1
|
Immunization with DNA prime-subunit protein boost strategy based on influenza H9N2 virus conserved matrix protein M1 and its epitope screening. Sci Rep 2020; 10:4144. [PMID: 32139720 PMCID: PMC7057951 DOI: 10.1038/s41598-020-60783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
Developing an effective universal influenza vaccine against influenza virus with highly conserved antigenic epitopes could induce a broad-spectrum immune response to prevent infection. The soluble protein M1 that can induce the M1 specific immune response was first confirmed in our previous study. In this study, we characterized the immune response induced by DNA prime-subunit protein boost strategy based on the relatively conserved matrix protein 1 (M1) in the BALB/c mouse model, and evaluated its protection ability against a lethal challenge of homologous H9N2 avian influenza virus (A/Chicken/Jiangsu/11/2002). The results showed that 100 μg DNA prime + 100 μg M1 subunit protein boost-strategy significantly increased antibody levels more than vaccination with M1 DNA or M1 subunit protein alone, and induced a more balanced Th1 / Th2 immune response, which not only can provide protection against the homologous virus but also can provide part of the cross-protection against the heterosubtypic PR8 H1N1 strain. In addition, we used an Elispot assay to preliminary screen the T cell epitope in M1 protein, and identified that p22 (M111-25 VLSIIPSGPLKAEIA) epitope was the only immunodominant M1-specific CD4+ T cell epitopes, which could be helpful in understanding the function of influenza virus T cell epitopes.
Collapse
|
2
|
The Combinations Chitosan-Pam 3CSK 4 and Chitosan-Monophosphoryl Lipid A: Promising Immune-Enhancing Adjuvants for Anticaries Vaccine PAc. Infect Immun 2019; 87:IAI.00651-19. [PMID: 31527122 DOI: 10.1128/iai.00651-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that recombinant protein PAc could be administered as an anticaries vaccine. However, the relatively weak immunogenicity of PAc limits its application. In the present study, we investigated the effect of two adjuvant combinations of chitosan plus Pam3CSK4 (chitosan-Pam3CSK4) and of chitosan plus monophosphoryl lipid A (chitosan-MPL) in the immune responses to the PAc protein in vivo and in vitro PAc-chitosan-Pam3CSK4 or PAc-chitosan-MPL promoted significantly higher PAc-specific antibody titers in serum and saliva, inhibited Streptococcus mutans colonization onto the tooth surfaces, and endowed better protection effect with significantly less caries activities than PAc alone. Chitosan-Pam3CSK4 and chitosan-MPL showed no statistically significant differences. In conclusion, our study demonstrated that the chitosan-Pam3CSK4 and chitosan-MPL combinations are promising for anticaries vaccine development.
Collapse
|
3
|
Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model. PLoS One 2015; 10:e0142548. [PMID: 26560102 PMCID: PMC4641661 DOI: 10.1371/journal.pone.0142548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022] Open
Abstract
We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing high degree of protection against filarial larval invasion.
