1
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
2
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Barnes E, Cooke GS, Lauer GM, Chung RT. Implementation of a controlled human infection model for evaluation of HCV vaccine candidates. Hepatology 2022; 77:1757-1772. [PMID: 35736236 DOI: 10.1002/hep.32632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/08/2022]
Abstract
Hepatitis C virus (HCV) remains a major global health concern. Directly acting antiviral (DAA) drugs have transformed the treatment of HCV. However, it has become clear that, without an effective HCV vaccine, it will not be possible to meet the World Health Organization targets of HCV viral elimination. Promising new vaccine technologies that generate high magnitude antiviral T and B cell immune responses and significant new funding have recently become available, stimulating the HCV vaccine pipeline. In the absence of an immune competent animal model for HCV, the major block in evaluating new HCV vaccine candidates will be the assessment of vaccine efficacy in humans. The development of a controlled human infection model (CHIM) for HCV could overcome this block, enabling the head-to-head assessment of vaccine candidates. The availability of highly effective DAA means that a CHIM for HCV is possible for the first time. In this review, we highlight the challenges and issues with currently available strategies to assess HCV vaccine efficacy including HCV "at-risk" cohorts and animal models. We describe the development of CHIM in other infections that are increasingly utilized by trialists and explore the ethical and safety concerns specific for an HCV CHIM. Finally, we propose an HCV CHIM study design including the selection of volunteers, the development of an infectious inoculum, the evaluation of host immune and viral parameters, and the definition of study end points for use in an HCV CHIM. Importantly, the study design (including number of volunteers required, cost, duration of study, and risk to volunteers) varies significantly depending on the proposed mechanism of action (sterilizing/rapid viral clearance vs. delayed viral clearance) of the vaccine under evaluation. We conclude that an HCV CHIM is now realistic, that safety and ethical concerns can be addressed with the right study design, and that, without an HCV CHIM, it is difficult to envisage how the development of an HCV vaccine will be possible.
Collapse
Affiliation(s)
- Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Graham S Cooke
- Department of Infectious Disease, Imperial College London, Oxford, UK
| | - Georg M Lauer
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center, GI Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
5
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Abstract
Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.
Collapse
Affiliation(s)
- Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
7
|
Ross P, Nemec PS, Kapatos A, Miller KR, Holmes JC, Suter SE, Buntzman AS, Soderblom EJ, Collins EJ, Hess PR. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif. Vet Immunol Immunopathol 2018; 197:76-86. [PMID: 29475511 DOI: 10.1016/j.vetimm.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Ideally, CD8+ T-cell responses against virally infected or malignant cells are defined at the level of the specific peptide and restricting MHC class I element, a determination not yet made in the dog. To advance the discovery of canine CTL epitopes, we sought to determine whether a putative classical MHC class Ia gene, Dog Leukocyte Antigen (DLA)-88, presents peptides from a viral pathogen, canine distemper virus (CDV). To investigate this possibility, DLA-88*508:01, an allele prevalent in Golden Retrievers, was expressed as a FLAG-tagged construct in canine histiocytic cells to allow affinity purification of peptide-DLA-88 complexes and subsequent elution of bound peptides. Pattern analysis of self peptide sequences, which were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), permitted binding preferences to be inferred. DLA-88*508:01 binds peptides that are 9-to-12 amino acids in length, with a modest preference for 9- and 11-mers. Hydrophobic residues are favored at positions 2 and 3, as are K, R or F residues at the C-terminus. Testing motif-matched and -unmatched synthetic peptides via peptide-MHC surface stabilization assay using a DLA-88*508:01-transfected, TAP-deficient RMA-S line supported these conclusions. With CDV infection, 22 viral peptides ranging from 9-to-12 residues in length were identified in DLA-88*508:01 eluates by LC-MS/MS. Combined motif analysis and surface stabilization assay data suggested that 11 of these 22 peptides, derived from CDV hemagglutinin, large polymerase, matrix, nucleocapsid, and V proteins, were processed and presented, and thus, potential targets of anti-viral CTL in DLA-88*508:01-bearing dogs. The presentation of diverse self and viral peptides indicates that DLA-88 is a classical MHC class Ia gene.
