1
|
Conti V, Rossi O, Clarkson KA, Mancini F, Nakakana UN, Sarakinou E, Callegaro A, Ferruzzi P, Acquaviva A, Arora AK, Marchetti E, Necchi F, Frenck RW, Martin LB, Kaminski RW, Podda A, Micoli F. Putative correlates of protection against shigellosis assessing immunomarkers across responses to S. sonnei investigational vaccine. NPJ Vaccines 2024; 9:56. [PMID: 38459072 PMCID: PMC10923941 DOI: 10.1038/s41541-024-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/10/2024] Open
Abstract
Shigella spp. are a leading bacterial cause of diarrhea. No widely licensed vaccines are available and there is no generally accepted correlate of protection. We tested a S. sonnei Generalized Modules for Membrane Antigen (GMMA)-based vaccine (1790GAHB) in a phase 2b, placebo-controlled, randomized, controlled human infection model study (NCT03527173) enrolling healthy United States adults aged 18-50 years. We report analyses evaluating immune responses to vaccination, with the aim to identify correlates of risk for shigellosis among assessed immunomarkers. We found that 1790GAHB elicited S. sonnei lipopolysaccharide specific α4β7+ immunoglobulin (Ig) G and IgA secreting B cells which are likely homing to the gut, indicating the ability to induce a mucosal in addition to a systemic response, despite parenteral delivery. We were unable to establish or confirm threshold levels that predict vaccine efficacy facilitating the evaluation of vaccine candidates. However, serum anti-lipopolysaccharide IgG and bactericidal activity were identified as potential correlates of risk for shigellosis.
Collapse
Affiliation(s)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Kristen A Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Horizon Therapeutics, Deerfield, IL, USA
| | | | | | | | | | | | | | | | | | | | - Robert W Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Siena, Italy
- US Pharmacopeial Convention, Rockville, MD, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Latham BioPharm Group, Cambridge, MA, USA
| | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
- Independent Consultant, Siena, Italy
| | | |
Collapse
|
2
|
Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One 2021; 16:e0259361. [PMID: 34793505 PMCID: PMC8601580 DOI: 10.1371/journal.pone.0259361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Collapse
Affiliation(s)
- Malabi M. Venkatesan
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Shoshana Barnoy
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | | | - Robert Frenck
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Suda Y, Miyazaki A, Miyazawa K, Shibahara T, Ohashi S. Systemic and intestinal porcine epidemic diarrhea virus-specific antibody response and distribution of antibody-secreting cells in experimentally infected conventional pigs. Vet Res 2021; 52:2. [PMID: 33397461 PMCID: PMC7780908 DOI: 10.1186/s13567-020-00880-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a coronavirus disease characterized by the rapid spread of severe diarrhea among pigs. PED virus (PEDV) infects and replicates mainly in the epithelial cells of the duodenum, jejunum, ileum and colon. Serum or mucosal IgA antibody levels have been used to predict both vaccine efficacy and the level of protective immunity to enteric infectious diseases in individuals or herds. Details of the B-cell immune response upon PEDV infection, such as the systemic and mucosal PEDV IgA antibody response, the distribution of IgA antibody-secreting cells (ASCs), and their role in virus clearance are not yet clear. In this experimental infection study, we observed similar fluctuations in PEDV IgA antibody levels in serum and intestinal contents of the upper and lower jejunum and ileum, but not fecal samples, over the 4-week experimental course. ASCs that actively secrete PEDV IgA antibody without in vitro stimulation were distributed mainly in the upper jejunum, whereas memory B cells that showed enhanced PEDV IgA antibody production upon in vitro stimulation were observed in mesenteric lymph nodes and the ileum. Our findings will contribute to the development of effective vaccines and diagnostic methods for PEDV.