Collapse
|
4
|
Su LK, Yu F, Li ZF, Zeng C, Xu QA, Fan MW. Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine. Acta Pharmacol Sin 2014; 35:592-8. [PMID: 24705100 DOI: 10.1038/aps.2013.184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022]
Abstract
AIM To investigate the effects of co-delivering IL-6 expressing plasmid pCI-IL-6 on the immunogenicity of the anti-caries DNA vaccine pCIA-P, which encodes the surface protein antigen PAc of Streptococcus mutans. METHODS Plasmid pCI-IL-6 was constructed by inserting the murine IL-6 gene into the pCI vector. Expression of IL-6 in vitro was assessed using Western blot analysis. BALB/c mice were intranasally co-immunized with pCIA-P plus pCI-IL-6 on d 0 and 14. Anti-PAc IgG and secretory IgA (sIgA) were assessed by ELISA. Splenocytes from the mice were re-stimulated with the PAc protein, and IFN-γ and IL-4 production was measured using ELISA. Splenocyte proliferation was analyzed with flow cytometry. Rats were similarly immunized, and dental caries scores were determined using the Keyes method. RESULTS Marked expression of IL-6 was found in COS-7 cells transfected with pCI-IL-6. In the pCI-IL-6 co-immunized mice, the specific IgG antibodies in serum and sIgA antibodies in saliva were significantly higher than those in the control mice at weeks 4 and 8. Moreover, the secretion of IFN-γ from splenocytes in response to re-stimulation with PAc protein was significantly higher in the pCI-IL-6 co-immunized mice than that in the control mice, whereas the secretion of IL-4 had no significant difference. The proliferation of splenocytes from the pCI-IL-6 co-immunized mice was significantly higher than that from the mice immunized with pCIA-P and pCI vector. In the rat caries model, the pCI-IL-6 co-immunization rats displayed lower caries scores than the control rats. CONCLUSION Intranasal co-delivery of IL-6 gene significantly enhances the immunogenicity of the anti-caries DNA vaccine.
Collapse
|
5
|
Romanò CL, Toscano M, Romanò D, Drago L. Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 2013; 25:67-80. [PMID: 23684354 DOI: 10.1179/1973947812y.0000000045] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Orthopaedics is currently the largest market of biomaterials worldwide and implant-related infections, although relatively rare, remain among the first reasons for joint arthroplasty and osteosynthesis failure. Bacteria start implant infection by adhering to biomaterials and producing biofilms, which represent a major reason for bacterial persistence, in spite of antibiotic treatment and host's defence. In the last two decades, a number of different antibiofilm agents have been studied and both in vitro and in vivo results appear now promising, even if their effective role in orthopaedics remains to be assessed. In this review, we introduce an original classification of antibiofilm agents, based on their mechanism of action and examine the available data concerning their possible application to orthopaedic implant-related infections. Molecules that interfere with biofilm production (biofilm prevention agents) include anti-adhesion compounds, quorum sensing inhibitors, non-steroideal anti-inflammatory drugs, and antimicrobial peptides; N-acetylcysteine and specific enzymes promise the greatest therapeutic possibilities by disrupting established biofilms (biofilm disrupting agents). The identification of antimicrobials able to bypass the biofilm barrier (biofilm bypassing agents), and antibiofilm vaccines are further strategies aimed to reduce the impact of biofilm-related infections, opening new pathways in controlling implant-related infections. However, this review shows that still insufficient knowledge is currently available as to regard the efficacy and safety of the investigated antibiofilm strategies to treat infection that involve bone tissue and biomaterials commonly implanted in orthopaedics, pointing out the need for further research in this promising field.
Collapse
Affiliation(s)
- Carlo L Romanò
- CRIO Unit, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | | |
Collapse
|
6
|
Yan YH, Qi SC, Su LK, Xu QA, Fan MW. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin 2013; 34:432-40. [PMID: 23334235 DOI: 10.1038/aps.2012.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM To investigate how co-delivery of the gene encoding C-C chemokine ligand-19 (CCL-19) affected the systemic immune responses to an anti-caries DNA vaccine pCIA-P in mice. METHODS Plasmid encoding CCL19-GFP fusion protein (pCCL19/GFP) was constructed by inserting murine ccl19 gene into GFP-expressing vector pAcGFP1-N1. Chemotactic effect of the fusion protein on murine dendritic cells (DCs) was assessed in vitro and in vivo using transwell and flow cytometric analysis, respectively. BALB/c mice were administered anti-caries DNA vaccine pCIA-P plus pCCL19/GFP (each 100 μg, im) or pCIA-P alone. Serum level of anti-PAc IgG was assessed with ELISA. Splenocytes from the mice were stimulated with PAc protein for 48 h, and IFN-γ and IL-4 production was measured with ELISA. The presence of pCCL19/GFP in spleen and draining lymph nodes was assessed using PCR. The expression of pCCL19/GFP protein in these tissues was analyzed under microscope and with flow cytometry. RESULTS The expression level of CCL19-GFP fusion protein was considerably increased 48 h after transfection of COS-7 cells with pCCL19/GFP plasmids. The fusion protein showed potent chemotactic activity on DCs in vitro. The level of serum PAc-specific IgG was significantly increased from 4 to 14 weeks in the mice vaccinated with pCIA-P plus pCCL19/GFP. Compared to mice vaccinated with pCIA-P alone, the splenocytes from mice vaccinated with pCIA-P plus pCCL19/GFP produced significantly higher level of IFN-γ, but IL-4 production had no significant change. Following intromuscular co-delivery, pCCL19/GFP plasmid and fusion protein were detected in the spleen and draining lymph nodes. Administration of CCL19 gene in mice markedly increased the number of mature DCs in secondary lymphoid tissues. CONCLUSION CCL19 serves as an effective adjuvant for anti-caries DNA vaccine by inducing chemotactic migration of DCs to secondary lymphoid tissues.
