite burden and histopathological score, and higher levels of Th1 and Th2 cytokines and IL-17 in the livers or spleens. Our data suggest that DSCG may play an adjuvant role in the immunization induced by UV-attenuated T. gondii in mice, by promoting cellular immune response against T. gondii challenge.
Collapse
Affiliation(s)
- Xi Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| | - Yifan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou 510632, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
12
|
Du J, Wang CH, Yang J, He X, Han XL, Li CC, Chai X, Wang YF, Zhu Y, Li Z. Chemical constituents from the fruits of Psoralea corylifolia and their protective effects on ionising radiation injury. Nat Prod Res 2017; 33:673-680. [DOI: 10.1080/14786419.2017.1405407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jie Du
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chun-Hua Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Yang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin He
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiao-Liang Han
- Department of Anesthesiology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Cong-Cong Li
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Chai
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Li X, Chen S, Huang S, Lu F. Mast cell activator compound 48/40 is not an effective adjuvant for UV-attenuated Toxoplasma gondii vaccine. Parasitol Res 2017; 116:2347-2353. [PMID: 28573462 DOI: 10.1007/s00436-017-5522-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/22/2017] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii (T. gondii, Tg) is a globally distributed parasitic protozoan causing different forms of toxoplasmosis in humans. Mast cells (MCs) play a role during T. gondii infection. Several studies suggest that MC activator compound 48/80 (C48/80) may be an effective vaccine adjuvant resulting in a potent and protective antigen-specific immune response against bacteria or virus infections. The present study was performed to determine whether C48/80 had adjuvant activity for ultraviolet (UV)-attenuated T. gondii vaccine to induce protective immune responses against T. gondii in mouse model. Kunming mice were divided into the following groups: naive mice, naive mice administrated with C48/80 intraperitoneal (i.p.) injection, mice infected by i.p. injection of 104 T. gondii RH strain alone (Tg group), mice infected with 104 RH tachyzoites plus C48/80 administration (Tg + C48/80), mice immunized with UV-Tg alone, and mice immunized with UV-Tg plus C48/80 administration (UV-Tg + C48/80). All the vaccinated mice were challenged with 104 tachyzoites of T. gondii RH strain at the same time as the primary infection. The survival rates, liver histopathologies, liver parasite burdens, and mRNA expression levels of Th1 and Th2 cytokines in the livers and spleens detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were compared among the aforementioned groups after primary infection or challenge infection. The results showed that, compared to the Tg group or Tg + C48/80 group, the UV-Tg + Tg group and UV-Tg + C48/80 + Tg group had significantly prolonged survival time, lower liver histopathological scores, decreased liver parasite burdens, and increased levels of Th1 and Th2 cytokines in the livers and spleens. There was no significant difference of survival time between the UV-Tg + Tg group and the UV-Tg + C48/80 + Tg group; however, the UV-Tg + C48/80 + Tg group showed higher parasite burden, more severe liver histopathology, and decreased IL-4 level compared to the UV-Tg + Tg group. These results indicate that C48/80 had no adjuvant activity for the immunization induced by UV-attenuated T. gondii vaccine.
Collapse
Affiliation(s)
- Xi Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shengjie Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shiguang Huang
- Jinan University School of Stomatology, Guangzhou, 510632, Guangdong, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
14
|
Sharif M, Sarvi S, Pagheh AS, Asfaram S, Rahimi MT, Mehrzadi S, Ahmadpour E, Gholami S, Daryani A. The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades: a systematic review. Can J Physiol Pharmacol 2016; 94:1237-1248. [DOI: 10.1139/cjpp-2016-0039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of the current study was to systematically review papers discussing the efficacy of medicinal herbs against Toxoplasma gondii. Data were systematically collected from published papers about the efficacy of herbs used against T. gondii globally from 1988 to 2015, from PubMed, Google Scholar, ISI Web of Science, EBSCO, Science Direct, and Scopus. Forty-nine papers were included in the current systematic review reporting the evaluation of medicinal plants against T. gondii globally, both in vitro and in vivo. Sixty-one plants were evaluated. Most of the studies were carried out on Artemisia annua. The second highest number of studies were carried out on Glycyrrhiza glabra extracts. RH and ME49 were the predominant parasite strains used. Additionally, Swiss-Webster and BALB/c mice were the major animal models used. Alcoholic and aqueous extracts were used more than other types of extracts. Natural compounds mentioned here may be developed as novel and more effective therapeutic agents that improve the treatment of toxoplasmosis due to their lower side effects, higher availability, and better cultural acceptance compared with those of the chemical drugs that are currently being used.
