1
|
Song Y, Huang WC, Ivanochko D, Long C, Li Q, Zhou L, Julien JP, Miura K, Lovell JF. 50-Fold Adjuvant and 20-Fold Antigen Vaccine Dose Sparing from Nanoliposome Display of a Stabilized Malarial Protein Antigen. ACS NANO 2025; 19:10103-10112. [PMID: 40099532 DOI: 10.1021/acsnano.4c16865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Displaying soluble vaccine protein antigens onto the surface of adjuvanted nanoliposomes can enhance the magnitude of elicited antibody responses. In this study, we examine this approach with respect to dose sparing, for not only the antigen component but also the adjuvant dose in the vaccine. Using a structurally stabilized Pfs48/45 derived malarial protein as a model antigen, we confirmed the protein rapidly displayed on the surface of immunogenic liposomes containing cobalt porphyrin phospholipid (CoPoP; for antigen display via His-tag interaction) along with the immunostimulatory adjuvants monophosphoryl lipid A (MPLA) and QS-21. Mice were immunized with a fixed protein antigen dose with varying adjuvant doses to estimate the extent of adjuvant sparing. In mice vaccinated at a fixed protein antigen dose, liposome-bound Pfs48/45 achieved superior antibody IgG titers compared to the soluble (nonbound) form at all assessed adjuvant doses, reflecting MPLA and QS-21 adjuvant dose sparing of at least 50-fold. The primary driver of adjuvant sparing in these conditions was presentation of the antigen in a nanoparticle format, and potent responses were achieved even without co-delivery of antigen and adjuvant within the same particle, provided that adjuvant and liposome-displayed antigen were co-administered to the same injection site. By keeping the adjuvant dose fixed and varying the antigen dose in a comparable experimental design, ∼20-fold antigen dose sparing was observed with liposome display. This case study illustrates the potential of antigen-display nanotechnologies, such as CoPoP nanoliposomes, to achieve substantial adjuvant and antigen dose sparing, which could theoretically facilitate the deployment of future vaccines.
Collapse
Affiliation(s)
- Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Qinzhe Li
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
3
|
Kunkeaw N, Nguitragool W, Takashima E, Kangwanrangsan N, Muramatsu H, Tachibana M, Ishino T, Lin PJC, Tam YK, Pichyangkul S, Tsuboi T, Pardi N, Sattabongkot J. A Pvs25 mRNA vaccine induces complete and durable transmission-blocking immunity to Plasmodium vivax. NPJ Vaccines 2023; 8:187. [PMID: 38092803 PMCID: PMC10719277 DOI: 10.1038/s41541-023-00786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium vivax (P. vivax) is the major malaria parasite outside of Africa and no vaccine is available against it. A vaccine that interrupts parasite transmission (transmission-blocking vaccine, TBV) is considered highly desirable to reduce the spread of P. vivax and to accelerate its elimination. However, the development of a TBV against this pathogen has been hampered by the inability to culture the parasite as well as the low immunogenicity of the vaccines developed to date. Pvs25 is the most advanced TBV antigen candidate for P. vivax. However, in previous phase I clinical trials, TBV vaccines based on Pvs25 yielded low antibody responses or had unacceptable safety profiles. As the nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine platform proved to be safe and effective in humans, we generated and tested mRNA-LNP vaccines encoding several versions of Pvs25 in mice. We found that in a prime-boost vaccination schedule, all Pvs25 mRNA-LNP vaccines elicited robust antigen-specific antibody responses. Furthermore, when compared with a Pvs25 recombinant protein vaccine formulated with Montanide ISA-51 adjuvant, the full-length Pvs25 mRNA-LNP vaccine induced a stronger and longer-lasting functional immunity. Seven months after the second vaccination, vaccine-induced antibodies retained the ability to fully block P. vivax transmission in direct membrane feeding assays, whereas the blocking activity induced by the protein/ISA-51 vaccine dropped significantly. Taken together, we report on mRNA vaccines targeting P. vivax and demonstrate that Pvs25 mRNA-LNP outperformed an adjuvanted Pvs25 protein vaccine suggesting that it is a promising candidate for further testing in non-human primates.
Collapse
Affiliation(s)
- Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Sathit Pichyangkul
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
MacDonald NJ, Singh K, Reiter K, Nguyen V, Shimp R, Gittis AG, Chen B, Burkhardt M, Zhang B, Wang Z, Herrera R, Moler M, Lee DY, Orr-Gonzalez S, Herrod J, Lambert LE, Rausch KM, Muratova O, Jones DS, Wu Y, Jin AJ, Garboczi DN, Duffy PE, Narum DL. Structural and immunological differences in Plasmodium falciparum sexual stage transmission-blocking vaccines comprised of Pfs25-EPA nanoparticles. NPJ Vaccines 2023; 8:56. [PMID: 37061547 PMCID: PMC10105769 DOI: 10.1038/s41541-023-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Development of a malaria vaccine that blocks transmission of different parasite stages to humans and mosquitoes is considered critical for elimination efforts. A vaccine using Pfs25, a protein on the surface of zygotes and ookinetes, is under investigation as a transmission-blocking vaccine (TBV) that would interrupt parasite passage from mosquitoes to humans. The most extensively studied Pfs25 TBVs use Pichia pastoris-produced recombinant forms of Pfs25, chemically conjugated to a recombinant carrier protein, ExoProtein A (EPA). The recombinant form of Pfs25 first used in humans was identified as Pfs25H, which contained a total of 14 heterologous amino acid residues located at the amino- and carboxyl-termini including a His6 affinity tag. A second recombinant Pfs25, identified as Pfs25M, was produced to remove the heterologous amino acid residues and conjugated to EPA (Pfs25M-EPA). Here, monomeric Pfs25M was characterized biochemically and biophysically for identity, purity, and integrity including protein structure to assess its comparability with Pfs25H. Although the biological activities of Pfs25H and Pfs25M, whether generated by monomeric forms or conjugated nanoparticles, appeared similar, fine-mapping studies with two transmission-blocking monoclonal antibodies detected structural and immunological differences. In addition, evaluation of antisera generated against conjugated Pfs25H or Pfs25M nanoparticles in nonhuman primates identified polyclonal IgG that recognized these structural differences.