Collapse
Affiliation(s)
- Peter Ross
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Paige S Nemec
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Alexander Kapatos
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Keith R Miller
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Steven E Suter
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Adam S Buntzman
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Institute for Genome Science and Policy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward J Collins
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA.
| |
Collapse
|
8
|
Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: Progresses and the remaining challenges. World J Hepatol 2017; 9:1239-1252. [PMID: 29312527 PMCID: PMC5745585 DOI: 10.4254/wjh.v9.i33.1239] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
Today, with the introduction of interferon-free direct-acting antivirals and outstanding progresses in the prevention, diagnosis and treatment of hepatitis C virus (HCV) infection, the elimination of HCV infection seems more achievable. A further challenge is continued transmission of HCV infection in high-risk population specially injecting drug users (IDUs) as the major reservoir of HCV infection. Considering the fact that most of these infections remain undiagnosed, unidentified HCV-infected IDUs are potential sources for the rapid spread of HCV in the community. The continuous increase in the number of IDUs along with the rising prevalence of HCV infection among young IDUs is harbinger of a forthcoming public health dilemma, presenting a serious challenge to control transmission of HCV infection. Even the changes in HCV genotype distribution attributed to injecting drug use confirm this issue. These circumstances create a strong demand for timely diagnosis and proper treatment of HCV-infected patients through risk-based screening to mitigate the risk of HCV transmission in the IDUs community and, consequently, in the society. Meanwhile, raising general awareness of HCV infection, diagnosis and treatment through public education should be the core activity of any harm reduction intervention, as the root cause of failure in control of HCV infection has been lack of awareness among young drug takers. In addition, effective prevention, comprehensive screening programs with a specific focus on high-risk population, accessibility to the new anti-HCV treatment regimens and public education should be considered as the top priorities of any health policy decision to eliminate HCV infection.
Collapse
Affiliation(s)
- Reza Taherkhani
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Fatemeh Farshadpour
- the Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran.
| |
Collapse
|
9
|
Tabll A, El-Shenawy R, Abd YE. Progress in Vaccine Development for HCV Infection. UPDATE ON HEPATITIS C 2017. [DOI: 10.5772/intechopen.70649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Broadening CD4 + and CD8 + T Cell Responses against Hepatitis C Virus by Vaccination with NS3 Overlapping Peptide Panels in Cross-Priming Liposomes. J Virol 2017; 91:JVI.00130-17. [PMID: 28446674 DOI: 10.1128/jvi.00130-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite the introduction of effective drugs to treat patients with chronic hepatitis C virus (HCV) infection, a vaccine would be the only means to substantially reduce the worldwide disease burden. An incomplete understanding of how HCV interacts with its human host and evades immune surveillance has hampered vaccine development. It is generally accepted that in infected individuals, a narrow repertoire of exhausted T cells is a hallmark of persistent infection, whereas broad, vigorous CD4+ and CD8+ T cell responses are associated with control of acute hepatitis C. We employed a vaccine approach based on a mixture of peptides (pepmix) spanning the entire sequence of HCV nonstructural protein 3 (NS3) in cross-priming cationic liposomes (CAF09) to facilitate a versatile presentation of all possible T cell epitopes, regardless of the HLA background of the vaccine recipient. Here, we demonstrate that vaccination of mice with NS3 pepmix broadens the repertoire of epitope-specific T cells compared to the corresponding recombinant protein (rNS3). Moreover, vaccination with rNS3 induced only CD4+ T cells, whereas the NS3 pepmix induced a far more vigorous CD4+ T cell response and was as potent a CD8+ T cell inducer as an adenovirus-vectored vaccine expressing NS3. Importantly, the cellular responses are dominated by multifunctional T cells, such as gamma interferon-positive (IFN-γ+) tumor necrosis factor alpha-positive (TNF-α+) coproducers, and displayed cytotoxic capacity in mice. In conclusion, we present a novel vaccine approach against HCV, inducing a broadened T cell response targeting both immunodominant and potential subdominant epitopes, which may be key elements to counter T cell exhaustion and prevent chronicity.IMPORTANCE With at least 700,000 annual deaths, development of a vaccine against hepatitis C virus (HCV) has high priority, but the tremendous ability of the virus to dodge the human immune system poses great challenges. Furthermore, many chronic infections, including HCV infection, have a remarkable ability to drive initially strong CD4+ and CD8+ T cell responses against dominant epitopes toward an exhausted, dysfunctional state. Thus, new and innovative vaccine approaches to control HCV should be evaluated. Here, we report on a novel peptide-based nanoparticle vaccine strategy (NS3 pepmix) aimed at generating T cell immunity against potential subdominant T cell epitopes that are not efficiently targeted by vaccination with full-length recombinant protein (rNS3) or infection with HCV. As proof of concept, we found that NS3 pepmix excels in broadening the repertoire of epitope-specific, multifunctional, and cytotoxic CD4+ and CD8+ T cells compared to vaccination with rNS3, which generated only CD4+ T cell responses.