Collapse
Affiliation(s)
- Mahdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabnam Asfaram
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirzad Gholami
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Chen P, Zhou X, Zhang L, Shan M, Bao B, Cao Y, Kang A, Ding A. Anti-inflammatory effects of Huangqin tang extract in mice on ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:207-214. [PMID: 25576893 DOI: 10.1016/j.jep.2014.12.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HuangqinTang (HQT) is a traditional Chinese formula which is composed of Scutellaria baicalensis Georgi, Paeonia lactiflora Pall, Glycyrrhiza uralensis Fisch, and Ziziphus jujube Mill. HQT has been used in China for a wide range of disorders, especially in gastrointestinal inflammation with symptoms of nausea, vomiting, diarrhea, abdominal cramps and so on. AIM OF THE STUDY To investigate the protective effects of HQT extract on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) induced colitis in mice. MATERIALS AND METHODS Different doses of HQT extract (1, 2 and 4 g/kg/day) and salicylazosulfapyridine (SASP, 500 mg/kg/day) were administered by gavage for 7 days after the induction of colitis with TNBS. The effects were studied by macroscopic score, histological analysis, immunohistochemical study of Cyclo-oxygenase-2 protein expression, as well as by determination of inflammation markers such as myeloperoxidase (MPO) and mRNA expression levels of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6. RESULTS In TNBS induced group, mice body weight decreased gradually and did not recover at the end of the experiment, as compared with that of control group (p<0.01). Edema and redness were also discovered in the colons profoundly and scores representing inflammation were all high in this group (p<0.01). The level of colonic MPO activity and the tissue levels of TNF-α, IL-1β and IL-6 were markedly increased (p<0.01). The mice treated with HQT extract and SASP recovered significantly compared with the TNBS group (p<0.01). CONCLUSION Our results suggested that the efficacy of HQT extract, especially at the higher dose, was analogous to that of SASP, which implicated its potential application as a natural alternative medicine in colitis treatment.
Collapse
Affiliation(s)
- Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China.
| | - Xi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - An Kang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Xianlin Road 138♯, Nanjing 210046, China
| |
Collapse
|
16
|
Wang HL, Zhang TE, Yin LT, Pang M, Guan L, Liu HL, Zhang JH, Meng XL, Bai JZ, Zheng GP, Yin GR. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PLoS One 2014; 9:e108377. [PMID: 25255141 PMCID: PMC4177930 DOI: 10.1371/journal.pone.0108377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li-Tian Yin
- Department of Physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Min Pang
- Department of Respiratory, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li Guan
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Li Liu
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Ping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
17
|
Kannan G, Prandovszky E, Steinfeldt CB, Gressitt KL, Yang C, Yolken RH, Severance EG, Jones-Brando L, Pletnikov MV. One minute ultraviolet exposure inhibits Toxoplasma gondii tachyzoite replication and cyst conversion without diminishing host humoral-mediated immune response. Exp Parasitol 2014; 145:110-7. [PMID: 25131777 DOI: 10.1016/j.exppara.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/20/2014] [Accepted: 08/03/2014] [Indexed: 12/17/2022]
Abstract
We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 min of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection.
Collapse
Affiliation(s)
- Geetha Kannan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Curtis B Steinfeldt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Kristin L Gressitt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - ChunXia Yang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Mikhail V Pletnikov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
18
|
Huang S, Huang Q, Huang B, Lu F. The effect of Scutellaria baicalensis Georgi on immune response in mouse model of experimental periodontitis. J Dent Sci 2013. [DOI: 10.1016/j.jds.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
20
|
Peng Q, Cai H, Sun X, Li X, Mo Z, Shi J. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity. PLoS One 2013; 8:e75328. [PMID: 24086508 PMCID: PMC3783377 DOI: 10.1371/journal.pone.0075328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
Chinese herbal medicines have long been used to treat various illnesses by modulating the human immune response. In this study, we investigate the immuno-modulating effect and antitumor activity of Alocasia Cucullata (AC), a Chinese herb traditionally used to treat infection and cancer. We found that the whole water extract of AC roots could significantly attenuate tumor growth in mouse tumor models. The median survival time of the AC-treated mice was 43 days, 16 days longer than that of the control group. Moreover, the AC-treated mice showed substantially higher induction of key antitumor cytokines, such as IL-2, IFN-γ, and TNF-α, indicating that AC may exert antitumor effect by activating antitumor immunity. To further pinpoint the cellular and molecular mechanism of AC, we studied the dose response of a human monocytic cell line, THP-1, to the whole water extract of AC. Treatment of the AC extract significantly induced THP-1 differentiation into macrophage-like cells and the differentiated THP-1 showed expression of specific macrophage surface markers, such as CD11b and CD14, as well as productions of antitumor cytokines, e.g. IFN-γ and TNF-α. Our data thus point to AC as potentially a new, alternative immuno-modulating herbal remedy for anticancer treatment.