Collapse
Affiliation(s)
- Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Kavita Singh
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Richard Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Beth Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Mackenzie Moler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Duck-Yeon Lee
- National Heart, Lung, and Blood Institute, Bethesda, MD, 20814, USA
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Jessica Herrod
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David S Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Albert J Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 29 Lincoln Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Tottey S, Shoji Y, Mark Jones R, Musiychuk K, Chichester JA, Miura K, Zhou L, Lee SM, Plieskatt J, Wu Y, Long CA, Streatfield SJ, Yusibov V. Engineering of a plant-produced virus-like particle to improve the display of the Plasmodium falciparum Pfs25 antigen and transmission-blocking activity of the vaccine candidate. Vaccine 2023; 41:938-944. [PMID: 36585278 PMCID: PMC9888754 DOI: 10.1016/j.vaccine.2022.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Yoko Shoji
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - R Mark Jones
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Konstantin Musiychuk
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Jessica A Chichester
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Yimin Wu
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Stephen J Streatfield
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA.
| | - Vidadi Yusibov
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
6
|
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop Med Infect Dis 2022; 7:tropicalmed7040058. [PMID: 35448833 PMCID: PMC9024890 DOI: 10.3390/tropicalmed7040058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Drug discovery for malaria has traditionally focused on orally available drugs that kill the abundant, parasitic blood stage. Recently, there has also been an interest in injectable medicines, in the form of monoclonal antibodies (mAbs) with long-lasting plasma half-lives or long-lasting depot formulations of small molecules. These could act as prophylactic drugs, targeting the sporozoites and other earlier parasitic stages in the liver, when the parasites are less numerous, or as another intervention strategy targeting the formation of infectious gametocytes. Generally speaking, the development of mAbs is less risky (costly) than small-molecule drugs, and they have an excellent safety profile with few or no off-target effects. Therefore, populations who are the most vulnerable to malaria, i.e., pregnant women and young children would have access to such new treatments much faster than is presently the case for new antimalarials. An analysis of mAbs that were successfully developed for oncology illustrates some of the feasibility aspects, and their potential as affordable drugs in low- and middle-income countries.
Collapse
Affiliation(s)
- Joerg J Moehrle
- Integrated Sciences, R&D, Medicines for Malaria Venture, Route de Pré Bois 20, CH-1215 Geneva 15, Switzerland
| |
Collapse
|
7
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS, Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Front Immunol 2021; 12:694759. [PMID: 34335606 PMCID: PMC8318801 DOI: 10.3389/fimmu.2021.694759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration Clinicaltrials.gov NCT02532049.
Collapse
Affiliation(s)
- Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Carol A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lee Li
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Diane Gbesemete
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J Brendish
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Filipa Martins
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Saul N Faust
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Patel PN, Tolia N. Structural vaccinology of malaria transmission-blocking vaccines. Expert Rev Vaccines 2021; 20:199-214. [PMID: 33430656 PMCID: PMC11077433 DOI: 10.1080/14760584.2021.1873135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Introduction: The development of effective vaccines remains a major health priority to combat the global burden of malaria, a life-threatening disease caused by Plasmodium parasites. Transmission-blocking vaccines (TBVs) elicit antibodies that neutralize the sexual stages of the parasite in blood meals ingested by the Anopheles mosquito, interrupting parasite development in the vector host and preventing disease spread to other individuals.Areas covered: The P. falciparum gametocyte surface antigens Pfs230, Pfs48/45, and Pfs47, the parasite ookinete surface protein Pfs25, and the male gametocyte specific protein PfHAP2 are leading TBV candidates, some of which are in clinical development. The recent expansion of methodology to study monoclonal antibodies isolated directly from humans and animal models, coupled with effective measures for parasite neutralization, has provided unprecedented insight into TBV efficacy and development.Expert opinion: Available structural and functional data on antigen-monoclonal antibody (Ag-mAb) complexes, as well as epitope classification studies, have identified neutralizing epitopes that may aid vaccine development and improve protection. Here, we review the clinical prospects of TBV candidates, progress in the development of novel vaccine strategies for TBVs, and the impact of structural vaccinology in TBV design.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Huang WC, Deng B, Mabrouk MT, Seffouh A, Ortega J, Long C, Miura K, Wu Y, Lovell JF. Particle-based, Pfs230 and Pfs25 immunization is effective, but not improved by duplexing at fixed total antigen dose. Malar J 2020; 19:309. [PMID: 32859199 PMCID: PMC7453371 DOI: 10.1186/s12936-020-03368-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background The Plasmodium falciparum sexual-stage surface proteins Pfs25 and Pfs230 are antigen candidates for a malaria transmission-blocking vaccine (TBV), and have been widely investigated as such. It is not clear whether simultaneously presenting these two antigens in a particulate vaccine would enhance the transmission reducing activity (TRA) of induced antibodies. To assess this, immunization was carried out with liposomes containing synthetic lipid adjuvant monophosphoryl lipid A (MPLA), and cobalt-porphyrin-phospholipid (CoPoP), which rapidly converts recombinant, his-tagged antigens into particles. Methods His-tagged, recombinant Pfs25 and Pfs230C1 were mixed with CoPoP liposomes to form a bivalent vaccine. Antigens were fluorescently labelled to infer duplex particleization serum-stability and binding kinetics using fluorescence resonance energy transfer. Mice and rabbits were immunized with individual or duplexed particleized Pfs25 and Pfs230C1, at fixed total antigen doses. The resulting antibody responses were assessed for magnitude and TRA. Results Pfs230C1 and Pfs25 rapidly bound CoPoP liposomes to form a serum-stable, bivalent particle vaccine. In mice, immunization with 5 ng of total antigen (individual antigen or duplexed) elicited functional antibodies against Pfs25 and Pfs230. Compared to immunization with the individual antigen, Pfs25 antibody production was moderately lower for the bivalent CoPoP vaccine, whereas Pfs230C1 antibody production was not impacted. All antibodies demonstrated at least 92% inhibition in oocyst density at 750 μg/mL purified mouse IgG in the standard membrane feeding assay (SMFA). At lower IgG concentrations, the bivalent vaccine did not improve TRA; antibodies induced by particleized Pfs25 alone showed stronger function in these conditions. In rabbits, immunization with a 20 µg total antigen dose with the duplexed antigens yielded similar antibody production against Pfs25 and Pfs230 compared to immunization with a 20 µg dose of individual antigens. However, no enhanced TRA was observed with duplexing. Conclusions Pfs25, Pfs230 or the duplexed combination can readily be prepared as particulate vaccines by mixing CoPoP liposomes with soluble, recombinant antigens. This approach induces potent transmission-reducing antibodies following immunization in mice and rabbits. Immunization with bivalent, particleized, Pfs230 and Pfs25 did not yield antibodies with superior TRA compared to immunization with particleized Pfs25 as a single antigen. Altogether, duplexing antigens is straightforward and effective using CoPoP liposomes, but is likely to be more useful for targeting distinct parasite life stages.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, H3A 0C7, Canada
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC, 20001, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
11
|
A Pentavalent Epstein-Barr Virus-Like Particle Vaccine Elicits High Titers of Neutralizing Antibodies against Epstein-Barr Virus Infection in Immunized Rabbits. Vaccines (Basel) 2020; 8:vaccines8020169. [PMID: 32268575 PMCID: PMC7349562 DOI: 10.3390/vaccines8020169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Primary infection with Epstein-Barr virus (EBV) is associated with acute infectious mononucleosis, whereas persistent infection is associated with chronic diseases such as autoimmune diseases and various types of cancer. Indeed, approximately 2% of all new cancer cases occurring annually worldwide are EBV-associated. Currently, there is no licensed EBV prophylactic vaccine. Selection of appropriate viral protein subunits is critical for development of an effective vaccine. Although the major EBV surface glycoprotein gp350/220 (gp350) has been proposed as an important prophylactic vaccine target, attempts to develop a potent vaccine based on gp350 alone have shown limited success in the clinic. We provide data showing that five EBV glycoproteins (gp350, gB, gp42, gH, and gL) involved in viral entry and infection can successfully be incorporated on the surface of EBV-like particles (EBV-LPs). These EBV-LPs, when administered together with aluminum hydroxide and monophosphoryl lipid A as adjuvants to New Zealand white rabbits, elicited EBV glycoprotein-specific antibodies capable of neutralizing viral infection in vitro in both B cells and epithelial cells, better than soluble gp350 ectodomain. Our findings suggest that a pentavalent EBV-LP formulation might be an ideal candidate for development as a safe and immunogenic EBV vaccine.