Collapse
|
11
|
Rosen HR. "Hep C, where art thou": What are the remaining (fundable) questions in hepatitis C virus research? Hepatology 2017; 65:341-349. [PMID: 27640881 DOI: 10.1002/hep.28848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) has dominated the field of hepatology for the past 25 years, and its cure in the majority of treated patients is one of the greatest achievements in all of medicine. However, the latter has led to the belief by some that HCV research should be shelved for other, more pressing areas. The mission for HCV eradication is far from accomplished. As a historical reference, we should consider that disease elimination has required vaccination with all previously controlled infections including smallpox and polio and that simple, effective treatment is not sufficient in most infections to lead to substantial control. Syphilis is the best example, for which a single dose of penicillin (which literally costs pennies and that we have had since 1945) is curative in early stages. Not only have we not eradicated syphilis, rates of infection have increased in many places within the United States in recent years. Most HCV-infected subjects are unaware of their infection, remaining at risk for transmission to others and disease progression, including cirrhosis and hepatocellular carcinoma. In the era of highly effective direct-acting antivirals (DAAs), many questions pertaining to HCV remain, but they are more complex and difficult to answer. Here, I provide my perspective on some of these salient issues: the residual risk for disease progression after sustained virologic response, the optimal approach to current DAA failures, the impact of targeting people who inject drugs with DAAs, vaccine prospects, and application of neutralizing HCV glycoprotein antibodies. (Hepatology 2017;65:341-349).
Collapse
Affiliation(s)
- Hugo Ramón Rosen
- Division of Gastroenterology and Hepatology (B-158), Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO
| |
Collapse
|
12
|
Abstract
The hepatitis C virus (HCV) is a major cause of severe liver disease worldwide. It is estimated that around 130-170 million individuals are chronic carriers of the infection and they are over time at an increased risk of developing severe liver disease. HCV is often referred to as a silent epidemic because the majority of infected individuals do not develop any symptoms. Hence, many individuals are diagnosed at a late stage and thus in need of immediate treatment. Today we have very effective direct-acting antivirals (DAAs), which cure more than 90-95 % of all treated patients. However, this treatment is associated with high-costs and the use is limited to the patients with most advanced liver disease in high-income countries. Notably, a majority of the chronic HCV carriers live in resource-poor countries and do not have access to the new effective DAAs. We therefore need to develop alternative treatments for chronic HCV infection such as therapeutic vaccines. The idea with therapeutic vaccines is to reactivate the infected patient's own immune system. It is well known that patients with chronic HCV infection have dysfunctional immune responses to the virus. Hence, the vaccine should activate HCV-specific T cells that will home to the liver and eradicate the HCV infected hepatocytes. Importantly, one should also consider the combination of a therapeutic vaccine and DAAs as a treatment strategy to equip the resolving patients with post-cure HCV-specific immune responses. This would provide patients with a better protection against reinfection. Numerous genetic vaccine candidates for HCV have been developed and tested in clinical trials with limited effects on viral load and in general inefficient activation of HCV-specific immune responses. In this chapter we describe the rational of developing highly immunogenic vaccines for HCV. Different strategies to improve vaccine immunogenicity and methods to evaluate vaccine efficacy are described. Detailed description of vaccine delivery by intramuscular immunization in combination with in vivo electroporation/electrotransfer (EP/ET) is covered, as well as immunological analysis of primed immune responses by determination of interferon-γ (IFN-γ) production by ELISpot assay and direct ex vivo quantification of HCV NS3/4A-specific CD8+ T cells by pentamer staining. To analyze the in vivo functionality of primed NS3/4A-specific T cells we utilized the in vivo bioluminescence imaging technology. In conclusion, this chapter describes a method to design HCV vaccines and also a protocol to assess their efficacy.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86, Stockholm, Sweden.
| |
Collapse
|
13
|
Swadling L, Halliday J, Kelly C, Brown A, Capone S, Ansari MA, Bonsall D, Richardson R, Hartnell F, Collier J, Ammendola V, Del Sorbo M, Von Delft A, Traboni C, Hill AVS, Colloca S, Nicosia A, Cortese R, Klenerman P, Folgori A, Barnes E. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines (Basel) 2016; 4:E27. [PMID: 27490575 PMCID: PMC5041021 DOI: 10.3390/vaccines4030027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were only induced by vaccination when there was a sequence mismatch between the autologous virus and the vaccine immunogen. However, these T-cells were not cross-reactive with the endogenous viral variant epitopes. Conversely, when there was complete homology between the immunogen and circulating virus at a given epitope T-cells were not induced. T-cell induction following vaccination had no significant impact on HCV viral load. In vitro T-cell culture experiments identified the presence of T-cells at baseline that could be expanded by vaccination; thus, HCV-specific T-cells may have been expanded from pre-existing low-level memory T-cell populations that had been exposed to HCV antigens during natural infection, explaining the partial T-cell dysfunction. In conclusion, vaccination with ChAd3-NSmut and MVA-NSmut prime/boost, a potent vaccine regimen previously optimized in healthy volunteers was unable to reconstitute HCV-specific T-cell immunity in HCV infected patients. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Stefania Capone
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Felicity Hartnell
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Jane Collier
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
| | - Virginia Ammendola
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | | | - Annette Von Delft
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Cinzia Traboni
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Adrian V S Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Stefano Colloca
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Alfredo Nicosia
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
- CEINGE, via Gaetano Salvatore 486, Naples 80145, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Antonella Folgori
- Reithera Srl (former Okairos Srl), Viale Città d'Europa, 679, Rome 00144, Italy.
