1
|
Santos LC, Fernandes AMS, Alves IA, Serafini MR, Silva LDSE, de Freitas HF, Leite LCC, Santos CC. Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023). Vaccines (Basel) 2024; 12:876. [PMID: 39204002 PMCID: PMC11359462 DOI: 10.3390/vaccines12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is an ancient global public health problem. Several strategies have been applied to develop new and more effective vaccines against TB, from attenuated or inactivated mycobacteria to recombinant subunit or genetic vaccines, including viral vectors. This review aimed to evaluate patents filed between 2010 and 2023 for TB vaccine candidates. It focuses on viral vector-based strategies. A search was carried out in Espacenet, using the descriptors "mycobacterium and tuberculosis" and the classification A61K39. Of the 411 patents preliminarily identified, the majority were related to subunit vaccines, with 10 patents based on viral vector platforms selected in this study. Most of the identified patents belong to the United States or China, with a concentration of patent filings between 2013 and 2023. Adenoviruses were the most explored viral vectors, and the most common immunodominant Mycobacterium tuberculosis (Mtb) antigens were present in all the selected patents. The majority of patents were tested in mouse models by intranasal or subcutaneous route of immunization. In the coming years, an increased use of this platform for prophylactic and/or therapeutic approaches for TB and other diseases is expected. Along with this, expanding knowledge about the safety of this technology is essential to advance its use.
Collapse
Affiliation(s)
- Lana C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Antônio Márcio Santana Fernandes
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Izabel Almeida Alves
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador 41150-000, BA, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Leandra da Silva e Silva
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | | | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Carina C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| |
Collapse
|
2
|
Kwon KW, Choi HG, Kim KS, Park SA, Kim HJ, Shin SJ. BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice. NPJ Vaccines 2024; 9:55. [PMID: 38459038 PMCID: PMC10923817 DOI: 10.1038/s41541-024-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
The quest for effective and enhanced multiantigenic tuberculosis (TB) subunit vaccine necessitates the induction of a protective pathogen-specific immune response while circumventing detrimental inflammation within the lung milieu. In line with this goal, we engineered a modified iteration of the quadrivalent vaccine, namely HSP90-ESAT-6-HspX-RipA (HEHR), which was coupled with the TLR4 adjuvant, CIA09A. The ensuing formulation was subjected to comprehensive assessment to gauge its protective efficacy against the hypervirulent Mycobacterium tuberculosis (Mtb) Haarlem clinical strain M2, following a BCG-prime boost regimen. Regardless of vaccination route, both intramuscular and subcutaneous administration with the HEHR vaccine exhibited remarkable protective efficacy in significantly reducing the Mtb bacterial burden and pulmonary inflammation. This underscores its notably superior protective potential compared to the BCG vaccine alone or a former prototype, the HSP90-E6 subunit vaccine. In addition, this superior protective efficacy was confirmed when testing a tag-free version of the HEHR vaccine. Furthermore, the protective immune determinant, represented by durable antigen-specific CD4+IFN-γ+IL-17A+ T-cells expressing a CXCR3+KLRG1- cell surface phenotype in the lung, was robustly induced in HEHR-boosted mice at 12 weeks post-challenge. Collectively, our data suggest that the BCG-prime HEHR boost vaccine regimen conferred improved and long-term protection against hypervirulent Mtb strain with robust antigen-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | | | - Shin Ae Park
- R&D Center, EyeGene Inc., Goyang, 10551, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|
4
|
