1
|
Mooij P, Stammes MA, Mortier D, Fagrouch Z, van Driel N, Verschoor EJ, Kondova I, Bogers WMJM, Koopman G. Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques. Viruses 2021; 13:v13020345. [PMID: 33671829 PMCID: PMC7926951 DOI: 10.3390/v13020345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Marieke A. Stammes
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands;
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Nikki van Driel
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Willy M. J. M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
- Correspondence: ; Tel.: +31-152842761
| |
Collapse
|
2
|
COVID-19 vaccine is here: practical considerations for clinical imaging applications. Clin Imaging 2021; 76:38-41. [PMID: 33548891 PMCID: PMC7842197 DOI: 10.1016/j.clinimag.2021.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023]
Abstract
Imaging tools are potentially able to provide valuable data regarding the development of an efficient vaccine against viral diseases. Tracking immune cells in vivo by imaging modalities can help us understand the intrinsic behaviors of immune cells in response to vaccine components. Imaging patterns at the vaccination site and draining lymph nodes might provide useful information about the vaccine potency. Besides, serial lung CT imaging has been purposed to evaluate vaccine efficiency regarding its protection against typical lung lesions of viral pneumonias. On the other hand, vaccination causes various confusing radiologic patterns that pose diagnostic challenges for clinicians and pitfalls for reading radiologists. This manuscript reviews potential applications of imaging modalities in the process of vaccine development and also goes over some of the imaging findings/pitfalls following vaccination.
Collapse
|
3
|
Mooij P, Mortier D, Stammes M, Fagrouch Z, Verschoor EJ, Bogers WMJM, Koopman G. Aerosolized pH1N1 influenza infection induces less systemic and local immune activation in the lung than combined intrabronchial, nasal and oral exposure in cynomolgus macaques. J Gen Virol 2020; 101:1229-1241. [PMID: 32975505 DOI: 10.1099/jgv.0.001489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-human primates form an important animal model for the evaluation of immunogenicity and efficacy of novel 'universal' vaccine candidates against influenza virus. However, in most studies a combination of intra-tracheal or intra-bronchial, oral and nasal virus inoculation is used with a standard virus dose of between 1 and 10 million tissue culture infective doses, which differs from typical modes of virus exposure in humans. This paper studies the systemic and local inflammatory and immune effects of aerosolized versus combined-route exposure to pandemic H1N1 influenza virus. In agreement with a previous study, both combined-route and aerosol exposure resulted in similar levels of virus replication in nose, throat and lung lavages. However, the acute release of pro-inflammatory cytokines and chemokines, acute monocyte activation in peripheral blood as well as increased cytokine production and T-cell proliferation in the lungs were only observed after combined-route infection and not after aerosol exposure. Longitudinal evaluation by computed tomography demonstrated persistence of lung lesions after resolution of the infection and a tendency for more lesions in the lower lung lobes after combined-route exposure versus upper and middle lung lobes after aerosol exposure. Computed tomography scores were observed to correlate with fever. In conclusion, influenza virus infection by aerosol exposure is accompanied by less immune-activation and inflammation in comparison with direct virus installation, despite similar levels of virus replication and development of lesions in the lungs.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Marieke Stammes
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
4
|
Ueki H, Wang IH, Zhao D, Gunzer M, Kawaoka Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nat Protoc 2020; 15:1041-1065. [PMID: 31996843 PMCID: PMC7086515 DOI: 10.1038/s41596-019-0275-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In vivo two-photon imaging is a valuable technique for studies of viral pathogenesis and host responses to infection in vivo. In this protocol, we describe a methodology for analyzing influenza virus-infected lung in vivo by two-photon imaging microscopy. We describe the surgical procedure, how to stabilize the lung, and an approach to analyzing the data. Further, we provide a database of fluorescent dyes, antibodies, and reporter mouse lines that can be used in combination with a reporter influenza virus (Color-flu) for multicolor analysis. Setup of this model typically takes ~30 min and enables the observation of influenza virus-infected lungs for >4 h during the acute phase of the inflammation and at least 1 h in the lethal phase. This imaging system, which we termed two-photon IMPRESS (imaging pathophysiology research system), is broadly applicable to analyses of other respiratory pathogens and reveals disease progression at the cellular level in vivo.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - I-Hsuan Wang
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Dongming Zhao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
6
|
Intranasally administered Endocine™ formulated 2009 pandemic influenza H1N1 vaccine induces broad specific antibody responses and confers protection in ferrets. Vaccine 2014; 32:3307-15. [DOI: 10.1016/j.vaccine.2014.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
|
7
|
Lee DH, Kim JI, Lee JW, Chung WH, Park JK, Lee YN, Han JS, Kim HY, Lee SW, Song CS. Quantitative measurement of influenza virus replication using consecutive bronchoalveolar lavage in the lower respiratory tract of a ferret model. J Vet Sci 2014; 15:439-42. [PMID: 24690606 PMCID: PMC4178147 DOI: 10.4142/jvs.2014.15.3.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/01/2014] [Indexed: 11/23/2022] Open
Abstract
The ferret is an established animal model of influenza virus infection. Although viral replication in the upper respiratory tract is usually measured with consecutively collected nasal washes, daily evaluation of viral replication in the lung is limited because a large numbers of ferrets need to be sacrificed at consecutive time points. To overcome this limitation, we performed a virus quantification assay using bronchoalveolar lavage (BAL) fluid. This non-invasive BAL technique allows consecutive quantification of virus replication in the lungs of living ferrets. Our method can be used for the longitudinal evaluation of virus tropism in the lower respiratory tract.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|