1
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Shams N, Jaydari A, Najafi H, Hataminejad M, Khanizadeh S, Pouladi I. An Overview of the Types of Adjuvants Used in the Vaccination Industry And Their Mechanisms of Action. Viral Immunol 2024; 37:324-336. [PMID: 39172659 DOI: 10.1089/vim.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The widespread use of efficient vaccines against infectious diseases is regarded as one of the most significant advancements in public health and techniques for preventing and protecting against infectious diseases and cancer. Because the purpose of vaccination is to elicit an appropriate, powerful, and long-lasting immune response against the pathogen, compounds such as adjuvants must be used to enhance these responses. Adjuvants have been widely used since their discovery to boost immune responses, prevent diseases, and activate protective immunity. Today, several types of adjuvants with varying properties are available for specific applications. Adjuvants are supramolecular substances or complexes that strengthen and prolong the immune response to antigens. These compounds have long-term immunological effects and are low in toxicity. They also lower the amount of antigen or the number of immunogenic reactions needed to improve vaccine efficacy and are used in specific populations. This article provides an overview of the adjuvants commonly used in the vaccination industry, their respective mechanisms of action, and discusses how they function to stimulate the immune system. Understanding the mechanisms of action of adjuvants is crucial for the development of effective and safe vaccines.
Collapse
Affiliation(s)
- Nemat Shams
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Jaydari
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Hataminejad
- Department of Parasitology and Mycology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Russi RC, del Balzo D, Reidel IG, Alonso Bivou M, Flor N, Lujan A, Sanchez D, Damiani MT, Veaute C. Evaluation of three formulations based on Polymorphic membrane protein D in mice infected with Chlamydia trachomatis. Front Immunol 2023; 14:1267684. [PMID: 38045697 PMCID: PMC10690417 DOI: 10.3389/fimmu.2023.1267684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
The significant impact of Chlamydia trachomatis(Ct) infections worldwide highlights the need to develop a prophylactic vaccine that elicits effective immunity and protects the host from the immunopathological effects of Ct infection. The aim of this study was to evaluate a vaccine based on a fragment of the Polymorphic membrane protein D (FPmpD) of C. trachomatis as an immunogen using a heterologous DNA prime-protein boost strategy in female mice Three different formulations were evaluated as protein boost: free recombinant FPmpD (rFPmpD) or rFPmpD formulated with a liposomal adjuvant alternatively supplemented with CpG or a cationic gemini lipopeptide as immunostimulants. The three candidates induced an increase in the cervicovaginal and systemic titers of anti-rFPmpD antibodies in two strains of mice (BALB/c and C57BL/6), with no evidence of fertility alterations. The three formulations induced a rapid and robust humoral immune response upon the Ct challenge. However, the booster with free rFPmpD more efficiently reduced the shedding of infective Ct and prevented the development of immunopathology. The formulations containing adjuvant induced a strong inflammatory reaction in the uterine tissue. Hence, the prime-boost strategy with the adjuvant-free FPmpD vaccine formulation might constitute a promissory candidate to prevent C. trachomatis intravaginal infection.
Collapse
Affiliation(s)
- Romina Cecilia Russi
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Diego del Balzo
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ivana Gabriela Reidel
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Mariano Alonso Bivou
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noelia Flor
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Agustín Lujan
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Sanchez
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Teresa Damiani
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECUCONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carolina Veaute
- Experimental Immunology Laboratory, School of Biochemistry and Biological Sciences, National University of Litoral, Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
4
|
Agallou M, Margaroni M, Karagouni E. Intramuscular Immunization with a Liposomal Multi-Epitope Chimeric Protein Induces Strong Cellular Immune Responses against Visceral Leishmaniasis. Vaccines (Basel) 2023; 11:1384. [PMID: 37631952 PMCID: PMC10459177 DOI: 10.3390/vaccines11081384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023] Open
Abstract
Control of the intracellular parasite Leishmania (L.) requires the activation of strong type 1 cellular immune responses. Towards this goal, in the present study, a multiepitope chimeric protein named LiChimera was encapsulated into cationic liposomes and its protective efficacy against experimental visceral leishmaniasis was investigated. Liposomal LiChimera conferred significant protection against L. infantum as evidenced by the significantly reduced parasite loads in the spleen and liver. Protection detected in Lipo:LiChimera-immunized mice was dependent on the differentiation of long-lasting cellular immune responses and particularly the induction of antigen-specific multifunctional memory CD4+ TH1 and CD8+ T cells that persisted during infection, as evidenced by the persistent high production of IFN-γ and IL-2 and proliferation activity. Notably, protected mice were also characterized by significantly low numbers of non-regulatory CD4+ T cells able to co-produce IFN-γ and IL-10, an important population for disease establishment, as compared to non-immunized control group. Collectively, these results demonstrate that cationic liposomes containing LiChimera can be considered an effective candidate vaccine against visceral leishmaniasis.
Collapse
Affiliation(s)
| | | | - Evdokia Karagouni
- Immunology of Infection Group, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (M.A.); (M.M.)
| |
Collapse
|
5
|
Abpeikar Z, Safaei M, Akbar Alizadeh A, Goodarzi A, Hatam G. The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. Int J Pharm 2023; 633:122615. [PMID: 36657555 DOI: 10.1016/j.ijpharm.2023.122615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Cutaneous leishmaniasis (CL) is a global public health issue. Conventional treatments have substantial costs, side effects, and parasite resistance. Due to easy application and inexpensive cost, topical treatment is the optimal approach for CL. It could be used alone or with systemic treatments. Electrospun fibers as drug release systems in treating skin lesions have various advantages such as adjustable drug release rate, maintaining appropriate humidity and temperature, gas exchange, plasticity at the lesion site, similarity with the skin extracellular matrix (ECM) and drug delivery with high efficiency. Hydrogels are valuable scaffolds in the treatment of skin lesions. The important features of hydrogels include preserving unstable drugs from degradation, absorption of wound secretions, high biocompatibility, improving the re-epithelialization of the wound and preventing the formation of scars. One of the issues in local drug delivery systems for the skin is the low permeability of drugs in the skin. Polymeric scaffolds that are designed as microneedle patches can penetrate the skin and overcome this challenge. Also, drug delivery using nanocarriers increases the effectiveness of drugs in lower and more tolerable doses and reduces the toxicity of drugs. The application of cell therapy in the treatment of parasitic and infectious diseases has been widely investigated. The complexity of leishmaniasis treatment requires identifying new treatment options like cell therapy to overcome the disease. Topics investigated in this study include drug delivery systems based on tissue engineering scaffolds, nanotechnology and cell therapy-based studies to reduce the complications of CL.