Collapse
|
12
|
Nikolaeva D, Illingworth JJ, Miura K, Alanine DGW, Brian IJ, Li Y, Fyfe AJ, Da DF, Cohuet A, Long CA, Draper SJ, Biswas S. Functional Characterization and Comparison of Plasmodium falciparum Proteins as Targets of Transmission-blocking Antibodies. Mol Cell Proteomics 2020; 19:155-166. [PMID: 29089373 PMCID: PMC6944241 DOI: 10.1074/mcp.ra117.000036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Oxford UK; Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Iona J Brian
- The Jenner Institute, University of Oxford, Oxford UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Oxford UK
| | - Alex J Fyfe
- The Jenner Institute, University of Oxford, Oxford UK
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- Institut de Recherche pour le Développement, Montpellier Cedex, France
| | - Carole A Long
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseaseNational Institutes of Health, Rockville, Maryland
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford UK.
| |
Collapse
|
13
|
Comprehensive investigation of soybean oil-derived LCFAs on anaerobic digestion of organic waste: Inhibitory effect and transformation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Miura K, Tachibana M, Takashima E, Morita M, Kanoi BN, Nagaoka H, Baba M, Torii M, Ishino T, Tsuboi T. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Rev Vaccines 2019; 18:1017-1027. [PMID: 31566026 PMCID: PMC11000147 DOI: 10.1080/14760584.2019.1674145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Highly effective malaria vaccines are essential component toward malaria elimination. Although the leading malaria vaccine, RTS,S/AS01, with modest efficacy is being evaluated in a pilot feasibility trial, development of a malaria transmission-blocking vaccine (TBV) could make a major contribution toward malaria elimination. Only a few TBV antigens have reached pre-clinical or clinical development but with several challenges including difficulties in the expression of malaria recombinant proteins and low immunogenicity in humans. Therefore, novel approaches to accelerate TBV research to preclinical development are critical to generate an efficacious TBV.Areas covered: PubMed was searched to review the progress and future prospects of malaria TBV research and development. We also reviewed registered trials at ClinicalTrials.gov as well as post-genome TBV candidate discovery research including our efforts.Expert opinion: Wheat germ cell-free protein synthesis technology can accelerate TBV development by overcoming some current challenges of TBV research.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
15
|
Mulama DH, Mutsvunguma LZ, Totonchy J, Ye P, Foley J, Escalante GM, Rodriguez E, Nabiee R, Muniraju M, Wussow F, Barasa AK, Ogembo JG. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits. Vaccine 2019; 37:4184-4194. [PMID: 31201053 DOI: 10.1016/j.vaccine.2019.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Collapse
Affiliation(s)
- David H Mulama
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Biological Sciences Department, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Peng Ye
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joslyn Foley
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Gabriela M Escalante
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ramina Nabiee
- Chapman University, School of Pharmacy, Irvine, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Felix Wussow
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Anne K Barasa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Department of Human Pathology, University of Nairobi, Nairobi, Kenya
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States.
| |
Collapse
|
16
|
Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front Immunol 2019; 10:730. [PMID: 31024558 PMCID: PMC6460511 DOI: 10.3389/fimmu.2019.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
An ideal malaria vaccine platform should potently induce protective immune responses and block parasite transmission from mosquito to human, and it should maintain these effects for an extended period. Here, we have focused on vaccine development based on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of clinical gene therapy that is able to induce long-term transgene expression without causing toxicity in vivo. Our results show the potential utility of AAV1 vectors as an extremely potent booster vaccine to induce durable immunity when combined with an adenovirus-priming vaccine in a rodent malaria model. We generated a series of recombinant AAV1s and human adenovirus type 5 (AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 (Pfs25) protein. Heterologous two-dose immunization with an AdHu5-prime and AAV1-boost (AdHu5-AAV1) elicited robust and durable PfCSP- or Pfs25-specific functional antibodies over 280 days. Regarding protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile protection (up to 80% protection rate) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. When examining transmission-blocking (TB) efficacy, we found that immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. berghei expressing Pfs25 for 287 days (99% reduction in oocyst intensity, 85% reduction in oocyst prevalence). Our data indicate that AAV1-based malaria vaccines can confer potent and durable protection as well as TB efficacy when administered following an AdHu5 priming vaccine, supporting the further evaluation of this regimen in clinical trials as a next-generation malaria vaccine platform.