Arif S, Akhter M, Khaliq A, Akhtar MW. Fusion peptide constructs from antigens of M. tuberculosis producing high T-cell mediated immune response. PLoS One 2022; 17:e0271126. [PMID: 36174012 PMCID: PMC9521936 DOI: 10.1371/journal.pone.0271126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Non availability of effective anti-TB vaccine impedes TB control which remains a crucial global health issue. A fusion molecule based on immunogenic antigens specific to different growth phases of Mycobacterium tuberculosis can enhance T-cell responses required for developing a potent vaccine. In this study, six antigens including EspC, TB10.4, HspX, PPE57, CFP21 and Rv1352 were selected for constructing EspC-TB10.4 (bifu25), TnCFP21-Rv1352 (bifu29), HspX-EspC-TB10.4 (trifu37), HspX-TnCFP21-Rv1352 (trifu44) and HspX-EspC-TB10.4-PPE57 (tetrafu56) fusion proteins. Th1-cell epitopes of EspC, PPE57 and Rv1352 antigens were predicted for the first time using different in silico tools. The fusion molecule tetrafu56, which consisted of antigens from both the replicating and the dormant stages of Mtb, induced a release of 397 pg/mL of IFN-γ from PBMCs of the active TB patients. This response was comparable to the response obtained with cocktail of the component antigens (396 pg/mL) as well as to the total of the responses obtained separately for each of its component antigens (388 pg/mL). However, PBMCs from healthy samples in response to tetrafu56 showed IFN-γ release of only 26.0 pg/mL Thus a previous exposure of PBMCs to Mtb antigens in TB plasma samples resulted in 15-fold increase in IFN-γ response to tetrafu56 as compared to the PBMCs from the healthy controls. Hence, most of the T-cell epitopes of the individual antigens seem to be available for T-cell interactions in the form of the fusion. Further investigation in animal models should substantiate the immune efficacy of the fusion molecule. Thus, the fusion tetrafu56 seems to be a potential candidate for developing an effective multistage vaccine against TB.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | |
Collapse
|
5
|
Bhatt P, Sharma M, Prakash Sharma P, Rathi B, Sharma S. Mycobacterium tuberculosis dormancy regulon proteins Rv2627c and Rv2628 as Toll like receptor agonist and as potential adjuvant. Int Immunopharmacol 2022; 112:109238. [PMID: 36116151 DOI: 10.1016/j.intimp.2022.109238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
During latency, DosR proteins of Mycobacterium tuberculosis (M.tb) get activated and help the bacterium to remain dormant. We have shown earlier that 2 such proteins Rv2627c and Rv2628 are immunogenic and induce a TH1 kind of immune response. In this study, through in-vitro experiments we have confirmed that Rv2627c and Rv2628 proteins act as protein Toll-Like Receptor (TLR) agonist-adjuvant. Rv2627c and Rv2628 stimulated THP-1 macrophages showed an increased expression of TLR2, TLR4 and co-stimulatory molecules CD40, CD80, CD86 and antigen presenting molecule HLA-DR. Further studies also found enhanced expression of downstream signaling molecules of TLR activation like MyD88, NF-κB-p65 and pro-inflammatory cytokines. Inhibition studies using TLR blocking antibodies decreased the expression of co-stimulatory molecules, MyD88, NF-κB-p65, and pro-inflammatory cytokines. Rv2627c and Rv2628 stimulation of HEK-TLR2 reporter cell line confirmed the interaction of these proteins with TLR2. Moreover, molecular docking and simulations of Rv2627c and Rv2628 proteins with TLR2 and TLR4 showed stable interactions. The adjuvant activity of Rv2628 was further validated by a protein adjuvanted with pre-clinically validated peptides as multi-epitope vaccine construct which showed good binding with TLR2 and TLR4 and activate dendritic cells and induce sustained pro-inflammatory cytokine response by C-ImmSim analysis. We propose that our vaccine construct will produce a better immune response than BCG and can be taken up as a post-exposure therapeutic subunit vaccine along with standard TB therapy. We also anticipate that our construct can be taken up as a protein adjuvant with other vaccine candidates as these can activate macrophages through TLR signaling.