Collapse
Affiliation(s)
- Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle-biomolecular corona. NANOSCALE ADVANCES 2022; 4:3300-3308. [PMID: 36131704 PMCID: PMC9419885 DOI: 10.1039/d2na00290f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 05/24/2023]
Abstract
Nanotechnology has a great potential to revolutionize the landscape of medicine, but an inadequate understanding of the nanomaterial-biological (nano-bio) interface hampers its ultimate clinical translation. Surface attachment of biomolecules provides a new biological identity of nanoparticles that plays a crucial role in vivo as it can activate the immune system triggering inflammatory responses, clearance from the body, and cellular toxicity. In this review, we summarize and critically analyze progress in understanding the relationship between the biological identity of nanoparticles and immune system activation. Accordingly, we discuss the implications of biomolecular corona on nanotoxicity, immune safety, and biocompatibility. We also highlight a perspective on engineering the biological identity of nanoparticles for modulating immunological responses.
Collapse
Affiliation(s)
- Valentina Palmieri
- Institute for Complex Systems, National Research Council of Italy Via dei Taurini 19 00185 Rome Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
7
|
Lage DP, Vale DL, Linhares FP, Freitas CS, Machado AS, Cardoso JMO, de Oliveira D, Galvani NC, de Oliveira MP, Oliveira-da-Silva JA, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Pereira IAG, Chávez-Fumagalli MA, Roatt BM, Machado-de-Ávila RA, Christodoulides M, Coelho EAF, Martins VT. A Recombinant Chimeric Protein-Based Vaccine Containing T-Cell Epitopes from Amastigote Proteins and Combined with Distinct Adjuvants, Induces Immunogenicity and Protection against Leishmania infantum Infection. Vaccines (Basel) 2022; 10:vaccines10071146. [PMID: 35891310 PMCID: PMC9317424 DOI: 10.3390/vaccines10071146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there is no licensed vaccine to protect against human visceral leishmaniasis (VL), a potentially fatal disease caused by infection with Leishmania parasites. In the current study, a recombinant chimeric protein ChimT was developed based on T-cell epitopes identified from the immunogenic Leishmania amastigote proteins LiHyp1, LiHyV, LiHyC and LiHyG. ChimT was associated with the adjuvants saponin (Sap) or monophosphoryl lipid A (MPLA) and used to immunize mice, and their immunogenicity and protective efficacy were evaluated. Both ChimT/Sap and ChimT/MPLA induced the development of a specific Th1-type immune response, with significantly high levels of IFN-γ, IL-2, IL-12, TNF-α and GM-CSF cytokines produced by CD4+ and CD8+ T cell subtypes (p < 0.05), with correspondingly low production of anti-leishmanial IL-4 and IL-10 cytokines. Significantly increased (p < 0.05) levels of nitrite, a proxy for nitric oxide, and IFN-γ expression (p < 0.05) were detected in stimulated spleen cell cultures from immunized and infected mice, as was significant production of parasite-specific IgG2a isotype antibodies. Significant reductions in the parasite load in the internal organs of the immunized and infected mice (p < 0.05) were quantified with a limiting dilution technique and quantitative PCR and correlated with the immunological findings. ChimT/MPLA showed marginally superior immunogenicity than ChimT/Sap, and although this was not statistically significant (p > 0.05), ChimT/MPLA was preferred since ChimT/Sap induced transient edema in the inoculation site. ChimT also induced high IFN-γ and low IL-10 levels from human PBMCs isolated from healthy individuals and from VL-treated patients. In conclusion, the experimental T-cell multi-epitope amastigote stage Leishmania vaccine administered with adjuvants appears to be a promising vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Danniele L. Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Flávia P. Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Jamille M. O. Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Daysiane de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Nathália C. Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Marcelo P. de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - João A. Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Isabela A. G. Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Miguel A. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru;
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Ricardo A. Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-02381-205120
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| |
Collapse
|
8
|
Carvalho AM, Bacellar O, Carvalho EM. Protection and Pathology in Leishmania braziliensis Infection. Pathogens 2022; 11:pathogens11040466. [PMID: 35456141 PMCID: PMC9024810 DOI: 10.3390/pathogens11040466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023] Open
Abstract
Leishmania killing is mediated by IFN-γ-activated macrophages, but IFN-γ production and macrophage activation are insufficient to control L. braziliensis infection. In American tegumentary leishmaniasis (ATL), pathology results from an exaggerated inflammatory response. This report presents an overview of our contributions regarding ATL pathogenesis, highlighting future directions to improve the management of L. braziliensis infection. Monocytes and lymphocytes from individuals exposed to L. braziliensis but who do not develop CL, i.e., subclinical infection (SC), exhibit lower respiratory burst and IFN-γ production, yet more efficiently kill L. braziliensis. As vaccines aimed at inducing IL-12 and IFN-γ do not sufficiently prevent CL, the elucidation of how subjects with SC infection kill Leishmania may lead to new approaches to controlling ATL. While inflammation arising from the recruitment of inflammatory cells via chemokines induced by IFN-γ and TNF or IL-17 is observed and contributes to pathology, cytotoxic CD8+ T cells and NK cells play a key role in the pathogenesis of L. braziliensis infection. The increased transcription of genes related to inflammation and cytotoxicity, e.g., granzyme A, granzyme B, NLRP3 and IL-1β, has been documented in CL tissue samples. The release of products by killed cells leads to NLRP3 inflammasome activation, IL-1β production and additional damage to skin and mucosal tissues. The use of drugs that downmodulate the inflammatory response in combination with chemotherapy improves the ATL cure rate and decreases healing time.