Collapse
Affiliation(s)
- Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Kunitaka Yoshida
- Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene therapy, Jichi Medical University, Shimotsuke, Japan
| | - Shinya Fukumoto
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Asrar Alam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiromu Otsuka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Miura K, Deng B, Wu Y, Zhou L, Pham TP, Diouf A, Wu CK, Lee SM, Plieskatt JL, Morin MJ, Long CA. ELISA units, IgG subclass ratio and avidity determined functional activity of mouse anti-Pfs230 antibodies judged by a standard membrane-feeding assay with Plasmodium falciparum. Vaccine 2019; 37:2073-2078. [PMID: 30850239 DOI: 10.1016/j.vaccine.2019.02.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
The standard membrane-feeding assay (SMFA) is a functional assay that has been used to inform the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. For Pfs230, a lead target antigen for TBV development, a few studies have tested either a single anti-Pfs230 polyclonal or monoclonal antibody (one antibody per study) at serial dilutions and showed a dose-dependent response. Further, there have been reports that the SMFA activity of anti-Pfs230 polyclonal and monoclonal antibodies were enhanced in the presence of complement. However, no analysis has been performed with multiple samples, and the impact of anti-Pfs230 antibody titers, IgG subclass profile and avidity were evaluated together in relation to transmission-reducing activity (TRA) by SMFA. In this report, a total of 39 unique anti-Pfs230 IgGs from five different mouse immunization studies were assessed for their ELISA units (EU), IgG2/IgG1 ratio and avidity by ELISA, and the functionality (% transmission-reducing activity, %TRA) by SMFA. The mice were immunized with Pfs230 alone, Pfs230 conjugated to CRM197, or a mixture of unconjugated Pfs230 and CRM197 proteins using Alhydrogel or Montanide ISA720 adjuvants. In all studies, the Pfs230 antigen was from the same source. There was a significant correlation between EU and %TRA (p < 0.0001 by a Spearman rank test) for the anti-Pfs230 IgGs. Notably, multiple linear regression analyses showed that both IgG2/IgG1 ratio and avidity significantly affected %TRA (p = 0.003 to p = 0.014, depending on the models) after adjusting for EU. The results suggest that in addition to antibody titers, IgG2/IgG1 ratio and avidity should each be evaluated to predict the biological activity of anti-Pfs230 antibodies for future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Chia-Kuei Wu
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | | | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
18
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
19
|
Huang WC, Deng B, Lin C, Carter KA, Geng J, Razi A, He X, Chitgupi U, Federizon J, Sun B, Long CA, Ortega J, Dutta S, King CR, Miura K, Lee SM, Lovell JF. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. NATURE NANOTECHNOLOGY 2018; 13:1174-1181. [PMID: 30297818 PMCID: PMC6286227 DOI: 10.1038/s41565-018-0271-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
Pfs25 is a malaria transmission-blocking vaccine antigen candidate, but its apparently limited immunogenicity in humans has hindered clinical development. Here, we show that recombinant, polyhistidine-tagged (his-tagged) Pfs25 can be mixed at the time of immunization with pre-formed liposomes containing cobalt porphyrin-phospholipid, resulting in spontaneous nanoliposome antigen particleization (SNAP). Antigens are stably presented in uniformly orientated display via his-tag insertion in the cobalt porphyrin-phospholipid bilayer, without covalent modification or disruption of antigen conformation. SNAP immunization of mice and rabbits is well tolerated with minimal local reactogenicity, and results in orders-of-magnitude higher functional antibody generation compared with other 'mix-and-inject' adjuvants. Serum-stable antigen binding during transit to draining lymph nodes leads to enhanced antigen uptake by phagocytic antigen-presenting cells, with subsequent generation of long-lived, antigen-specific plasma cells. Seamless multiplexing with four additional his-tagged Plasmodium falciparum polypeptides induces strong and balanced antibody production, illustrating the simplicity of developing multistage particulate vaccines with SNAP immunization.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, Canada
| | - Xuedan He
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jasmin Federizon
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Boyang Sun
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, Canada
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
20
|
Menon V, Kapulu MC, Taylor I, Jewell K, Li Y, Hill F, Long CA, Miura K, Biswas S. Assessment of Antibodies Induced by Multivalent Transmission-Blocking Malaria Vaccines. Front Immunol 2018; 8:1998. [PMID: 29403479 PMCID: PMC5780346 DOI: 10.3389/fimmu.2017.01998] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/22/2017] [Indexed: 01/20/2023] Open
Abstract
A malaria transmission-blocking vaccine would be a critical tool in achieving malaria elimination and eradication. By using chimpanzee adenovirus serotype 63 and modified vaccinia virus Ankara viral vectored vaccines, we investigated whether incorporating two antigens into one vaccine would result in higher transmission-reducing activity than one antigen. We demonstrated that when Pfs25 was administered with other antigens Pfs28 or Pfs230C, either concurrently as a mixed vaccine or co-expressed as a dual-antigen vaccine, the antibody response in mice to each antigen was comparable to a monoantigen vaccine, without immunological interference. However, we found that the transmission-reducing activity (functional activity) of dual-antigen vaccines was not additive. Dual-antigen vaccines generally only elicited similar transmission-reducing activity to monoantigen vaccines and in one instance had lower transmission-reducing activity. We found that despite the lack of immunological interference of dual-antigen vaccines, they are still not as effective at blocking malaria transmission as Pfs25-IMX313, the current leading candidate for viral vectored vaccines. Pfs25-IMX313 elicited similar quality antibodies to dual-antigen vaccines, but higher antibody titers.
Collapse
Affiliation(s)
- Vinay Menon
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Iona Taylor
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kerry Jewell
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
A whole parasite transmission-blocking vaccine for malaria: an ignored strategy. Emerg Top Life Sci 2017; 1:547-552. [PMID: 33525845 PMCID: PMC7289001 DOI: 10.1042/etls20170117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 12/05/2022]
Abstract
Malaria vaccine approaches can be divided into ‘subunit’ and ‘whole parasite’, and these can be directed at the sporozoite, liver stage, asexual or sexual stages. All combinations of approach and stage are under development with the exception of a whole parasite sexual stage (gametocyte) vaccine. A gametocyte vaccine would aim primarily to block transmission of malaria from the human host to the mosquito vector and as such is referred to as a ‘transmission-blocking vaccine’. An immunological feature of whole parasite vaccines for the sporozoite/liver stage and for the asexual blood stage is the reliance on cellular immunity involving T-cells to control parasite growth. T-cells can also respond vigorously to gametocytes and kill them in the vertebrate host and/or arrest their development. To date, cellular immunity has not been exploited in transmission-blocking vaccine development. Here, the data supporting a gametocyte whole parasite vaccine are reviewed and a strategy for vaccine development and testing is outlined.
Collapse
|
22
|
Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25. Nat Commun 2017; 8:1568. [PMID: 29146922 PMCID: PMC5691035 DOI: 10.1038/s41467-017-01924-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens. Plasmodium falciparum protein Pfs25 is a promising malaria transmission blocking vaccine antigen. Here, Scally et al. determine the crystal structure of Pfs25 and identify antigenic sites that are recognized by transmission-blocking antibodies elicited in human immunoglobulin loci transgenic mice.
Collapse
|
23
|
Abstract
Evidence accumulated through the years clearly indicates that antiparasite immune responses can efficiently control malaria parasite infection at all development stages, and under certain circumstances they can prevent parasite infection. Translating these findings into vaccines or immunotherapeutic interventions has been difficult in part because of the extraordinary biological complexity of this parasite, which has several developmental stages expressing unique sets of stage-specific genes and multiple antigens, most of which are antigenically diverse. Nevertheless, in the last 30 years major advances have resulted in characterization of a number of vaccine candidates, exploration of the repertoire of host immune responses to the various parasite stages, and also identification of significant hurdles that need to be overcome. Most important, these advances strengthened the concept that the induction of host immune responses that target all developmental stages of Plasmodium can efficiently control or abrogate Plasmodium infections and strongly support the notion that an effective vaccine can be developed. This vaccine would be a critical component for programs aimed at controlling or eradicating malaria.
Collapse
Affiliation(s)
- Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland 20852
| | - Fidel Zavala
- Departmentof Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
24
|
Bompard A, Da DF, Yerbanga RS, Biswas S, Kapulu M, Bousema T, Lefèvre T, Cohuet A, Churcher TS. Evaluation of two lead malaria transmission blocking vaccine candidate antibodies in natural parasite-vector combinations. Sci Rep 2017; 7:6766. [PMID: 28754921 PMCID: PMC5533793 DOI: 10.1038/s41598-017-06130-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Transmission blocking vaccines (TBV) which aim to control malaria by inhibiting human-to-mosquito transmission show considerable promise though their utility against naturally circulating parasites remains unknown. The efficacy of two lead candidates targeting Pfs25 and Pfs230 antigens to prevent onwards transmission of naturally occurring parasites to a local mosquito strain is assessed using direct membrane feeding assays and murine antibodies in Burkina Faso. The transmission blocking activity of both candidates depends on the level of parasite exposure (as assessed by the mean number of oocysts in control mosquitoes) and antibody titers. A mathematical framework is devised to allow the efficacy of different candidates to be directly compared and determine the minimal antibody titers required to halt transmission in different settings. The increased efficacy with diminishing parasite exposure indicates that the efficacy of vaccines targeting either Pfs25 or Pfs230 may increase as malaria transmission declines. This has important implications for late-stage candidate selection and assessing how they can support the drive for malaria elimination.