Collapse
Affiliation(s)
- Yuto Suda
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan. .,Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Seiichi Ohashi
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
4
|
Ndungo E, Pasetti MF. Functional antibodies as immunological endpoints to evaluate protective immunity against Shigella. Hum Vaccin Immunother 2019; 16:197-205. [PMID: 31287754 PMCID: PMC7670857 DOI: 10.1080/21645515.2019.1640427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development, clinical advancement and licensure of vaccines, and monitoring of vaccine effectiveness could be expedited and simplified by the ability to measure immunological endpoints that can predict a favorable clinical outcome. Antigen-specific and functional antibodies have been described in the context of naturally acquired immunity and vaccination against Shigella, and their presence in serum has been associated with reduced risk of disease in human subjects. The relevance of these antibodies as correlates of protective immunity, their mechanistic contribution to protection (e.g. target antigens, interference with pathogenesis, and participation in microbial clearance), and factors that influence their magnitude and makeup (e.g. host age, health condition, and environment) are important considerations that need to be explored. In addition to facilitating vaccine evaluation, immunological correlates of protection could be useful for identifying groups at risk and advancing immune therapies. Herein we discuss the precedent and value of functional antibodies as immunological endpoints to predict vaccine efficacy and the relevance of functional antibody activity to evaluate protective immunity against shigellosis.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Carter MJ, Mitchell RM, Meyer Sauteur PM, Kelly DF, Trück J. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol 2017; 8:630. [PMID: 28620385 PMCID: PMC5451496 DOI: 10.3389/fimmu.2017.00630] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Despite the availability of advances in molecular diagnostic testing for infectious disease, there is still a need for tools that advance clinical care and public health. Current methods focus on pathogen detection with unprecedented precision, but often lack specificity. In contrast, the host immune response is highly specific for the infecting pathogen. Serological studies are rarely helpful in clinical settings, as they require acute and convalescent antibody testing. However, the B cell response is much more rapid and short-lived, making it an optimal target for determining disease aetiology in patients with infections. The performance of tests that aim to detect circulating antigen-specific antibody-secreting cells (ASCs) has previously been unclear. Test performance is reliant on detecting the presence of ASCs in the peripheral blood. As such, the kinetics of the ASC response to infection, the antigen specificity of the ASC response, and the methods of ASC detection are all critical. In this review, we summarize previous studies that have used techniques to enumerate ASCs during infection. We describe the emergence, peak, and waning of these cells in peripheral blood during infection with a number of bacterial and viral pathogens, as well as malaria infection. We find that the timing of antigen-specific ASC appearance and disappearance is highly conserved across pathogens, with a peak response between day 7 and day 8 of illness and largely absent following day 14 since onset of symptoms. Data show a sensitivity of ~90% and specificity >80% for pathogen detection using ASC-based methods. Overall, the summarised work indicates that ASC-based methods may be very sensitive and highly specific for determining the etiology of infection and have some advantages over current methods. Important areas of research remain, including more accurate definition of the timing of the ASC response to infection, the biological mechanisms underlying variability in its magnitude and the evolution and the B cell receptor in response to immune challenge. Nonetheless, there is potential of the ASC response to infection to be exploited as the basis for novel diagnostic tests to inform clinical care and public health priorities.
Collapse
Affiliation(s)
- Michael J Carter
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ruth M Mitchell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
6
|
Riddle MS, Kaminski RW, Di Paolo C, Porter CK, Gutierrez RL, Clarkson KA, Weerts HE, Duplessis C, Castellano A, Alaimo C, Paolino K, Gormley R, Gambillara Fonck V. Safety and Immunogenicity of a Candidate Bioconjugate Vaccine against Shigella flexneri 2a Administered to Healthy Adults: a Single-Blind, Randomized Phase I Study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:908-917. [PMID: 27581434 PMCID: PMC5139601 DOI: 10.1128/cvi.00224-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 11/20/2022]
Abstract
Several candidate vaccines against Shigella spp. are in development, but the lack of a clear correlate of protection from challenge with the induction of adequate immune responses among the youngest age groups in the developing world has hampered Shigella vaccine development over the past several decades. Bioconjugation technology, exploited here for an Shigella flexneri 2a candidate vaccine, offers a novel and potentially cost-effective way to develop and produce vaccines against a major pathogen of global health importance. Flexyn2a, a novel S. flexneri 2a bioconjugate vaccine made of the polysaccharide component of the S. flexneri 2a O-antigen, conjugated to the exotoxin protein A of Pseudomonas aeruginosa (EPA), was evaluated for safety and immunogenicity among healthy adults in a single-blind, phase I study with a staggered randomization approach. Thirty subjects (12 receiving 10 μg Flexyn2a, 12 receiving Flexyn2a with aluminum adjuvant, and 6 receiving placebo) were administered two injections 4 weeks apart and were followed for 168 days. Flexyn2a was well-tolerated, independently of the adjuvant and number of injections. The Flexyn2a vaccine elicited statistically significant S. flexneri 2a lipopolysaccharide (LPS)-specific humoral responses at all time points postimmunization in all groups that received the vaccine. Elicited serum antibodies were functional, as evidenced by bactericidal activity against S. flexneri 2a. The bioconjugate candidate vaccine Flexyn2a has a satisfactory safety profile and elicited a robust humoral response to S. flexneri 2a LPS with or without inclusion of an adjuvant. Moreover, the bioconjugate also induced functional antibodies, showing the technology's features in producing a promising candidate vaccine. (This study has been registered at ClinicalTrials.gov under registration no. NCT02388009.).