Collapse
Affiliation(s)
- Augusto M. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, FIOCRUZ, Salvador 40296710, Brazil;
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador 40110160, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Salvador 40296710, Brazil
| | - Olívia Bacellar
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador 40110160, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Salvador 40296710, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Instituto Gonçalo Moniz, FIOCRUZ, Salvador 40296710, Brazil;
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador 40110160, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), CNPq, Salvador 40296710, Brazil
- Correspondence:
| |
Collapse
|
9
|
Abstract
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field.
Collapse
|
10
|
T908 Polymeric Micelles Improved the Uptake of Sgc8-c Aptamer Probe in Tumor-Bearing Mice: A Co-Association Study between the Probe and Preformed Nanostructures. Pharmaceuticals (Basel) 2021; 15:ph15010015. [PMID: 35056072 PMCID: PMC8780797 DOI: 10.3390/ph15010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Aptamers are oligonucleotides that have the characteristic of recognizing a target with high affinity and specificity. Based on our previous studies, the aptamer probe Sgc8-c-Alexa647 is a promising tool for molecular imaging of PTK7, which is an interesting biomarker in cancer. In order to improve the delivery of this probe as well as create a novel drug delivery nanosystem targeted to the PTK7 receptor, we evaluate the co-association between the probe and preformed nanostructures. In this work, preformed pegylated liposomes (PPL) and linear and branched pristine polymeric micelles (PMs), based on PEO–PPO–PEO triblock copolymers were used: poloxamer F127® and poloxamines T1307® and T908®. For it, Sgc8-c-Alexa647 and its co-association with the different nanostructures was exhaustively analyzed. DLS analysis showed nanometric sizes, and TEM and AFM showed notable differences between free- and co-associated probe. Likewise, all nanosystems were evaluated on A20 lymphoma cell line overexpressing PTK7, and the confocal microscopy images showed distinctness in cellular uptake. Finally, the biodistribution in BALB/c mice bearing lymphoma-tumor and pharmacokinetic study revealed an encouraging profile for T908-probe. All data obtained from this work suggested that PMs and, more specifically T908 ones, are good candidates to improve the pharmacokinetics and the tumor uptake of aptamer-based probes.
Collapse
|
11
|
Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB, Madan J. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2021; 28:395-409. [PMID: 34736378 DOI: 10.2174/1381612827666211104155604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment-related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.
Collapse
Affiliation(s)
- Ayusha Dondulkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Natasha Akojwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Chanti Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Dharmendra K Khatri
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Neelesh K Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Shashi B Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| |
Collapse
|
12
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Clinical Milestones in Nanotherapeutics: Current Status and Future Prospects. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:194-245. [DOI: 10.2174/9781681088235121010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
15
|
A validated 1H-NMR method for quantitative analysis of DOTAP lipid in nanoliposomes containing soluble Leishmania antigen. J Pharm Biomed Anal 2020; 194:113809. [PMID: 33293176 DOI: 10.1016/j.jpba.2020.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Leishmaniasis is a serious health problem that needs a suitable vaccine delivery system to control the disease. Cationic lipids such as 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) have been widely used in nanoliposomes' formulation to deliver antigen and adjuvant at the same time to induce protection against Leishmaniasis. Therefore, it is necessary to accurately quantify DOTAP concentration in the formulation and biological materials. Due to the poor UV absorbance of DOTAP, the use of the conventional HPLC-UV method was impossible. Currently, an evaporative light scattering detector (ELSD) or MS/MS detector in conjunction with HPLC is used to quantify DOTAP. These methods have several disadvantages, including time- consuming during extraction procedure and decrease or/and even remove some components of the formulation. According to the advantages of the quantitative 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopic method, a free extraction approach was developed to the assay of DOTAP in nanoliposomes containing Leishmania antigens. This method was carried out based on the relative ratio of signal integration of DOTAP [CH2 (CH2-CH = CH-CH2)] in δ 2 ppm to a definite amount of an internal standard called dimethyl sulfone (DMSO2). The q1H-NMR method showed good precision (intra-day RSD = 1.8 % and inter-day RSD = 2.5 %), linearity (in the ranges of 1.3-7.8 mg. mL-1 with correlation coefficients at 1), repeatability (RSD ≤ 2.39 %), and stability (RSD ≤ 2.32 %) for the quantification of the DOTAP without any extraction method. Considering all the experiments conducted in this study, NMR can be a feasible alternative to other traditional techniques for the simultaneous quantification of lipids in liposome formulations.
Collapse
|
16
|
Evaluation of the protective efficacy of a Leishmania protein associated with distinct adjuvants against visceral leishmaniasis and in vitro immunogenicity in human cells. Parasitol Res 2020; 119:2609-2622. [PMID: 32535734 DOI: 10.1007/s00436-020-06752-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a prophylactic vaccination is urgently required. In the present study, a Leishmania protein called LiHyE, which was suggested recently as an antigenic marker for canine and human VL, was evaluated regarding its immunogenicity and protective efficacy in BALB/c mice against Leishmania infantum infection. In addition, the protein was used to stimulate peripheral blood mononuclear cells (PBMCs) from VL patients before and after treatment, as well as from healthy subjects. Vaccination results showed that the recombinant (rLiHyE) protein associated with liposome or saponin induced effective protection in the mice, since significant reductions in the parasite load in spleen, liver, draining lymph nodes, and bone marrow were found. The parasitological protection was associated with Th1-type cell response, since high IFN-γ, IL-12, and GM-CSF levels, in addition to low IL-4 and IL-10 production, were found. Liposome induced a better parasitological and immunological protection than did saponin. Experiments using PBMCs showed rLiHyE-stimulated lymphoproliferation in treated patients' and healthy subjects' cells, as well as high IFN-γ levels in the cell supernatant. In conclusion, rLiHyE could be considered for future studies as a vaccine candidate against VL.