Collapse
Affiliation(s)
- Anais Bompard
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Melissa Kapulu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France.,Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- Unité MIVEGEC, IRD 224-CNRS 5290-Université Montpellier, Montpellier, France
| | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, United Kingdom
| |
Collapse
|
25
|
Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Sci Rep 2017. [PMID: 28630474 PMCID: PMC5476561 DOI: 10.1038/s41598-017-03798-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qβ VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
Collapse
|
26
|
Chaturvedi N, Bharti PK, Tiwari A, Singh N. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum. Indian J Med Res 2017; 143:696-711. [PMID: 27748294 PMCID: PMC5094109 DOI: 10.4103/0971-5916.191927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230) that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.
Collapse
Affiliation(s)
- Neha Chaturvedi
- National Institute for Research in Tribal Health (ICMR), Jabalpur, School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, India
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (ICMR), Jabalpur, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, India
| | - Neeru Singh
- National Institute for Research in Tribal Health (ICMR), Jabalpur, India
| |
Collapse
|
27
|
Srinivasan P, Baldeviano GC, Miura K, Diouf A, Ventocilla JA, Leiva KP, Lugo-Roman L, Lucas C, Orr-Gonzalez S, Zhu D, Villasante E, Soisson L, Narum DL, Pierce SK, Long CA, Diggs C, Duffy PE, Lescano AG, Miller LH. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. NPJ Vaccines 2017; 2. [PMID: 28804644 PMCID: PMC5551459 DOI: 10.1038/s41541-017-0015-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Plasmodium falciparum protein, apical membrane antigen 1 forms a complex with another parasite protein, rhoptry neck protein 2, to initiate junction formation with the erythrocyte and is essential for merozoite invasion during the blood stage of infection. Consequently, apical membrane antigen 1 has been a target of vaccine development but vaccination with apical membrane antigen 1 alone in controlled human malaria infections failed to protect and showed limited efficacy in field trials. Here we show that vaccination with AMA1–RON2L complex in Freund’s adjuvant protects Aotus monkeys against a virulent Plasmodium falciparum infection. Vaccination with AMA1 alone gave only partial protection, delaying infection in one of eight animals. However, the AMA1–RON2L complex vaccine completely protected four of eight monkeys and substantially delayed infection (>25 days) in three of the other four animals. Interestingly, antibodies from monkeys vaccinated with the AMA1–RON2L complex had significantly higher neutralizing activity than antibodies from monkeys vaccinated with AMA1 alone. Importantly, we show that antibodies from animals vaccinated with the complex have significantly higher neutralization activity against non-vaccine type parasites. We suggest that vaccination with the AMA1–RON2L complex induces functional antibodies that better recognize AMA1 as it appears complexed with RON2 during merozoite invasion. These data justify progression of this next generation AMA1 vaccine towards human trials. A vaccine targeting a protein complex that allows malaria-causing parasite to enter red blood cells has been produced. Malaria caused by the parasite Plasmodium falciparum is an oft-deadly infectious disease without an effective vaccine. A team of researchers at the National Institutes of Health led by Prakash Srinivasan, currently at the Johns Hopkins Malaria Research Institute, United States, demonstrated the efficacy of a vaccine candidate that works by priming a host’s immune system to a parasitic protein complex required to form a junction with red blood cells, allowing entry and proliferation of the pathogen. The group’s vaccine conferred more effective protection in monkeys than prior candidates that targeted only one component of the parasitic protein complex. This research warrants a closer look into how this candidate, and others targeting the protein complex, can be used to prevent malaria in humans.
Collapse
Affiliation(s)
- Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Callao, Peru
| | - Luis Lugo-Roman
- US Naval Medical Research Unit No. 6 (NAMRU-6), Callao, Peru
| | - Carmen Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Callao, Peru
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Eileen Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, USA
| | - Lorraine Soisson
- Malaria Vaccine Development Program, U.S. Agency for International Development, Washington, DC, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carter Diggs
- Malaria Vaccine Development Program, U.S. Agency for International Development, Washington, DC, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, Rausch KM, Zhu D, Muratova O, Herrera R, Anderson C, Jones D, Aebig J, Brockley S, MacDonald NJ, Wang X, Fay MP, Healy SA, Durbin AP, Narum DL, Wu Y, Duffy PE. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PLoS One 2016; 11:e0163144. [PMID: 27749907 PMCID: PMC5066979 DOI: 10.1371/journal.pone.0163144] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. Pfs25 is a leading TBV candidate, and previous studies conducted in animals demonstrated an improvement of its functional immunogenicity after conjugation to EPA, a recombinant, detoxified ExoProtein A from Pseudomonas aeruginosa. In this report, we describe results of an open-label, dose-escalating Phase 1 trial to assess the safety and immunogenicity of Pfs25-EPA conjugates formulated with Alhydrogel®. Thirty malaria-naïve healthy adults received up to four doses of the conjugate vaccine, with 8, 16, or 47 μg of conjugated Pfs25 mass, at 0, 2, 4, and 10 months. Vaccinations were generally well tolerated. The majority of solicited adverse events were mild in severity with pain at the injection site the most common complaint. Anemia was the most common laboratory abnormality, but was considered possibly related to the study in only a minority of cases. No vaccine-related serious adverse events occurred. The peak geometric mean anti-Pfs25 antibody level in the highest dose group was 88 (95% CI 53, 147) μg/mL two weeks after the 4th vaccination, and declined to near baseline one year later. Antibody avidity increased over successive vaccinations. Transmission blocking activity demonstrated in a standard membrane feeding assay (SMFA) also increased from the second to the third dose, and correlated with antibody titer and, after the final dose, with antibody avidity. These results support the further evaluation of Pfs25-EPA/Alhydrogel® in a malaria-endemic population.
