1
|
Wang G, Wang Y, Ma F. Exploiting bacterial-origin immunostimulants for improved vaccination and immunotherapy: current insights and future directions. Cell Biosci 2024; 14:24. [PMID: 38368397 PMCID: PMC10874560 DOI: 10.1186/s13578-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Vaccination is a valid strategy to prevent and control newly emerging and reemerging infectious diseases in humans and animals. However, synthetic and recombinant antigens are poor immunogenic to stimulate efficient and protective host immune response. Immunostimulants are indispensable factors of vaccines, which can promote to trigger fast, robust, and long-lasting immune responses. Importantly, immunotherapy with immunostimulants is increasing proved to be an effective and promising treatment of cancer, which could enhance the function of the immune system against tumor cells. Pattern recognition receptors (PRRs) play vital roles in inflammation and are central to innate and adaptive immune responses. Toll-like receptors (TLRs)-targeting immunostimulants have become one of the hotspots in adjuvant research and cancer therapy. Bacterial-origin immunoreactive molecules are usually the ligands of PRRs, which could be fast recognized by PRRs and activate immune response to eliminate pathogens. Varieties of bacterial immunoreactive molecules and bacterial component-mimicking molecules have been successfully used in vaccines and clinical therapy so far. This work provides a comprehensive review of the development, current state, mechanisms, and applications of bacterial-origin immunostimulants. The exploration of bacterial immunoreactive molecules, along with their corresponding mechanisms, holds immense significance in deepening our understanding of bacterial pathogenicity and in the development of promising immunostimulants.
Collapse
Affiliation(s)
- Guangyu Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Yongkang Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
2
|
A potential delivery system based on cholera toxin: A macromolecule carrier with multiple activities. J Control Release 2022; 343:551-563. [DOI: 10.1016/j.jconrel.2022.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
3
|
Su F, Xu L, Xue Y, Li J, Fu Y, Yu B, Wang S, Yuan X. Th1-biased immunoadjuvant effect of the recombinant B subunit of an Escherichia coli heat-labile enterotoxin on an inactivated porcine reproductive and respiratory syndrome virus antigen via intranasal immunization in mice. J Vet Med Sci 2019; 81:1475-1484. [PMID: 31527353 PMCID: PMC6863725 DOI: 10.1292/jvms.19-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the major swine diseases
responsible for a significant challenge in the global swine industry. The current PRRS
inactivated vaccine only confers limited protection against PRRSV. Thus, using an
appropriate adjuvant via a suitable administration route may help improve vaccine
efficacy. In this study, the recombinant B subunit of the Escherichia
coli heat-labile enterotoxin rLTB, was highly expressed in Pichia
pastoris, through high-density fermentation. rLTB intranasal adjuvant
properties were evaluated on an inactivated PRRS antigen in mice. Compared to the group
immunized with solely PRRS antigen, a dose of 50 µg rLTB remarkably
raised antigen-specific IgA antibodies at mucosal sites, and increased serum IgG
antibodies, preferentially the IgG2a and IgG2b subclasses. Further, rLTB induced increases
in Th1- (IFN-γ and IL-12) and Th17 (IL-6) cytokine profiles, but had little effect on Th2
cytokine profiles (IL-4 and IL-10). Moreover, there were no overt toxicities associated
with intranasal rLTB administration. Our data provide evidence that the rLTB produced by
P. pastoris fermentation portrays low toxicity, and its intranasal
adjuvant effect involves immune system modulation to a Th1 profile.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou, Zhejiang 310020, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Sai Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
4
|
Cholera toxin B subunit pentamer reassembled from Escherichia coli inclusion bodies for use in vaccination. Vaccine 2016; 34:1268-74. [DOI: 10.1016/j.vaccine.2016.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 01/17/2016] [Indexed: 11/18/2022]
|
5
|
Juárez-Montiel M, Romero-Maldonado A, Monreal-Escalante E, Becerra-Flora A, Korban SS, Rosales-Mendoza S, Jiménez-Bremont JF. The Corn Smut ('Huitlacoche') as a New Platform for Oral Vaccines. PLoS One 2015. [PMID: 26207365 PMCID: PMC4514630 DOI: 10.1371/journal.pone.0133535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or ‘huitlacoche’has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB), a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein). Mice orally immunized with ‘huitlacoche’-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT). These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed.
Collapse
Affiliation(s)
- Margarita Juárez-Montiel
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Alicia Becerra-Flora
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
| | - Schuyler S. Korban
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- * E-mail: (SRM); (JFJB)
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
- * E-mail: (SRM); (JFJB)
| |
Collapse
|
6
|
Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines (Basel) 2015; 3:579-96. [PMID: 26350596 PMCID: PMC4586468 DOI: 10.3390/vaccines3030579] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022] Open
Abstract
Cholera toxin subunit B (CTB) is the nontoxic portion of cholera toxin. Its affinity to the monosialotetrahexosylganglioside (GM1) that is broadly distributed in a variety of cell types including epithelial cells of the gut and antigen presenting cells, macrophages, dendritic cells, and B cells, allows its optimal access to the immune system. CTB can easily be expressed on its own in a variety of organisms, and several approaches can be used to couple it to antigens, either by genetic fusion or by chemical manipulation, leading to strongly enhanced immune responses to the antigens. In autoimmune diseases, CTB has the capacity to evoke regulatory responses and to thereby dampen autoimmune responses, in several but not all animal models. It remains to be seen whether the latter approach translates to success in the clinic, however, the versatility of CTB to manipulate immune responses in either direction makes this protein a promising adjuvant for vaccine development.