Collapse
Affiliation(s)
- Parul Bhatt
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Sadhna Sharma
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Mao L, Xu L, Wang X, Xing Y, Wang J, Zhang Y, Yuan W, Du J, Shi Z, Ma J, Zhang J, Zhang X, Wang X. Enhanced immunogenicity of the tuberculosis subunit Rv0572c vaccine delivered in DMT liposome adjuvant as a BCG-booster. Tuberculosis (Edinb) 2022; 134:102186. [PMID: 35245739 PMCID: PMC8881818 DOI: 10.1016/j.tube.2022.102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
COVID-19 has affected the progress made in the prevention and treatment of tuberculosis (TB); hence, the mortality of tuberculosis has risen. Different strategies-based novel TB vaccine candidates have been developed. This study identifies strategies to overcome the limitations of Bacille Calmette-Guérin (BCG) in preventing latent infection and reactivation of TB. The latency antigen Rv0572c was selected based on the mechanism of interaction between Mycobacterium tuberculosis and its host. The rRv0572c protein was used to stimulate whole blood samples derived from patients with clinically diagnosed active TB (ATBs) or latent TB infections (LTBIs) and healthy control (HCs) donors, confirming that this protein can be recognized by T cells in patients with TB, especially LTBIs. C57BL/6 mice were used to investigate the immunogenicity of the rRv0572c protein emulsified in the liposome adjuvant dimethyldioctadecylammonium [DDA], monophosphoryl lipid A [MPLA], trehalose-6, 6′-dibehenate [TDB] (DMT). The results demonstrated that rRv0572c/DMT could boost BCG-primed mice to induce antigen-specific CD4+ T cell production and generate functional T cells dominated by antigen-specific CD8+ T cells. The rRv0572c/DMT vaccine could also trigger limited Th2 humoral immune responses. These findings suggest that rRv0572c/DMT is a potential subunit vaccine candidate that can be used as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Lirong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lifa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yingru Xing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230000, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yanpeng Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Yuan
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianpeng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zilun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Jingyan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, 046000, China
| | - Xiaohan Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xinping Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
7
|
Vasilyev K, Shurygina AP, Zabolotnykh N, Sergeeva M, Romanovskaya-Romanko E, Pulkina A, Buzitskaya J, Dogonadze MZ, Vinogradova TI, Stukova MA. Enhancement of the Local CD8 + T-Cellular Immune Response to Mycobacterium tuberculosis in BCG-Primed Mice after Intranasal Administration of Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens. Vaccines (Basel) 2021; 9:vaccines9111273. [PMID: 34835204 PMCID: PMC8626046 DOI: 10.3390/vaccines9111273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.
Collapse
Affiliation(s)
- Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
- Correspondence:
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Mariia Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Anastasia Pulkina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Janna Buzitskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Marine Z. Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| |
Collapse
|
8
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
9
|
Sergeeva M, Romanovskaya-Romanko E, Zabolotnyh N, Pulkina A, Vasilyev K, Shurigina AP, Buzitskaya J, Zabrodskaya Y, Fadeev A, Vasin A, Vinogradova TI, Stukova MA. Mucosal Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens Provides Protection against Mycobacterium tuberculosis in Mice and Guinea Pigs. Vaccines (Basel) 2021; 9:vaccines9040394. [PMID: 33923548 PMCID: PMC8073308 DOI: 10.3390/vaccines9040394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1–124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.
Collapse
Affiliation(s)
- Mariia Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
- Correspondence:
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| | - Natalia Zabolotnyh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (T.I.V.)
| | - Anastasia Pulkina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| | - Anna Polina Shurigina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| | - Janna Buzitskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| | - Yana Zabrodskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (T.I.V.)
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (E.R.-R.); (A.P.); (K.V.); (A.P.S.); (J.B.); (Y.Z.); (A.F.); (A.V.); (M.A.S.)