Collapse
Affiliation(s)
- Kawsar R. Talaat
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Janet Hurd
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Autumn Hentrich
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Erin Gabriel
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Noreen A. Hynes
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Olga Muratova
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raul Herrera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sarah Brockley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Nicholas J. MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaowei Wang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
29
|
Lee SM, Wu CK, Plieskatt J, McAdams DH, Miura K, Ockenhouse C, King CR. Assessment of Pfs25 expressed from multiple soluble expression platforms for use as transmission-blocking vaccine candidates. Malar J 2016; 15:405. [PMID: 27515826 PMCID: PMC4982271 DOI: 10.1186/s12936-016-1464-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccines (TBVs) have become a focus of strategies to control and eventually eliminate malaria as they target the entry of sexual stage into the Anopheles stephensi mosquito thereby preventing transmission, an essential component of the parasite life cycle. Such vaccines are envisioned as complements to vaccines that target human infection, such as RTS,S as well as drug treatment, and vector control strategies. A number of conserved proteins, including Pfs25, have been identified as promising TBV targets in research or early stage development. Pfs25 is a 25 kDa protein of Plasmodium falciparum expressed on the surface of zygotes and ookinetes. Its complex tertiary structure, including numerous cysteines, has led to difficulties in the expression of a recombinant protein that is homogeneous, with proper conformation, and free of glycosylation, a phenomenon not found in native parasite machinery. METHODS While the expression and purification of Pfs25 in various systems, has been previously independently reported, here a parallel analysis of Pfs25 is presented to inform on the biochemical features of Pfs25 and their impact on functionality. Three scalable expression systems were used to express, purify, and evaluate Pfs25 both in vitro and in vivo, including the ability of each protein to produce functional antibodies through the standard membrane feeding assay. RESULTS Through numerous attempts, soluble, monomeric Pfs25 derived from Escherichia coli was not achieved, while Pichia pastoris presented Pfs25 as an inhomogeneous product with glycosylation. In comparison, baculovirus produced a pure, monomeric protein free of glycosylation. The glycosylation present for Pichia produced Pfs25, showed no notable decrease in the ability to elicit transmission reducing antibodies in functional evaluation, while a reduced and alkylated Pfs25 (derived from plant and used as a control) was found to have significantly decreased transmission reducing activity, emphasizing the importance of ensuring correct disulfide stabilized conformation during vaccine design and production. CONCLUSIONS In this study, the biochemical features of Pfs25, produced from different expression systems, are described along with their impact on the ability of the protein to elicit functional antibodies. Pfs25 expressed using baculovirus and Pichia showed promise as candidates for vaccine development.
Collapse
Affiliation(s)
- Shwu-Maan Lee
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA.
| | - Chia-Kuei Wu
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - Jordan Plieskatt
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - David H McAdams
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Chris Ockenhouse
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| | - C Richter King
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001-2621, USA
| |
Collapse
|
30
|
MacDonald NJ, Nguyen V, Shimp R, Reiter K, Herrera R, Burkhardt M, Muratova O, Kumar K, Aebig J, Rausch K, Lambert L, Dawson N, Sattabongkot J, Ambroggio X, Duffy PE, Wu Y, Narum DL. Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230. J Biol Chem 2016; 291:19913-22. [PMID: 27432885 DOI: 10.1074/jbc.m116.732305] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/21/2023] Open
Abstract
Development of a Plasmodium falciparum (Pf) transmission blocking vaccine (TBV) has the potential to significantly impact malaria control. Antibodies elicited against sexual stage proteins in the human bloodstream are taken up with the blood meal of the mosquitoes and inactivate parasite development in the mosquito. In a phase 1 trial, a leading TBV identified as Pfs25-EPA/Alhydrogel® appeared safe and immunogenic, however, the level of Pfs25-specific antibodies were likely too low for an effective vaccine. Pfs230, a 230-kDa sexual stage protein expressed in gametocytes is an alternative vaccine candidate. A unique 6-cysteine-rich domain structure within Pfs230 have thwarted its recombinant expression and characterization for clinical evaluation for nearly a quarter of a century. Here, we report on the identification, biochemical, biophysical, and immunological characterization of recombinant Pfs230 domains. Rabbit antibodies generated against recombinant Pfs230 domains blocked mosquito transmission of a laboratory strain and two field isolates using an ex vivo assay. A planned clinical trial of the Pfs230 vaccine is a significant step toward the potential development of a transmission blocking vaccine to eliminate malaria.
Collapse
Affiliation(s)
- Nicholas J MacDonald
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Vu Nguyen
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Richard Shimp
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Karine Reiter
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Raul Herrera
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Martin Burkhardt
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Olga Muratova
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Krishan Kumar
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Joan Aebig
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Kelly Rausch
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Lynn Lambert
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Nikiah Dawson
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Jetsumon Sattabongkot
- the Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand, and
| | | | - Patrick E Duffy
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Yimin Wu
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - David L Narum
- From the Laboratory of Malaria Immunology and Vaccinology, NIAID, National Institutes of Health, Rockville, Maryland 20852,
| |
Collapse
|
31
|
Boes A, Spiegel H, Kastilan R, Bethke S, Voepel N, Chudobová I, Bolscher JM, Dechering KJ, Fendel R, Buyel JF, Reimann A, Schillberg S, Fischer R. Analysis of the dose-dependent stage-specific in vitro efficacy of a multi-stage malaria vaccine candidate cocktail. Malar J 2016; 15:279. [PMID: 27188716 PMCID: PMC4869186 DOI: 10.1186/s12936-016-1328-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background The high incidence and mortality rate of malaria remains a serious burden for many developing countries, and a vaccine that induces durable and highly effective immune responses is, therefore, desirable. An earlier analysis of the stage-specific in vitro efficacy of a malaria vaccine candidate cocktail (VAMAX) considered the general properties of complex multi-component, multi-stage combination vaccines in rabbit immunization experiments using a hyper-immunization protocol featuring six consecutive boosts and a strong, lipopolysaccharide-based adjuvant. This follow-up study investigates the effect of antigen dose on the in vitro efficacy of the malaria vaccine cocktail using a conventional vaccination scheme (one prime and two boosts) and a human-compatible adjuvant (Alhydrogel®). Results IgG purified from rabbits immunized with 0.1, 1, 10 or 50 µg doses of the VAMAX vaccine candidate cocktail was analysed for total IgG and antigen-cocktail-specific titers. An increase in cocktail-specific titers was observed between 0.1 and 1 µg and between 10 and 50 µg, whereas no significant difference in titers was observed between 1 and 10 µg. Antigen component-specific antibody titers and stage-specific in vitro efficacy assays were performed with pooled IgG from animals immunized with 1 and 50 µg of the VAMAX cocktail. Here, the component-specific antibody levels showed clear dose dependency whereas the determined stage-specific in vitro IC50 values (as a correlate of efficacy) were only dependent on the titer amounts of stage-specific antibodies. Conclusions The stage-specific in vitro efficacy of the VAMAX cocktail strongly correlates with the corresponding antigen-specific titers, which for their part depend on the antigen dose, but there is no indication that the dose has an effect on the in vitro efficacy of the induced antibodies. A comparison of these results with those obtained in the previous hyper-immunization study (where higher levels of antigen-specific IgG were observed) suggests that there is a significant need to induce an immune response matching efficacy requirements, especially for a PfAMA1-based blood stage vaccine, by using higher doses, better adjuvants and/or better formulations.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Ivana Chudobová
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Judith M Bolscher
- TropIQ Health Science, Geert Grooteplein 28, Huispost 268, 6525, GA, Nijmegen, The Netherlands
| | - Koen J Dechering
- TropIQ Health Science, Geert Grooteplein 28, Huispost 268, 6525, GA, Nijmegen, The Netherlands
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
32
|
Qian F, Li M, Chen Y, Jiang L, Xu H. Salmonella flagellin acted as an effective fusion partner for expression of Plasmodium falciparum surface protein 25 in Escherichia coli. Hum Vaccin Immunother 2016; 12:2362-4. [PMID: 27058511 DOI: 10.1080/21645515.2016.1171443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Plasmodium falciparum surface protein 25 (Pfs25) is a hard-to-express and hard-to-solubilize protein in Escherichia coli. To overcome this problem, the phase 1 flagellin of Salmonella enterica serovar Typhimurium (FliC) was used as a fusion partner for Pfs25. The fusion expression of Pfs25 with FliC greatly enhanced the expression level and solubility of Pfs25 in E. coli BL21(DE3). The Ni-purified fusion protein of FliC-Pfs25 was recognized by two anti-Pfs25 monoclonal antibodies. By comparison, it was shown that the Pfs25 within FliC-Pfs25 contained epitopes similar or identical to those on Pichia pastoris-produced Pfs25. The data obtained from this study demonstrated that the fusion with Salmonella flagellin greatly improved the expression of Pfs25 in E. coli.