Collapse
|
7
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|
8
|
Arakawa T, Harakuni T. Cholera toxin B subunit-five-stranded α-helical coiled-coil fusion protein: "five-to-five" molecular chimera displays robust physicochemical stability. Vaccine 2014; 32:5019-26. [PMID: 25045819 DOI: 10.1016/j.vaccine.2014.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 11/25/2022]
Abstract
To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules.
Collapse
Affiliation(s)
- Takeshi Arakawa
- Molecular Microbiology Group, Department of Infectious Diseases, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan.
| | - Tetsuya Harakuni
- Molecular Microbiology Group, Department of Infectious Diseases, Center of Molecular Biosciences, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
9
|
Rodrigues D, Farinha-Arcieri LE, Ventura AM, Chura-Chambi RM, Malavasi NV, Lemke LS, Guimarães JS, Ho PL, Morganti L. Effect of pressure on refolding of recombinant pentameric cholera toxin B. J Biotechnol 2014; 173:98-105. [PMID: 24445168 PMCID: PMC7114129 DOI: 10.1016/j.jbiotec.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/16/2022]
Abstract
The production of recombinant proteins is an essential tool for the expansion of modern biological research and biotechnology. The expression of heterologous proteins in Escherichia coli often results in an incomplete folding process that leads to the accumulation of inclusion bodies (IB), aggregates that hold a certain degree of native-like secondary structure. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, leading to dissociation of aggregates under non-denaturing conditions and is therefore a useful tool to solubilize proteins for posterior refolding. Cholera toxin (CT) is composed of a non-toxic pentamer of B subunits (CTB), a useful adjuvant in vaccines, and a toxic subunit A (CTA). We studied the process of refolding of CTB using HHP. HHP was shown to be effective for dissociation of CTB monomers from IB. Posterior incubation at atmospheric pressure of concentrated CTB (1mg/ml) is necessary for the association of the monomers. Pentameric CTB was obtained when suspensions of CTB IB were compressed at 2.4kbar for 16h in the presence of Tween 20 and incubated at 1bar for 120h. Soluble and biologically active pentameric CTB was obtained, with a yield of 213mg CTB/liter of culture. The experience gained in this study can be important to improve the refolding of proteins with quaternary structure.
Collapse
Affiliation(s)
- D Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L E Farinha-Arcieri
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - A M Ventura
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - R M Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - N V Malavasi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L S Lemke
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - J S Guimarães
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - P L Ho
- Instituto Butantan, Centro de Biotecnologia, São Paulo, Brazil
| | - L Morganti
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil.
| |
Collapse
|
10
|
Developing inexpensive malaria vaccines from plants and algae. Appl Microbiol Biotechnol 2014; 98:1983-90. [DOI: 10.1007/s00253-013-5477-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
11
|
Pinheiro AF, Borsuk S, Berne MEA, Pinto LDS, Andreotti R, Roos T, Rollof BC, Leite FPL. Expression of Neospora caninum NcSRS2 surface protein in Pichia pastoris and its application for serodiagnosis of Neospora infection. Pathog Glob Health 2013; 107:116-21. [PMID: 23683365 DOI: 10.1179/2047773213y.0000000082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neospora caninum is considerd a major cause of abortion in cattle worldwide. The antigenic domain of NcSRS2 in N. caninum is an important surface antigen present in the membrane of this parasite. In the present study, the Pichia pastoris expression system proved to be a useful tool for the production of recombinant protein. The truncated NcSRS2 gene (by removal of the N-terminal hydrophobic sequence), was cloned in the vector pPICZalphaB, and integrated on the genome of the methylotrophic yeast P. pastoris. Subsequently, the NcSRS2 protein was expressed, purified, and characterized using naturally infected cattle sera and Mab 6xhistag. The recombinant protein NcSRS2 was present in the supernatant of the culture, where later it was concentrated and purified using ammonium sulfate (∼100 mg/ml). An indirect immunoenzymatic assay (ELISA) was performed using cattle sera from endemic N. caninum area.
Collapse
|
12
|
Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 2013; 7:e2046. [PMID: 23505583 PMCID: PMC3591335 DOI: 10.1371/journal.pntd.0002046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of the original protein. This rapid and easily scalable system may enable the implementation of pCTB to mass vaccination against outbreaks, thereby providing better protection of high-risk populations in developing countries.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - J. Calvin Kouokam
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Lauren J. Bennett
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Keegan J. Baldauf
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
13
|
Zou S, Huang S, Kaleem I, Li C. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris. J Biotechnol 2013; 164:75-81. [PMID: 23313889 DOI: 10.1016/j.jbiotec.2012.12.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022]
Abstract
Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes.
Collapse
Affiliation(s)
- Shuping Zou
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Miyata T, Oshiro S, Harakuni T, Taira T, Matsuzaki G, Arakawa T. Physicochemically stable cholera toxin B subunit pentamer created by peripheral molecular constraints imposed by de novo-introduced intersubunit disulfide crosslinks. Vaccine 2012; 30:4225-32. [DOI: 10.1016/j.vaccine.2012.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/02/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|