| |
Collapse
|
10
|
Arif S, Akhter M, Khaliq A, Nisa ZU, Khan IH, Akhtar MW. Serodiagnostic evaluation of fusion proteins from multiple antigens of Mycobacterium tuberculosis for active TB. Tuberculosis (Edinb) 2021; 127:102053. [PMID: 33561630 DOI: 10.1016/j.tube.2021.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a global health problem, being prevalent in the developing countries. A rapid, reliable and cost effective diagnostic method would help in controlling TB in the endemic populations. Development of suitable fusion molecules detecting multiple antibodies produced against Mycobacterium tuberculosis antigens would enhance sensitivity of serodiagnostic assays. In this study, EspC, CFP7 and PPE57 antigens of M. tuberculosis were selected for constructing fusion molecules after prediction of B-cell epitopes using in silico tools. Fusion proteins EspC-CFP7, HspX-EspC-CFP7 and HspX-EspC-CFP7-PPE57 were expressed in E.coli (BL21). The serodiagnostic potential of the individual antigens and their fusions was analyzed by screening 230 plasma samples of pulmonary TB patients. The single antigens HspX, EspC, CFP7, PPE57 showed sensitivities of 30%, 31%, 22% and 35%, respectively. The fusion protein EspC-CFP7 showed sensitivity of 43%. Linking of HspX antigen to the N-terminus of EspC-CFP7 fusion molecule increased sensitivity to 58%, while joining PPE57 antigen to the C-terminus of HspX-EspC-CFP7 increased sensitivity to 69%. The fusion protein HspX-EspC-CFP7-PPE57 seems to be a promising molecule for use in the development of fusions with higher sensitivity.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | | | - Imran H Khan
- Department of Pathology and Laboratory Medicine, University of California, Davis, USA
| | | |
Collapse
|
11
|
Identification and in silico functional prediction of lineage-specific SNPs distributed in DosR-related proteins and resuscitation-promoting factor proteins of Mycobacterium tuberculosis. Heliyon 2020; 6:e05744. [PMID: 33364506 PMCID: PMC7753917 DOI: 10.1016/j.heliyon.2020.e05744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
One-third of the world population is infected by Mycobacterium tuberculosis, which may persist in the latent or dormant state. Bacteria can shift to dormancy when encountering harsh conditions such as low oxygen, nutrient starvation, high acidity and host immune defenses. Genes related to the dormancy survival regulator (DosR) regulon are responsible for the inhibition of aerobic respiration and replication, which is required to enter dormancy. Conversely, resuscitation-promoting factor (rpf) proteins participate in reactivation from dormancy and the development of active tuberculosis (TB). Many DosR regulon and rpf proteins are immunodominant T cell antigens that are highly expressed in latent TB infection. They could serve as TB vaccine candidates and be used for diagnostic development. We explored the genetic polymorphisms of 50 DosR-related genes and 5 rpf genes among 1,170 previously sequenced clinical M. tuberculosis genomes. Forty-three lineage- or sublineage-specific nonsynonymous single nucleotide polymorphisms (nsSNPs) were identified. Ten nsSNPs were specific to all Mtb isolates belonging to lineage 1 (L1). Two common sublineages, the Beijing family (L2.2) and EAI2 (L1.2.1), differed at as many as 26 lineage- or sublineage-specific SNPs. DosR regulon genes related to membrane proteins and the rpf family possessed mean dN/dS ratios greater than one, suggesting that they are under positive selection. Although the T cell epitope regions of DosR-related and rpf antigens were quite conserved, we found that the epitopes in L1 had higher rates of genetic polymorphisms than the other lineages. Some mutations in immunogenic epitopes of the antigens were specific to particular M. tuberculosis lineages. Therefore, the genetic diversity of the DosR regulon and rpf proteins might impact the adaptation of M. tuberculosis to the dormant state and the immunogenicity of latency antigens, which warrants further investigation.
Collapse
|
12
|
Mycobacterium tuberculosis Rv2005c Induces Dendritic Cell Maturation and Th1 Responses and Exhibits Immunotherapeutic Activity by Fusion with the Rv2882c Protein. Vaccines (Basel) 2020; 8:vaccines8030370. [PMID: 32664238 PMCID: PMC7564171 DOI: 10.3390/vaccines8030370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Immunotherapy represents a promising approach for improving current antibiotic treatments through the engagement of the host’s immune system. Latency-associated antigens have been included as components of multistage subunit tuberculosis vaccines. We first identified Rv2005c, a DosR regulon-encoded protein, as a seroreactive protein. In this study, we found that Rv2005c induced dendritic cell (DC) maturation and Th1 responses, and its expression by Mycobacterium tuberculosis (Mtb) within macrophages was enhanced by treatment with CoCl2, a hypoxia-mimetic agent. T cells activated by Rv2005c-matured DCs induced antimycobacterial activity in macrophages under hypoxic conditions but not under normoxic conditions. However, Rv2005c alone did not exhibit any significant vaccine efficacy in our mouse model. The fusion of Rv2005c to the macrophage-activating protein Rv2882c resulted in significant activation of DCs and antimycobacterial activity in macrophages, which were enhanced under hypoxic conditions. Furthermore, the Rv2882c-Rv2005c fusion protein showed significant adjunctive immunotherapeutic effects and led to the generation of long-lasting, antigen-specific, multifunctional CD4+ T cells that coproduced TNF-α, IFN-γ and IL-2 in the lungs of our established mouse model. Overall, these results provide a novel fusion protein with immunotherapeutic potential as adjunctive chemotherapy for tuberculosis.