Collapse
|
7
|
Huang L, Xu QA, Liu C, Fan MW, Li YH. Anti-caries DNA vaccine-induced secretory immunoglobulin A antibodies inhibit formation of Streptococcus mutans biofilms in vitro. Acta Pharmacol Sin 2013; 34:239-46. [PMID: 23274411 DOI: 10.1038/aps.2012.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the effects of anti-caries DNA vaccine-induced salivary secretory immunoglobulin A (S-IgA) antibodies on Streptococcus mutans (S. mutans) adherence and biofilms formation in vitro. METHODS Adult female Wistar rats were intranasally immunized with the anti-caries DNA vaccine pGJA-P/VAX. Their saliva samples were collected at different times after the immunization, and S-IgA antibody level in the saliva and its inhibition on S. mutans adherence were examined. The effects of S-IgA in the saliva with the strongest inhibitory effects were examined at 3 different stages, ie acquired pellicles, biofilm formation and production of mature biofilms. The number of viable bacteria and depth of the biofilm at 16 h in each stage were determined using counting colony forming units and using a confocal laser scanning microscopy (CLSM). The participation of S-IgA in acquired pellicles and its aggregation with S. mutans were also observed under CLSM. RESULTS The S-IgA titer in saliva reached its peak and exhibited the strongest inhibition on S. mutans adhesion at 10 weeks after the immunization. The colonies and depth of the biofilm in the saliva-pretreated group were 41.79% and 41.02%, respectively, less than the control group. The colonies and depth of the biofilm in the co-culture group were 27.4% and 22.81% less than the control group. The assembly of S. mutans and S-IgA was observed under CLSM after co-cultivation. In the mature-stage biofilm, no differences were observed between the different groups. CONCLUSION These results demonstrate that the anti-caries DNA vaccine induces the production of specific S-IgA antibodies that may prevent dental caries by inhibiting the initial adherence of S. mutans onto tooth surfaces, thereby reducing the accumulation of S. mutans on the acquired pellicles.