Collapse
|
17
|
Liposomal Formulation of ChimeraT, a Multiple T-Cell Epitope-Containing Recombinant Protein, Is a Candidate Vaccine for Human Visceral Leishmaniasis. Vaccines (Basel) 2020; 8:vaccines8020289. [PMID: 32526867 PMCID: PMC7349940 DOI: 10.3390/vaccines8020289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.
Collapse
|
18
|
Askarizadeh A, Badiee A, Khamesipour A. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin Drug Deliv 2020; 17:167-187. [PMID: 31914821 DOI: 10.1080/17425247.2020.1713746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Leishmaniasis is a neglected tropical infection caused by several species of intracellular protozoan parasites of the genus Leishmania. It is strongly believed that the development of vaccines is the most appropriate approach to control leishmaniasis. However, there is no vaccine available yet and the lack of an appropriate adjuvant delivery system is the main reason.Areas covered: Adjuvants are the utmost important part of a vaccine, to induce the immune response in the right direction. Limitations and drawbacks of conventional adjuvants have been necessitated the development of novel particulate delivery systems as adjuvants to obtain desirable protection against infectious diseases such as leishmaniasis. This review focused on particulate adjuvants especially nanoparticles that are in use to develop vaccines against leishmaniasis. The list of adjuvants includes generally lipids-, polymers-, or mineral-based delivery systems that target antigens specifically to the site of action within the host's body and enhance immune responses.Expert opinion: Over the past few years, there has been an increasing interest in developing particulate adjuvants as alternatives to immunostimulatory types. The composition of nano-carriers and particularly the physicochemical properties of nanoparticles have great potential to overcome challenges posed to leishmaniasis vaccine developments.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ratnapriya S, Keerti, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine 2019; 37:3505-3519. [PMID: 31103364 DOI: 10.1016/j.vaccine.2019.04.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Although there has been an extensive research on vaccine development over the last decade and some vaccines have been commercialized for canine visceral leishmaniasis (CVL), but as yet no effective vaccine is available for anthroponotic VL which may partly be due to the absence of an appropriate adjuvant system. Vaccines alone yield poor immunity hence requiring an adjuvant which can boost the immunosuppressed state of VL infected individuals by eliciting adaptive immune responses to achieve required immunological enhancement. Recent studies have documented the continuous efforts that are being made in the field of adjuvants research in an attempt to render vaccines more effective. This review article focuses on adjuvants, particularly particulate and non-particulate ones, which have been assessed with VL vaccine candidates in several preclinical and clinical trials outlining the induction of immune responses obtained from these studies. Moreover, we have emphasized the applicability of multiple adjuvants combination for an improvement in the potential of a VL vaccine.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Keerti
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
20
|
Mehravaran A, Nasab MR, Mirahmadi H, Sharifi I, Alijani E, Nikpoor AR, Akhtari J. Protection induced by Leishmania Major antigens and the imiquimod adjuvant encapsulated on liposomes in experimental cutaneous leishmaniasis. INFECTION GENETICS AND EVOLUTION 2019; 70:27-35. [PMID: 30738195 DOI: 10.1016/j.meegid.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
There is a need for new, effective, and less expensive and toxic treatment for Leishmaniasis. It seems that the use of a suitable adjuvant and a delivery system is effective in inducing immune reactions for protection. Liposomes can be applied as immunoadjuvants to trigger immune reactions to different antigens. The adjuvant effects of imiquimod using DSPC liposomes containing SLA (soluble Leishmania antigens) were studied on the type and intensity of the produced immune reaction to the challenge of Leishmania major in BALB/c mice. Liposomes were produced by the lipid film procedure. BALB/C mice were immunized subcutaneously, three times at 2-week intervals and with various formulations. Lesion development and the parasite burden in the spleens and feet after the challenge with Leishmania major, Th1 cytokine (IFN-γ), and the IgG isotype titration were assessed to evaluate the induced immune reaction and the protection level. The group of mice immunized with Liposome DSPC +Imiquimod +SLA revealed less severe footpad swelling, being significantly different (P < .05) from other groups. A higher level of IgG2a and IFN-γ secretion was observed in the mice immunized with Liposome DSPC +Imiquimod +SLA than the control group. These observations imply that the DSPC liposome containing imiquimod induces the Th1 immune response that is protective against the challenge of Leishmania major.
Collapse
Affiliation(s)
- Ahmad Mehravaran
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Rezaei Nasab
- Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hadi Mirahmadi
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Alijani
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Reza Nikpoor
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Akhtari
- Immunogenetics Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Ribeiro PA, Dias DS, Novais MV, Lage DP, Tavares GS, Mendonça DV, Oliveira JS, Chávez-Fumagalli MA, Roatt BM, Duarte MC, Menezes-Souza D, Ludolf F, Tavares CA, Oliveira MC, Coelho EA. A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine 2018; 111:131-139. [DOI: 10.1016/j.cyto.2018.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
|
22
|
Jenkins MC, Stevens L, O'Brien C, Parker C, Miska K, Konjufca V. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. Maxima challenge infection. Vaccine 2018; 36:1126-1131. [PMID: 29406243 DOI: 10.1016/j.vaccine.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to determine if conjugating a recombinant Eimeria maxima protein, namely EmaxIMP1, into 20 nm polystyrene nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherichia coli as a poly-His fusion protein, purified by NiNTA chromatography, and conjugated to 20 nm polystyrene NP (NP-EmaxIMP1). NP-EMaxIMP1 or control non-recombinant (NP-NR) protein were delivered per os to newly-hatched broiler chicks with subsequent booster immunizations at 3 and 21 days of age. In battery cage studies (n = 4), chickens immunized with NP-EMaxIMP1 displayed complete protection as measured by weight gain (WG) against E. maxima challenge compared to chickens immunized with NP-NR. WG in the NP-EMaxIMP1-immunized groups was identical to WG in chickens that were not infected with E. maxima infected chickens. In floor pen studies (n = 2), chickens immunized with NP-EMaxIMP1 displayed partial protection as measured by WG against E. maxima challenge compared to chickens immunized with NP-NR. In order to understand the basis for immune stimulation, newly-hatched chicks were inoculated per os with NP-EMaxIMP1 or NP-NR protein, and the small intestine, bursa, and spleen, were examined for NP localization at 1 h and 6 h post-inoculation. Within 1 h, both NP-EMaxIMP1 and NP-NR were observed in all 3 tissues. An increase was observed in the level of NP-EmaxIMP1 and NP-NR in all tissues at 6 h post-inoculation. These data indicate that 20 nm NP-EmaxIMP1 or NP-NR reached deeper tissues within hours of oral inoculation and elicited complete to partial immunity against E. maxima challenge infection.