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
- Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford OX3 9DU, UK.
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods 2016; 236:87-92. [PMID: 27373602 DOI: 10.1016/j.jviromet.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.
Collapse
|
15
|
Kelly C, Swadling L, Capone S, Brown A, Richardson R, Halliday J, von Delft A, Oo Y, Mutimer D, Kurioka A, Hartnell F, Collier J, Ammendola V, Sorbo MD, Grazioli F, Esposito ML, Marco SD, Siani L, Traboni C, Hill AV, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. Chronic hepatitis C viral infection subverts vaccine-induced T-cell immunity in humans. Hepatology 2016; 63:1455-70. [PMID: 26474390 PMCID: PMC4842008 DOI: 10.1002/hep.28294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high-magnitude, durable CD4(+) and CD8(+) T-cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1-infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV NS proteins in a dose escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon-γ enzyme-linked immunospot assays. Cross-reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV-specific T-cell responses following vaccination was markedly reduced. CD8(+) HCV-specific T-cell responses were detected in 15/24 patients at the highest dose, whereas CD4(+) T-cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T-cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. CONCLUSION Vaccination with potent HCV adenoviral vectored vaccines fails to restore T-cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure with implications for cancer and other persistent infections.
Collapse
Affiliation(s)
- Christabel Kelly
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | - Leo Swadling
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Stefania Capone
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Anthony Brown
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - John Halliday
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | | | - Ye Oo
- Department of HepatologyQueen Elizabeth HospitalBirminghamUK
| | - David Mutimer
- Department of HepatologyQueen Elizabeth HospitalBirminghamUK
| | - Ayako Kurioka
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Jane Collier
- Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | | | | | - Loredana Siani
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Cinzia Traboni
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Adrian V.S. Hill
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| | - Stefano Colloca
- ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly
| | - Alfredo Nicosia
- Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,ReiThera Srl (formerly Okairos Srl)Viale Città d'EuropaRomeItaly,CEINGENaplesItaly,Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | | | | | - Paul Klenerman
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Nuffield Department of MedicineUniversity of OxfordOxfordUK,Oxford NIHR BRC and Translational Gastroenterology UnitOxfordUK,The Jenner InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Fazlalipour M, Keyvani H, Monavari SHR, Mollaie HR. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris. Jundishapur J Microbiol 2015; 8:e17157. [PMID: 26034544 PMCID: PMC4449863 DOI: 10.5812/jjm.8(4)2015.17157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/14/2014] [Accepted: 07/26/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate. Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt). Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a. Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly in vitro in a yeast expression system. Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing antibodies, and is an influential HCV vaccine candidate.
Collapse
Affiliation(s)
- Mehdi Fazlalipour
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| | - Hossein Keyvani
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Hossein Keyvani, Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-9126222938, E-mail:
| | | | - Hamid Reza Mollaie
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
17
|
Baumert TF, Fauvelle C, Chen DY, Lauer GM. A prophylactic hepatitis C virus vaccine: a distant peak still worth climbing. J Hepatol 2014; 61:S34-44. [PMID: 25443345 DOI: 10.1016/j.jhep.2014.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects an estimated more than 150 million people and is a leading cause of liver disease worldwide. The development of direct-acting antivirals (DAAs) will markedly improve the outcome of antiviral treatment with cure of the majority of treated patients. However, several hurdles remain before HCV infection can be considered a menace of the past: High treatment costs will most likely result in absent or limited access in middle and low resource countries and will lead to selective use even in wealthier countries. The limited efficacy of current HCV screening programs leads to a majority of cases being undiagnosed or diagnosed at a late stage and DAAs will not cure virus-induced end-stage liver disease such as hepatocellular carcinoma. Certain patient subgroups may not respond or not be eligible for DAA-based treatment strategies. Finally, reinfection remains possible, making control of HCV infection in people with ongoing infection risk difficult. The unmet medical needs justify continued efforts to develop an effective vaccine, protecting from chronic HCV infection as a mean to impact the epidemic on a global scale. Recent progress in the understanding of virus-host interactions provides new perspectives for vaccine development, but many critical questions remain unanswered. In this review, we focus on what is known about the immune correlates of HCV control, highlight key mechanisms of viral evasion that pose challenges for vaccine development and suggest areas of further investigation that could enable a rational approach to vaccine design. Within this context we also discuss insights from recent HCV vaccination studies and what they suggest about the best way to go forward.