Collapse
|
8
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
9
|
Shi W, Li Y, Liu F, Yang J, Zhou D, Chen Y, Zhang Y, Yang Y, He B, Han C, Fan M, Yan H. Flagellin Enhances Saliva IgA Response and Protection of Anti-caries DNA Vaccine. J Dent Res 2011; 91:249-54. [DOI: 10.1177/0022034511424283] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We and others have shown that anti-caries DNA vaccines, including pGJA-P/VAX, are promising for preventing dental caries. However, challenges remain because of the low immunogenicity of DNA vaccines. In this study, we used recombinant flagellin protein derived from Salmonella (FliC) as a mucosal adjuvant for anti-caries DNA vaccine (pGJA-P/VAX) and analyzed the effects of FliC protein on the serum PAc-specific IgG and saliva PAc-specific IgA antibody responses, the colonization of Streptococcus mutans ( S. mutans) on rat teeth, and the formation of caries lesions. Our results showed that FliC promoted the production of PAc-specific IgG in serum and secretory IgA (S-IgA) in saliva of rats by intranasal immunization with pGJA-P/VAX plus FliC. Furthermore, we found that enhanced PAc-specific IgA responses in saliva were associated with the inhibition of S. mutans colonization of tooth surfaces and endowed better protection with significant fewer caries lesions. In conclusion, our study demonstrates that recombinant FliC could enhance specific IgA responses in saliva and protective ability of pGJA-P/VAX, providing an effective mucosal adjuvant candidate for intranasal immunization of an anti-caries DNA vaccine.
Collapse
Affiliation(s)
- W. Shi
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.H. Li
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - F. Liu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - J.Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - D.H. Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.Q. Chen
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - B.X. He
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - C. Han
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - M.W. Fan
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - H.M. Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
10
|
Lan J, Gao Z, Xiong H, Chuai X, Jin Y, Li J, Xian X, Liu G, Xie L, Zhang Y, Wang Y. Generation of protective immune responses against coxsackievirus B3 challenge by DNA prime–protein boost vaccination. Vaccine 2011; 29:6894-902. [DOI: 10.1016/j.vaccine.2011.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 12/31/2022]
|
11
|
Suguitan AL, Cheng X, Wang W, Wang S, Jin H, Lu S. Influenza H5 hemagglutinin DNA primes the antibody response elicited by the live attenuated influenza A/Vietnam/1203/2004 vaccine in ferrets. PLoS One 2011; 6:e21942. [PMID: 21760928 PMCID: PMC3132217 DOI: 10.1371/journal.pone.0021942] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/13/2011] [Indexed: 01/27/2023] Open
Abstract
Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness.
Collapse
Affiliation(s)
| | - Xing Cheng
- MedImmune, Mountain View, California, United States of America
| | - Weijia Wang
- MedImmune, Mountain View, California, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hong Jin
- MedImmune, Mountain View, California, United States of America
- * E-mail:
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Yu F, Xu QA, Chen W. A targeted fimA DNA vaccine prevents alveolar bone loss in mice after intra-nasal administration. J Clin Periodontol 2011; 38:334-40. [PMID: 21261672 DOI: 10.1111/j.1600-051x.2010.01700.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To construct a dendritic cell (DC)-targeted DNA vaccine against FimA of Porphyromonas gingivalis and evaluate the immunogenicity and protection in mice. MATERIALS AND METHODS A targeted DNA plasmid pCTLA4-FimA, which encodes the signal peptide and extracellular regions of mouse cytotoxic T lymphocyte-associated antigen 4 (CTLA4), the hinge and Fc regions of human Igγ1 and FimA of P. gingivalis, was constructed. Mice were immunized with pCTLA4-FimA, the non-targeted DNA plasmid pFimA, which contains only fimA gene, or pCI vector intra-nasally. Serum and saliva antibody responses were detected by enzyme-linked immunosorbent assay. The protection against P. gingivalis-induced periodontitis was evaluated by measuring alveolar bone loss in mice. RESULTS Mice immunized with pCTLA4-FimA showed elevated levels of specific serum IgG and salivary IgA antibody responses compared with mice immunized with pFimA (p<0.01). Both pFimA and pCTLA4-FimA immunized groups showed significantly lower alveolar bone loss, with the magnitude protection greater in the latter (p<0.01), compared with the pCI immunized group. CONCLUSIONS The DC-targeted DNA construct pCTLA4-FimA enhanced both systemic and mucosal immunity following intra-nasal immunization. A DNA-based immunization strategy may be an effective way to attenuate periodontitis induced by P. gingivalis.
Collapse
Affiliation(s)
- Fei Yu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | |
Collapse
|