Collapse
Affiliation(s)
- Feng Qian
- a Department of Rheumatology and Immunology , Shanghai Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Mengmeng Li
- a Department of Rheumatology and Immunology , Shanghai Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Yong Chen
- b Fourth Research Laboratory, Lanzhou Institute of Biological Products Co., Ltd. , Lanzhou , China
| | - Lin Jiang
- b Fourth Research Laboratory, Lanzhou Institute of Biological Products Co., Ltd. , Lanzhou , China
| | - Huji Xu
- a Department of Rheumatology and Immunology , Shanghai Changzheng Hospital, Second Military Medical University , Shanghai , China
| |
Collapse
|
33
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
35
|
Sauerwein RW, Bousema T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine 2015; 33:7476-82. [PMID: 26409813 DOI: 10.1016/j.vaccine.2015.08.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT.
Collapse
Affiliation(s)
- R W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101 (268), Geert Grooteplein 28, 6500 HB Nijmegen, The Netherlands.
| | - T Bousema
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101 (268), Geert Grooteplein 28, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
36
|
Boes A, Spiegel H, Voepel N, Edgue G, Beiss V, Kapelski S, Fendel R, Scheuermayer M, Pradel G, Bolscher JM, Behet MC, Dechering KJ, Hermsen CC, Sauerwein RW, Schillberg S, Reimann A, Fischer R. Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge. PLoS One 2015; 10:e0131456. [PMID: 26147206 PMCID: PMC4492585 DOI: 10.1371/journal.pone.0131456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/02/2015] [Indexed: 11/30/2022] Open
Abstract
Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17–25 μg/ml), the blood stage (40–60 μg/ml) and the sexual stage (1.75 μg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- * E-mail:
| | - Nadja Voepel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Gueven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | | | - Gabriele Pradel
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | | | - Marije C. Behet
- Radboud university medical center, Nijmegen, The Netherlands
| | | | | | - Robert W. Sauerwein
- TropIQ Health Sciences, Nijmegen, The Netherlands
- Radboud university medical center, Nijmegen, The Netherlands
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| |
Collapse
|
37
|
Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci Rep 2015; 5:11193. [PMID: 26063320 PMCID: PMC4463016 DOI: 10.1038/srep11193] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/23/2015] [Indexed: 02/08/2023] Open
Abstract
Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking activities (TBA). Here, recombinant chimpanzee adenovirus 63, ChAd63, and modified vaccinia virus Ankara, MVA, expressing AgAPN1, Pfs230-C, Pfs25, and Pfs48/45 were generated. Antibody responses primed individually against all antigens by ChAd63 immunization in BALB/c mice were boosted by the administration of MVA expressing the same antigen. These antibodies exhibited a hierarchy of inhibitory activity against the NF54 laboratory strain of P. falciparum in Anopheles stephensi mosquitoes using the standard membrane feeding assay (SMFA), with anti-Pfs230-C and anti-Pfs25 antibodies giving complete blockade. The observed rank order of inhibition was replicated against P. falciparum African field isolates in A. gambiae in direct membrane feeding assays (DMFA). TBA achieved was IgG concentration dependent. This study provides the first head-to-head comparative analysis of leading antigens using two different parasite sources in two different vector species, and can be used to guide selection of TBVs for future clinical development using the viral-vectored delivery platform.
Collapse
|
38
|
Spiegel H, Boes A, Kastilan R, Kapelski S, Edgue G, Beiss V, Chubodova I, Scheuermayer M, Pradel G, Schillberg S, Reimann A, Fischer R. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines. Biotechnol J 2015; 10:1651-9. [PMID: 25913888 DOI: 10.1002/biot.201500055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/06/2022]
Abstract
Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Güven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ivana Chubodova
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Gabriele Pradel
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| |
Collapse
|
39
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
40
|
Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission-blocking vaccines for malaria. Expert Rev Vaccines 2015; 14:653-80. [PMID: 25597923 DOI: 10.1586/14760584.2015.993383] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
41
|
Hodgson SH, Choudhary P, Elias SC, Milne KH, Rampling TW, Biswas S, Poulton ID, Miura K, Douglas AD, Alanine DG, Illingworth JJ, de Cassan SC, Zhu D, Nicosia A, Long CA, Moyle S, Berrie E, Lawrie AM, Wu Y, Ellis RD, Hill AVS, Draper SJ. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial. Mol Ther 2014; 22:2142-2154. [PMID: 25156127 PMCID: PMC4250079 DOI: 10.1038/mt.2014.157] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising “mixed-modality” regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.
Collapse
Affiliation(s)
- Susanne H Hodgson
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK; Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | - Sean C Elias
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Kathryn H Milne
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Thomas W Rampling
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK; Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Sumi Biswas
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Ian D Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | | | | | | | | | - Daming Zhu
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Alfredo Nicosia
- Okairòs, Rome, Italy; CEINGE, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Churchill Hospital, Oxford, UK
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, Maryland, USA
| | - Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, Maryland, USA
| | - Adrian V S Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Simon J Draper
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Transmission-blocking interventions eliminate malaria from laboratory populations. Nat Commun 2013; 4:1812. [PMID: 23652000 PMCID: PMC3674233 DOI: 10.1038/ncomms2840] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field. Transmission-blocking interventions aim to interrupt progression of Plasmodium parasites from the vertebrate host to the mosquito. Blagborough et al. demonstrate that only partially reducing transmission can be sufficient to eliminate experimental Plasmodium infection in successive mosquito and mice populations when biting rates are low.
Collapse
|
44
|
Williams AR, Zakutansky SE, Miura K, Dicks MDJ, Churcher TS, Jewell KE, Vaughan AM, Turner AV, Kapulu MC, Michel K, Long CA, Sinden RE, Hill AVS, Draper SJ, Biswas S. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. Int J Parasitol 2013; 43:869-74. [PMID: 23872520 PMCID: PMC3775004 DOI: 10.1016/j.ijpara.2013.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022]
Abstract
The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.