Collapse
Affiliation(s)
- Mark C Jenkins
- Animal Parasitic Diseases Laboratory, Building 1040, NEA, ARS, USDA, Beltsville, MD 20705, United States.
| | - Laura Stevens
- Department of Microbiology, Southern Illinois University, United States
| | - Celia O'Brien
- Animal Parasitic Diseases Laboratory, Building 1040, NEA, ARS, USDA, Beltsville, MD 20705, United States
| | - Carolyn Parker
- Animal Parasitic Diseases Laboratory, Building 1040, NEA, ARS, USDA, Beltsville, MD 20705, United States
| | - Katrzyna Miska
- Animal Biosciences & Biotechnology Laboratory, Building 200, NEA, ARS, USDA, Beltsville, MD 20705, United States
| | - Vjollca Konjufca
- Department of Microbiology, Southern Illinois University, United States
| |
Collapse
|
23
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
24
|
Iborra S, Solana JC, Requena JM, Soto M. Vaccine candidates against leishmania under current research. Expert Rev Vaccines 2018; 17:323-334. [PMID: 29589966 DOI: 10.1080/14760584.2018.1459191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for vaccines to prevent human leishmaniasis is an active field of investigation aimed to prevent the devastating effects of this family of diseases on human health. The design and commercialization of several vaccines against canine leishmaniasis is a hopeful advance toward the achievement of a human vaccine. AREAS COVERED This review includes a summary of the most relevant immunological aspects accompanying leishmaniasis in natural hosts as well as a description of the latest advances in the multiple strategies that are being followed to develop leishmanial prophylactic vaccines. We have combined citations of the latest specialized reviews with research articles presenting the most recent results. EXPERT COMMENTARY Achieving safe, effective, durable and low-cost prophylactic vaccines against leishmaniasis is still a major challenge. These vaccines should control not only parasite progression, but also the accompanying pathology, which results from an imbalanced interaction between the infectious agent and the human host immune system. Different strategies for development of vaccines are currently under investigation. They range from the use of live non-pathogenic vectors to the employment of subunit vaccines combined with adjuvants and/or delivery systems inducing cell-mediated immunity.
Collapse
Affiliation(s)
- Salvador Iborra
- a Department of Vascular Biology and Inflammation Centro Nacional de Investigaciones Cardiovasculares (CNIC) , Immunobiology of Inflammation Laboratory , Madrid , Spain.,b School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - José Carlos Solana
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - José María Requena
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - Manuel Soto
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
25
|
Tabatabaie F, Samarghandi N, Zarrati S, Maleki F, Ardestani MS, Elmi T, Mosawi SH. Induction of Immune Responses by DNA Vaccines Formulated with Dendrimer and Poly (Methyl Methacrylate) (PMMA) Nano-Adjuvants in BALB/c Mice Infected with Leishmania major. Open Access Maced J Med Sci 2018. [PMID: 29531579 PMCID: PMC5839423 DOI: 10.3889/oamjms.2018.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Leishmaniasis is a parasitic disease induced by a protozoan from the genus Leishmania. No effective vaccine has yet been developed against the disease. AIM: In this work, two nano-vaccines, TSA recombinant plasmid and dendrimer and poly (methyl methacrylate) (PMMA) nanoparticles (as adjuvants), were designed and tested for their immunogenicity in BALB/c mice. METHODS: After the plasmid construction and preparation of adjuvants, three intramuscular injections of the nano-vaccines (100 µg) and the recombinant TSA protein (20 µg) were subcutaneously performed. Eventually, the challenged animals were infected with the parasites (1*106 promastigotes). After the last injections of the nano-vaccines, the responses of their antibody subclasses and cytokines were assessed via ELISA method before and after the challenge. RESULTS: This study revealed that the new nano-vaccines were strong and effective in inducing specific antibody and cellular responses and reducing the parasite burden in the spleen compared to the control groups of Leishmania major-infected BALB/c mice. CONCLUSION: Based on the results, we can suggest that the formulated vaccines are suitable candidates for further studies in the field of leishmaniasis control.
Collapse
Affiliation(s)
- Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Samarghandi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Zarrati
- Microbiology Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Maleki
- Department of Parasitology, Faculty of Para Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Elmi
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hussain Mosawi
- Department of Biology and Microbiology, Faculty of Medical Technology, Khatam Al Nabieen University, Kabul, Afghanistan
| |
Collapse
|
26
|
Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp. Int J Pharm 2017; 533:236-244. [DOI: 10.1016/j.ijpharm.2017.09.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
|
27
|
Sanchez MV, Eliçabe RJ, Di Genaro MS, Germanó MJ, Gea S, García Bustos MF, Salomón MC, Scodeller EA, Cargnelutti DE. Total Leishmania antigens with Poly(I:C) induce Th1 protective response. Parasite Immunol 2017; 39. [PMID: 28901553 DOI: 10.1111/pim.12491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries.