Collapse
Affiliation(s)
- Thomas F Baumert
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA; Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Catherine Fauvelle
- Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France
| | - Diana Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
18
|
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5:171. [PMID: 24795718 PMCID: PMC3997009 DOI: 10.3389/fimmu.2014.00171] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen-presenting cells, such as dendritic cells (DCs). In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth, and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in human papillomavirus (HPV) infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.
Collapse
Affiliation(s)
- Sietske Rosendahl Huber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
19
|
El-Awady MK, El Gendy M, Waked I, Tabll AA, El Abd Y, Bader El Din N, El Shenawy R, Allam A, Abdelhafez TH, Dawood RM. WITHDRAWN: Immunogenicity and safety of HCV E1E2 peptide vaccine in chronically HCV-infected patients who did not respond to interferon based therapy. Vaccine 2013:S0264-410X(13)01065-7. [PMID: 23962537 DOI: 10.1016/j.vaccine.2013.07.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/20/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt.
| | - Mohamed El Gendy
- National Liver Institute, Shebeen El Kom, Menofyia University, Egypt
| | - Imam Waked
- National Liver Institute, Shebeen El Kom, Menofyia University, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| | - Yasmin El Abd
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| | - Noha Bader El Din
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| | - Reem El Shenawy
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| | - Aleef Allam
- National Liver Institute, Shebeen El Kom, Menofyia University, Egypt
| | - Tawfeek H Abdelhafez
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| | - Reham M Dawood
- Microbial Biotechnology Department, National Research Center, Dokki, 12622 Giza, Egypt
| |
Collapse
|
20
|
Abstract
Introduction With 3 – 4 million new infections occurring annually, hepatitis C virus (HCV) is a major global health problem. There is increasing evidence to suggest that HCV will be highly amenable to a vaccine approach, and despite advances in treatment, a vaccine remains the most cost-effective and realistic means to significantly reduce the worldwide mortality and morbidity associated with persistent HCV infection. Areas covered In this review we discuss immune responses to HCV during natural infection, and describe how they may inform vaccine design. We introduce the current candidate vaccines for HCV and compare how these fare against the expected requirements of an effective prophylactic HCV vaccine in relation to the breadth, functionality, magnitude and phenotype of the vaccine-induced immune response. Expert opinion Although the correlates of immune protection against HCV are not completely defined, we now have vaccine technologies capable of inducing HCV-specific adaptive immune responses to an order of magnitude that are associated with protection during natural infection. The challenge next is to i) establish well-characterised cohorts of people at risk of HCV infection for vaccine efficacy testing and ii) to better understand the correlates of protection in natural history studies. If these can be achieved, a vaccine against HCV appears a realistic goal.
Collapse
Affiliation(s)
- Leo Swadling
- University of Oxford, NDM and Jenner Institute, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | | | | |
Collapse
|
21
|
Keyvani H, Fazlalipour M, Monavari SHR, Mollaie HR. Hepatitis C Virus - Proteins, Diagnosis, Treatment and New Approaches for Vaccine Development. Asian Pac J Cancer Prev 2012. [DOI: 10.7314/apjcp.2012.13.12.5917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Testa JS, Philip R. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virol 2012; 7:1077-1088. [PMID: 23630544 DOI: 10.2217/fvl.12.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prophylactic and therapeutic vaccines against viral infections have advanced in recent years from attenuated live vaccines to subunit-based vaccines. An ideal prophylactic vaccine should mimic the natural immunity induced by an infection, in that it should generate long-lasting adaptive immunity. To complement subunit vaccines, which primarily target an antibody response, different methodologies are being investigated to develop vaccines capable of driving cellular immunity. T-cell epitope discovery is central to this concept. In this review, the significance of T-cell epitope-based vaccines for prophylactic and therapeutic applications is discussed. Additionally, methodologies for the discovery of T-cell epitopes, as well as recent developments in the clinical testing of these vaccines for various viral infections, are explained.
Collapse
Affiliation(s)
- James S Testa
- Immunotope, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | |
Collapse
|