Collapse
Affiliation(s)
- Mark S Riddle
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Robert W Kaminski
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Chad K Porter
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | | | | | - Hailey E Weerts
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Amy Castellano
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | - Robert Gormley
- Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
7
|
Aase A, Sommerfelt H, Petersen LB, Bolstad M, Cox RJ, Langeland N, Guttormsen AB, Steinsland H, Skrede S, Brandtzaeg P. Salivary IgA from the sublingual compartment as a novel noninvasive proxy for intestinal immune induction. Mucosal Immunol 2016; 9:884-93. [PMID: 26509875 DOI: 10.1038/mi.2015.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Whole-saliva IgA appears like an attractive noninvasive readout for intestinal immune induction after enteric infection or vaccination, but has failed to show consistent correlation with established invasive markers and IgA in feces or intestinal lavage. For reference, we measured antibodies in samples from 30 healthy volunteers who were orally infected with wild-type enterotoxigenic Escherichia coli. The response against these bacteria in serum, lavage, and lymphocyte supernatants (antibody-in-lymphocyte-supernatant, ALS) was compared with that in targeted parotid and sublingual/submandibular secretions. Strong correlation occurred between IgA antibody levels against the challenge bacteria in sublingual/submandibular secretions and in lavage (r=0.69, P<0.0001) and ALS (r=0.70, P<0.0001). In sublingual/submandibular secretions, 93% responded with more than a twofold increase in IgA antibodies against the challenge strain, whereas the corresponding response in parotid secretions was only 67% (P=0.039). With >twofold ALS as a reference, the sensitivity of a >twofold response for IgA in sublingual/submandibular secretion was 96%, whereas it was only 67% in the parotid fluid. To exclude that flow rate variations influenced the results, we used albumin as a marker. Our data suggested that IgA in sublingual/submandibular secretions, rather than whole saliva with its variable content of parotid fluid, is a preferential noninvasive proxy for intestinal immune induction.
Collapse
Affiliation(s)
- A Aase
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - H Sommerfelt
- Center for Intervention Science in Maternal and Child Health and Centre for International health, Centre for International Health, University of Bergen, Bergen, Norway.,Department of International Public Health, Norwegian Institute of Public Health, Oslo, Norway
| | - L B Petersen
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - M Bolstad
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - R J Cox
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - N Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Division for Infectious Disease, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - A B Guttormsen
- Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - H Steinsland
- Center for Intervention Science in Maternal and Child Health and Centre for International health, Centre for International Health, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - S Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Division for Infectious Disease, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - P Brandtzaeg
- LIIPAT, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Jiao J, Wang MS, Yang XG, Wang XF. Evaluation of ALS assay of TB-SA for diagnosis of pulmonary tuberculosis. J Immunoassay Immunochem 2015; 36:119-27. [PMID: 24702118 DOI: 10.1080/15321819.2014.908127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The study evaluated tuberculosis specific antigen (TB-SA) antibody in lymphocyte supernatant (ALS) assay for diagnosis of pulmonary tuberculosis (PTB). The mean concentration of TB-SA ALS in PTB patients was significantly higher than that of two control groups (non-PTB patients and healthy subjects, P < 0.001). The area under the curve of the ALS assay were 0.960 (0.904-0.988, PTB vs healthy subjects), and were 0.822 (0.739-0.887, PTB vs Non-PTB patients), respectively. Our data indicated the ALS assay for TB-SA can be used as a screening test and is a useful adjunct to current tests for diagnosis of PTB.
Collapse
Affiliation(s)
- Jin Jiao
- a Department of Lab Medicine , Shandong Provincial Chest Hospital , Jinan City , PR China
| | | | | | | |
Collapse
|