Collapse
Affiliation(s)
- M V Sanchez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - R J Eliçabe
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Centro Científico y Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de San Luis, San Luis, Argentina
| | - M S Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Centro Científico y Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de San Luis, San Luis, Argentina
| | - M J Germanó
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - S Gea
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Centro Científico y Tecnológico de Córdoba (CCT-Córdoba), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Córdoba, Argentina
| | - M F García Bustos
- Instituto de Patología Experimental (IPE), Centro Científico y Tecnológico de Salta (CCT-Salta), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - M C Salomón
- Area de Parasitología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), UNCUYO Centro Universitario (M5502JMA), Mendoza, Argentina
| | - E A Scodeller
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - D E Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico de Mendoza (CCT-Mendoza), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Area de Parasitología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), UNCUYO Centro Universitario (M5502JMA), Mendoza, Argentina
| |
Collapse
|
28
|
Naseri H, Eskandari F, Jaafari MR, Khamesipour A, Abbasi A, Badiee A. PEGylation of cationic liposomes encapsulating soluble Leishmania
antigens reduces the adjuvant efficacy of liposomes in murine model. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- H. Naseri
- Nanotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - F. Eskandari
- Nanotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - M. R. Jaafari
- Nanotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - A. Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy; Tehran University of Medical Sciences; Tehran Iran
| | - A. Abbasi
- Nanotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - A. Badiee
- Nanotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
29
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
30
|
Askarizadeh A, Jaafari MR, Khamesipour A, Badiee A. Liposomal adjuvant development for leishmaniasis vaccines. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:85-101. [PMID: 29201374 PMCID: PMC5697592 DOI: 10.1177/2051013617741578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 08/29/2023]
Abstract
Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00108-17. [PMID: 28515135 DOI: 10.1128/cvi.00108-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted.
Collapse
|
32
|
Wang YQ, Fan QZ, Liu Y, Yue H, Ma XW, Wu J, Ma GH, Su ZG. Improving adjuvanticity of quaternized chitosan–based microgels for H5N1 split vaccine by tailoring the particle properties to achieve antigen dose sparing effect. Int J Pharm 2016; 515:84-93. [DOI: 10.1016/j.ijpharm.2016.09.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/14/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
33
|
Cunha-Matos CA, Millington OR, Wark AW, Zagnoni M. Real-time assessment of nanoparticle-mediated antigen delivery and cell response. LAB ON A CHIP 2016; 16:3374-3381. [PMID: 27455884 DOI: 10.1039/c6lc00599c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanomaterials are increasingly being developed for applications in biotechnology, including the delivery of therapeutic drugs and of vaccine antigens. However, there is a lack of screening systems that can rapidly assess the dynamics of nanoparticle uptake and their consequential effects on cells. Established in vitro approaches are often carried out on a single time point, rely on time-consuming bulk measurements and are based primarily on populations of cell lines. As such, these procedures provide averaged results, do not guarantee precise control over the delivery of nanoparticles to cells and cannot easily generate information about the dynamics of nanoparticle-cell interactions and/or nanoparticle-mediated compound delivery. Combining microfluidics and nanotechnology with imaging techniques, we present a microfluidic platform to monitor nanoparticle uptake and intracellular processing in real-time and at the single-cell level. As proof-of-concept application, the potential of such a system for understanding nanovaccine delivery and processing was investigated and we demonstrate controlled delivery of ovalbumin-conjugated gold nanorods to primary dendritic cells. Using time-lapse microscopy, our approach allowed monitoring of uptake and processing of nanoparticles across a range of concentrations over several hours on hundreds of single-cells. This system represents a novel application of single-cell microfluidics for nanomaterial screening, providing a general platform for studying the dynamics of cell-nanomaterial interactions and representing a cost-saving and time-effective screening tool for many nanomaterial formulations and cell types.
Collapse
Affiliation(s)
- Carlota A Cunha-Matos
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, UK
| | - Owain R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Alastair W Wark
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George St, Glasgow, G1 1RD, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW, UK.
| |
Collapse
|
34
|
Yadavalli T, Shukla D. Could zinc oxide tetrapod nanoparticles be used as an effective immunotherapy against HSV-2? Nanomedicine (Lond) 2016; 11:2239-42. [PMID: 27527812 DOI: 10.2217/nnm-2016-0249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology & Immunology, College of Medicine, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Sabur A, Asad M, Ali N. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cell Immunol 2016; 309:55-60. [PMID: 27470274 DOI: 10.1016/j.cellimm.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
36
|
Fakhraee F, Badiee A, Alavizadeh SH, Jalali SA, Chavoshian O, Khamesipour A, Mahboudi F, Jaafari MR. Coadminstration of L. major amastigote class I nuclease (rLmaCIN) with LPD nanoparticles delays the progression of skin lesion and the L. major dissemination to the spleen in BALB/c mice-based experimental setting. Acta Trop 2016; 159:211-8. [PMID: 27060774 DOI: 10.1016/j.actatropica.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Human cutaneous leishmaniasis is a disease caused by eukaryotic single-celled Leishmania species, the developmental program of which relies upon blood-feeding adult female sand flies and their dominant mammal blood sources, namely wild rodents in area where human beings exert more or less transient activities. The recourse to model rodents - namely laboratory mice such as C57BL/6 mice - has allowed extracted the immune signatures that account for the healing of the transient cutaneous lesion that develops at the site where Leishmania major promastigotes were delivered. Indeed, if the latter mice are exposed to a second inoculum of L. major promastigotes, no lesion will develop in the secondary skin site remodeled as a niche for a low size intracellular L. major amastigote population. Moreover, IFN-γ dominates over IL-10 in the supernatant of cultures of PBMCs -prepared from blood sampled from human beings who healed from a cutaneous lesion- and incubated with L. major class I Nuclease LmaCIN, a protein highly expressed in the cell-cycling amastigote population which is dominant by macrophages. Altogether, these datasets were strong incentive to promote research aimed to design and monitor efficacy of L. major amastigote protein-based vaccines in pre-clinical settings. Using L. major enzyme class I nuclease (LmaCIN) expressed in the L. major cell-cycling amastigote population hosted by macrophages, BALB/c mice were immunized three times with either rLmaCIN plus LPD nanoparticles (LPD-rLmaCIN), or rLmaCIN-CpG DNA or free rLmaCIN and dextrose. The following parameters: footpad swelling, splenic L. major load, L. major binding IgGs and cytokine profiles of rLmaCIN- reactive T lymphocytes were then compared. Once coadminstered with LPD, rLmaCIN allow BALB/c mice to display delayed onset of skin lesion at the challenge inoculation site and delayed L. major dissemination from the challenged site to the spleen. Thus, the LPD-rLmaCIN is shown to display some promising features out of three formulations inoculated to the BALB/c mouse immunization.