Collapse
Affiliation(s)
- Qiuxian Peng
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- Centre for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hongbing Cai
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Li
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhixian Mo
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- * E-mail: (ZM); (JS)
| | - Jue Shi
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- Centre for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
- * E-mail: (ZM); (JS)
| |
Collapse
|
21
|
Zhao Y, Huang B, Huang S, Zheng H, Li YQ, Lun ZR, Shen J, Wang Y, Kasper LH, Lu F. Evaluation of the adjuvant effect of pidotimod on the immune protection induced by UV-attenuated Toxoplasma gondii in mouse models. Parasitol Res 2013; 112:3151-60. [PMID: 23783399 DOI: 10.1007/s00436-013-3491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
The current anti-Toxoplasma gondii drugs have many shortcomings and effective vaccines against T. gondii may contribute to the control of this pathogen. Pidotimod is a synthetic substance capable of stimulating both cellular and humoral immunity. To investigate the possible adjuvant effect of pidotimod on the immune response to T. gondii in Kunming mice induced by ultraviolet-attenuated T. gondii (UV-T.g), in this study, mice were immunized intraperitoneal (i.p.) with UV-T.g or UV-T.g co-administered with pidotimod (UV-T.g + PT). After infection or challenge by i.p. injection of 10(2) RH tachyzoites, the animal survival rate, parasite burden in peritoneal lavage fluids, liver histopathology, the level of serum anti-toxoplasma IgG antibody, and the mRNA expressions of IL-2, IFN-γ, and TNF-α from spleen analyzed using real-time PCR, were compared among different groups. The results showed that, compared with infected controls, infected mice treated with pidotimod had significantly increased survival rate and extended survival time, decreased parasite burden, improved liver histopathology, increased level of anti-toxoplasma IgG antibody, and increased mRNA expressions of Th1-type cytokine (IL-2, IFN-γ, and TNF-α) (P < 0.01), while mice vaccinated with UV-T.g and then challenged had even significantly increased survival rate and extended survival time, decreased parasite burden, improved liver histopathology, and increased mRNA expressions of Th1-type cytokines (IL-2, IFN-γ, and TNF-α) (P < 0.01); furthermore, vaccinated mice co-administered with pidotimod had even more lower parasite burden, milder liver histopathology, and higher levels of Th1-type cytokine and anti-toxoplasma IgG antibody (P < 0.01). Our data demonstrated that pidotimod in vivo could promote strong and specific humoral and cellular immune response to T. gondii challenge infection when co-administered with UV-attenuated T. gondii. It suggests that pidotimod may have the potential to be used as an effective vaccine adjuvant.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang LP, Shen JG, Xu WC, Li J, Jiang JQ. Secondary Metabolites of the GenusAstragalus:Structure and Biological-Activity Update. Chem Biodivers 2013; 10:1004-54. [DOI: 10.1002/cbdv.201100444] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Indexed: 01/22/2023]
|
23
|
Zhang G, Yang Z, Wang Y, Yang W. Effects of Astragalus membranaceus root processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens1. Poult Sci 2013; 92:178-83. [DOI: 10.3382/ps.2012-02432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
In vitro effects of aqueous extracts of Astragalus membranaceus and Scutellaria baicalensis GEORGI on Toxoplasma gondii. Parasitol Res 2011; 110:2221-7. [DOI: 10.1007/s00436-011-2752-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 11/30/2011] [Indexed: 12/22/2022]
|
25
|
Denzler KL, Waters R, Jacobs BL, Rochon Y, Langland JO. Regulation of inflammatory gene expression in PBMCs by immunostimulatory botanicals. PLoS One 2010; 5:e12561. [PMID: 20838436 PMCID: PMC2933230 DOI: 10.1371/journal.pone.0012561] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/22/2010] [Indexed: 01/03/2023] Open
Abstract
Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses.
Collapse
Affiliation(s)
- Karen L. Denzler
- Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Robert Waters
- Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Naturopathic Research, Southwest College of Naturopathic Medicine, Tempe, Arizona, United States of America
| | - Bertram L. Jacobs
- Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Yvan Rochon
- Department of Naturopathic Research, Southwest College of Naturopathic Medicine, Tempe, Arizona, United States of America
- Herbal Vitality, Inc., Sedona, Arizona, United States of America
| | - Jeffrey O. Langland
- Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Naturopathic Research, Southwest College of Naturopathic Medicine, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|