Collapse
Affiliation(s)
- Andrew R Williams
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shimp RL, Rowe C, Reiter K, Chen B, Nguyen V, Aebig J, Rausch KM, Kumar K, Wu Y, Jin AJ, Jones DS, Narum DL. Development of a Pfs25-EPA malaria transmission blocking vaccine as a chemically conjugated nanoparticle. Vaccine 2013; 31:2954-62. [PMID: 23623858 PMCID: PMC3683851 DOI: 10.1016/j.vaccine.2013.04.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 02/28/2013] [Accepted: 04/11/2013] [Indexed: 11/16/2022]
Abstract
Successful efforts to control infectious diseases have often required the use of effective vaccines. The current global strategy for control of malaria, including elimination and eradication will also benefit from the development of an effective vaccine that interrupts malaria transmission. To this end, a vaccine that disrupts malaria transmission within the mosquito host has been investigated for several decades targeting a 25 kDa ookinete specific surface protein, identified as Pfs25. Phase 1 human trial results using a recombinant Pfs25H/Montanide ISA51 formulation demonstrated that human Pfs25 specific antibodies block parasite infectivity to mosquitoes; however, the extent of blocking was likely insufficient for an effective transmission blocking vaccine. To overcome the poor immunogenicity, processes to produce and characterize recombinant Pfs25H conjugated to a detoxified form of Pseudomonas aeruginosa exoprotein A (EPA) have been developed and used to manufacture a cGMP pilot lot for use in human clinical trials. The Pfs25-EPA conjugate appears as a nanoparticle with an average molar mass in solution of approximately 600 kDa by static light scattering with an average diameter 20 nm (range 10-40 nm) by dynamic light scattering. The molar ratio of Pfs25H to EPA is about 3 to 1 by amino acid analysis, respectively. Outbred mice immunized with the Pfs25-EPA conjugated nanoparticle formulated on Alhydrogel(®) had a 75-110 fold increase in Pfs25H specific antibodies when compared to an unconjugated Pfs25H/Alhydrogel(®) formulation. A phase 1 human trial using the Pfs25-EPA/Alhydrogel(®) formulation is ongoing in the United States.
Collapse
Affiliation(s)
- Richard L. Shimp
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Christopher Rowe
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Beth Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Vu Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Kelly M. Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Krishan Kumar
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - David S. Jones
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
46
|
Miura K, Deng B, Tullo G, Diouf A, Moretz SE, Locke E, Morin M, Fay MP, Long CA. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PLoS One 2013; 8:e57909. [PMID: 23483940 PMCID: PMC3590281 DOI: 10.1371/journal.pone.0057909] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA). The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline Q2(R1) details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds) to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability). We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in preclinical and early clinical development of transmission-blocking vaccines, and this study strongly supports its further development and application.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goodman AL, Blagborough AM, Biswas S, Wu Y, Hill AV, Sinden RE, Draper SJ. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity. PLoS One 2011; 6:e29428. [PMID: 22216279 PMCID: PMC3247263 DOI: 10.1371/journal.pone.0029428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63), human adenovirus serotype 5 (AdHu5) and modified vaccinia virus Ankara (MVA) viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25) resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera). In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence) and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit vaccines.
Collapse
Affiliation(s)
- Anna L Goodman
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The development of an effective malaria vaccine has taken many decades, but there is now a good chance that the first malaria vaccine will be licensed within the next few years. However, this vaccine (RTS,S) will not be fully effective, and more efficacious, second-generation vaccines will be needed. Good progress is being made in the development of potential vaccines directed at each of the three main stages of the parasite's life cycle, with a variety of different approaches, but many challenges remain, e.g. overcoming the problem of polymorphism in many key parasite antigens. It is likely vaccines that are effective enough to block transmission, and thus contribute to increasing drives towards malaria elimination, will need to contain antigens from different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- B M Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | |
Collapse
|
49
|
Biswas S, Dicks MDJ, Long CA, Remarque EJ, Siani L, Colloca S, Cottingham MG, Holder AA, Gilbert SC, Hill AVS, Draper SJ. Transgene optimization, immunogenicity and in vitro efficacy of viral vectored vaccines expressing two alleles of Plasmodium falciparum AMA1. PLoS One 2011; 6:e20977. [PMID: 21698193 PMCID: PMC3116848 DOI: 10.1371/journal.pone.0020977] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/17/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Apical membrane antigen 1 (AMA1) is a leading candidate vaccine antigen against blood-stage malaria, although to date numerous clinical trials using mainly protein-in-adjuvant vaccines have shown limited success. Here we describe the pre-clinical development and optimization of recombinant human and simian adenoviral (AdHu5 and ChAd63) and orthopoxviral (MVA) vectors encoding transgene inserts for Plasmodium falciparum AMA1 (PfAMA1). METHODOLOGY/PRINCIPAL FINDINGS AdHu5-MVA prime-boost vaccination in mice and rabbits using these vectors encoding the 3D7 allele of PfAMA1 induced cellular immune responses as well as high-titer antibodies that showed growth inhibitory activity (GIA) against the homologous but not heterologous parasite strains. In an effort to overcome the issues of PfAMA1 antigenic polymorphism and pre-existing immunity to AdHu5, a simian adenoviral (ChAd63) vector and MVA encoding two alleles of PfAMA1 were developed. This antigen, composed of the 3D7 and FVO alleles of PfAMA1 fused in tandem and with expression driven by a single promoter, was optimized for antigen secretion and transmembrane expression. These bi-allelic PfAMA1 vaccines, when administered to mice and rabbits, demonstrated comparable immunogenicity to the mono-allelic vaccines and purified serum IgG now showed GIA against the two divergent strains of P. falciparum encoded in the vaccine. CD8(+) and CD4(+) T cell responses against epitopes that were both common and unique to the two alleles of PfAMA1 were also measured in mice. CONCLUSIONS/SIGNIFICANCE Optimized transgene inserts encoding two divergent alleles of the same antigen can be successfully inserted into adeno- and pox-viral vaccine vectors. Adenovirus-MVA immunization leads to the induction of T cell responses common to both alleles, as well as functional antibody responses that are effective against both of the encoded strains of P. falciparum in vitro. These data support the further clinical development of these vaccine candidates in Phase I/IIa clinical trials.
Collapse
Affiliation(s)
- Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sim BKL, Narum DL, Chattopadhyay R, Ahumada A, Haynes JD, Fuhrmann SR, Wingard JN, Liang H, Moch JK, Hoffman SL. Delineation of stage specific expression of Plasmodium falciparum EBA-175 by biologically functional region II monoclonal antibodies. PLoS One 2011; 6:e18393. [PMID: 21533224 PMCID: PMC3077373 DOI: 10.1371/journal.pone.0018393] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains. METHODS AND FINDINGS Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC(50) 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC(50) of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro. CONCLUSIONS The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- B Kim Lee Sim
- Protein Potential LLC, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|