Collapse
|
37
|
Higa LH, Arnal L, Vermeulen M, Perez AP, Schilrreff P, Mundiña-Weilenmann C, Yantorno O, Vela ME, Morilla MJ, Romero EL. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens. PLoS One 2016; 11:e0150185. [PMID: 26934726 PMCID: PMC4774928 DOI: 10.1371/journal.pone.0150185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1β, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.
Collapse
Affiliation(s)
- Leticia H. Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Laura Arnal
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Mónica Vermeulen
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junin 956, 4° piso, 1113, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Priscila Schilrreff
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | | | - Osvaldo Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), UNLP. 50 No. 227, 1900 La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - María José Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
- * E-mail:
| |
Collapse
|
38
|
Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.
Collapse
|
39
|
Reed SG, Coler RN, Mondal D, Kamhawi S, Valenzuela JG. Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Rev Vaccines 2015; 15:81-90. [PMID: 26595093 PMCID: PMC6019289 DOI: 10.1586/14760584.2016.1105135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Visceral leishmaniasis (VL) is a disease transmitted by phlebotomine sand flies, fatal if untreated, and with no available human vaccine. In rodents, cellular immunity to Leishmania parasite proteins as well as salivary proteins of the sand fly is associated with protection, making them worthy targets for further exploration as vaccines. This review discusses the notion that a combination vaccine including Leishmania and vector salivary antigens may improve vaccine efficacy by targeting the parasite at its most vulnerable stage just after transmission. Furthermore, we put forward the notion that better modeling of natural transmission is needed to test efficacy of vaccines. For example, the fact that individuals living in endemic areas are exposed to sand fly bites and will mount an immune response to salivary proteins should be considered in pre-clinical and clinical evaluation of leishmaniasis vaccines. Nevertheless, despite remaining obstacles there is good reason to be optimistic that safe and effective vaccines against leishmaniasis can be developed.
Collapse
Affiliation(s)
- S G Reed
- a Infectious Disease Research Institute , Seattle WA , USA
- b Department of Global Health , University of Washington , Seattle WA , USA
| | - R N Coler
- a Infectious Disease Research Institute , Seattle WA , USA
- b Department of Global Health , University of Washington , Seattle WA , USA
| | - D Mondal
- c International Center for Diarrhoeal Diseases Research, Centre for Nutrition and Food Security , Parasitology Laboratory , Dhaka , Bangladesh
| | - S Kamhawi
- d Vector Molecular Biology Section, LMVR , National Institute of Allergy and Infectious Diseases, NIH , Rockville , MD , USA
| | - J G Valenzuela
- d Vector Molecular Biology Section, LMVR , National Institute of Allergy and Infectious Diseases, NIH , Rockville , MD , USA
| |
Collapse
|
40
|
Fotoran WL, Santangelo RM, Medeiros MM, Colhone M, Ciancaglini P, Barboza R, Marinho CRF, Stábeli RG, Wunderlich G. Liposomes loaded with P. falciparum merozoite-derived proteins are highly immunogenic and produce invasion-inhibiting and anti-toxin antibodies. J Control Release 2015; 217:121-7. [PMID: 26334481 DOI: 10.1016/j.jconrel.2015.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 12/29/2022]
Abstract
The formulation of an effective vaccine against malaria is still a significant challenge and the induction of high anti-parasite antibody titers plus a sustained T cell response is mandatory for the success of such a vaccine. We have developed a nanoliposome-based structure which contains plasma membrane-associated proteins (PfMNP) of Plasmodium falciparum merozoites on its surface. Incorporation of parasite-derived proteins led to a significant increase in the size and dispersity of particles. Immunization of particles in BalbC and C57BL/6 mice led to high anti-MSP119 IgG titers (10(4)) after the first dose and reached a plateau (>10(6)) after the third dose. While very high titers were observed against the C-terminal domain of the vaccine candidate MSP1, only modest titers (≤10(3)) were detected against MSP2. The induced antibodies showed also a strong growth-inhibiting effect in reinvasion assays. In addition, PfMNP immunization generated antibodies which partially blocked the inflammatory response, probably by blocking TLR-induced activation of macrophages by malarial toxins such as GPI anchors. The results underline the potential of nanoliposome-based formulations as anti-malarial vaccines.
Collapse
|
41
|
Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol 2015; 16:31. [PMID: 26021448 PMCID: PMC4446803 DOI: 10.1186/s12865-015-0095-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022] Open
Abstract
The concept of the immunogenicity of an antigen is frequently encountered in the context of vaccine development, an area of intense interest currently due to the emergence or re-emergence of infectious pathogens with the potential for worldwide spread. However, the theoretical notion of immunogenicity as discussed in older textbooks of immunology needs reconsideration due to advances in our understanding of immunologic responses. Immunogenicity is a property that can either be a desirable attribute, for example in the generation of an effective protective immunity against infectious pathogens or an undesirable trait, for example when it relates to novel therapeutic compounds and drugs, where an immune response needs to be prevented or inhibited. In this Forum Article, we aimed to revisit the issue of immunogenicity to discuss a series of simple questions relevant to the concept that are frequently rephrased but incompletely resolved in the immunologic literature.
Collapse
|
42
|
|
43
|
Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem 2015; 15:1525-31. [PMID: 25877093 PMCID: PMC4997950 DOI: 10.2174/1568026615666150414123157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/29/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023]
Abstract
Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nanocarriers utilized targeting ligands on their surface called 'active target' provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced.
Collapse
Affiliation(s)
| | | | | | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
44
|
Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother 2014; 10:2761-74. [PMID: 25483497 PMCID: PMC4977448 DOI: 10.4161/hv.29589] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 06/15/2014] [Indexed: 02/07/2023] Open
Abstract
Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials' physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants.
Collapse
Affiliation(s)
- Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics; Houston Methodist Research Institute; Houston, TX USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology of China; Beijing, PR China
| |
Collapse
|
45
|
Immunoliposomes containing Soluble Leishmania Antigens (SLA) as a novel antigen delivery system in murine model of leishmaniasis. Exp Parasitol 2014; 146:78-86. [DOI: 10.1016/j.exppara.2014.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 06/09/2014] [Accepted: 08/26/2014] [Indexed: 11/23/2022]
|
46
|
He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014; 32:6199-205. [PMID: 25261380 DOI: 10.1016/j.vaccine.2014.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
To demonstrate the potential of pH-sensitive carbonate apatite (CO₃Ap) nanoparticles as DNA vaccine carriers to enhance vaccination efficacy, we examined the humoral and cellular immune responses of C57BL/6 mice immunized with the plasmid expression vector pCI-neo encoding the full-length soluble ovalbumin (OVA) (pCI-neo-sOVA), pCI-neo-sOVA/CO₃Ap complexes, or pCI-neo/CO₃Ap complexes as a control. Mice immunized with a low dose of pCI-neo-sOVA-loaded CO₃Ap (10 μg) produced ex vivo splenocyte proliferation after stimulation with CD8 T-cell but not CD4 T-cell epitopes and a delayed-type-hypersensitivity reaction more efficiently than mice in the other groups. Furthermore, mice receiving this immunization generated the same levels of OVA-specific antibodies and interferon (IFN)-γ secretion after CD8 T-cell and CD4 T-cell epitope challenges as those in mice treated with 100 μg of free pCI-neo-sOVA, whereas mice injected with a high dose of pCI-neo-sOVA-loaded CO₃Ap (100 μg) or with control plasmids produced negligible levels of OVA-specific antibodies or IFN-γ. Therefore, our results showed that 10 μg of pCI-neo-sOVA delivered by CO₃Ap strongly elicited humoral and cellular immune responses. This study is the first to demonstrate the promising potential of CO₃Ap nanoparticles for DNA vaccine delivery.
Collapse
Affiliation(s)
- Pan He
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4252 Nagatsuka-cho, Midoriku, Yokohama 226-8501, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
47
|
Zarrati S, Mahdavi M, Tabatabaie F. Immune responses in DNA vaccine formulated with PMMA following immunization and after challenge with Leishmania major. J Parasit Dis 2014; 40:427-35. [PMID: 27413316 DOI: 10.1007/s12639-014-0521-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022] Open
Abstract
Leishmaniasis is a major infectious disease caused by protozoan parasites of the genus Leishmania. Despite of many efforts toward vaccine against Leishmania no effective vaccine has been approved yet. DNA vaccines can generate more powerful and broad immune responses than conventional vaccines. In order to increase immunity, the DNA vaccine has been supplemented with adjuvant. In this study a new nano-vaccine containing TSA recombinant plasmid and poly(methylmethacrylate) nanoparticles (act as adjuvant) was designed and its immunogenicity tested on BALB/c mouse. After three intramuscular injection of nano-vaccine (100 μg), the recombinant TSA protein (20 μg) was injected subcutaneously. Finally as a challenge animals were infected by Leishmania major. After the last injection of nano-vaccine, after protein booster injection, and also after challenge, cellular immune and antibody responses were evaluated by ELISA method. The findings of this study showed the new nano-vaccine was capable of induction both cytokines secretion and specific antibody responses, but predominant Th1 immune response characterized by IFN-γ production compared to control groups. Moreover, results revealed that nano-vaccine was effective in reducing parasite burden in the spleen of Leishmania major-infected BALB/c mice. Base on results, current candidate vaccine has potency for further studies.
Collapse
Affiliation(s)
- Somayeh Zarrati
- Microbiology Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
48
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
49
|
|
50
|
Tolouei S, Hejazi SH, Ghaedi K, Khamesipour A, Hasheminia SJ. TLR2 and TLR4 in cutaneous leishmaniasis caused by Leishmania major. Scand J Immunol 2014; 78:478-84. [PMID: 23980810 DOI: 10.1111/sji.12105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022]
Abstract
Cutaneous leishmaniasis (CL) is a self-healing skin disease which rarely for unknown reason(s) the lesion develops to a non-healing form. It seems that the initial contact of Leishmania parasites with the host innate immune system is an important step in the outcome of the disease. Recent studies suggested that toll-like receptors (TLRs) play a role in Leishmania recognition. In this study, the level of TLR2 and TLR4 was checked in patients with healing form of lesion and compared with that of patients with non-healing form of lesion caused by Leishmania major. Gene expression of TLR2 and TLR4 in peripheral blood-derived macrophages, before and after stimulation with live L. major promastigotes, was evaluated using quantitative real-time reverse transcription PCR and flow cytometry. The results showed that the mean relative gene expression and difference membrane expression of TLR2 in macrophages of patients with healing form of lesion were significantly higher than patients with non-healing form of lesion (P < 0.0001 and P = 0.0034), respectively, and the mean relative gene expression and difference in protein expression of TLR4 in macrophages of patients with healing form of lesion were significantly higher than that of patients with non-healing form of lesion (P = 0.021 and P = 0.002), respectively. The data suggested a possible role for TLR2 and TLR4 in the outcome of CL lesion. Further studies are needed to understand more about the detail role of the immune factors in leishmaniasis.
Collapse
Affiliation(s)
- S Tolouei
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|