Collapse
|
13
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
14
|
Zhang YW, Zhu JH, Wang ZQ, Wu Y, Meng X, Zheng X, Javid B. HspX promotes the polar localization of mycobacterial protein aggregates. Sci Rep 2019; 9:14571. [PMID: 31601950 PMCID: PMC6787098 DOI: 10.1038/s41598-019-51132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding of translated proteins occurs in all domains of life. In most cells, misfolded proteins coalesce in discrete aggregates at distinct cellular locations. In many bacteria, including mycobacteria, protein aggregates are located at the cellular pole. Yet the mechanism by which aggregates are sorted to the mycobacterial pole is not known. Here, we show that in Mycobacterium smegmatis, the small heat shock protein HspX plays a critical role in the polar localization of aggregates of a model fluorescent misfolded protein, GLR103. HspX itself has a polar localization, which is dependent on its N-terminal domain. In a strain deleted for hspX, GLR103 is less liable to aggregation and no longer localizes to the pole, and redirecting HspX to the septum radically disrupts the normal polar localization of GLR103 aggregates. To further investigate the role of HspX in native protein aggregation, we performed semi-quantitative mass-spectrometry of mycobacterial protein aggregates in wild-type, hspX-deleted and hspX-overexpressing strains. We identified a subset of proteins that appeared to be HspX-dependent for aggregate formation. Furthermore, we demonstrate that for validated native protein aggregates, sorting to the cellular pole following proteotoxic stress required HspX. In summary, we have identified the cellular function of HspX in Mycobacterium smegmatis as both a pro-aggregase and polar sortase.
Collapse
|
15
|
Murray LW, Satti I, Meyerowitz J, Jones M, Willberg CB, Ussher JE, Goedhals D, Hurst J, Phillips RE, McShane H, Vuuren CV, Frater J. Human Immunodeficiency Virus Infection Impairs Th1 and Th17 Mycobacterium tuberculosis-Specific T-Cell Responses. J Infect Dis 2019; 217:1782-1792. [PMID: 29546381 DOI: 10.1093/infdis/jiy052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background Human immunodeficiency virus (HIV)-infected individuals have a higher risk of developing active tuberculosis (TB) than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (Mtb)-specific CD4+ and CD8+ T-cell responses contributed to this increased risk. Methods Mtb-specific T-cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa, were evaluated. Using a whole-blood flow cytometry assay, we measured expression of interferon gamma, tumor necrosis factor alpha, interleukin 2, and interleukin 17 in CD4+ and CD8+ T cells in response to Mtb antigens (PPD, ESAT-6/CFP-10 [EC], and DosR regulon-encoded α-crystallin [Rv2031c]). Results Fewer HIV-infected individuals had detectable CD4+ and CD8+ T-cell responses to PPD and Rv2031c than HIV-uninfected subjects. Mtb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions HIV-associated impairment of CD4+ and CD8+Mtb-specific T-cell responses is antigen specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T-cell subset may be key to TB susceptibility in HIV-infected individuals.
Collapse
Affiliation(s)
- Lyle W Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Iman Satti
- Jenner Institute, University of Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Matthew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, United Kingdom
| | - James E Ussher
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Dominique Goedhals
- Department of Medical Microbiology and Virology, National Health Laboratory Service/University of the Free State, Bloemfontein, South Africa
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Oxford Martin School, Oxford, United Kingdom
| | - Rodney E Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Oxford Martin School, Oxford, United Kingdom
| | - Helen McShane
- Jenner Institute, University of Oxford, United Kingdom
| | - Cloete van Vuuren
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, United Kingdom.,Oxford Martin School, Oxford, United Kingdom
| |
Collapse
|
16
|
Gao X, Wu C, He W, Wang X, Li Y, Wang Y, Jia Y, Yuan R, Li H, Zhang B. DosR antigen Rv1737c induces activation of macrophages dependent on the TLR2 pathway. Cell Immunol 2019; 344:103947. [PMID: 31326120 DOI: 10.1016/j.cellimm.2019.103947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
Latent Mycobacterium tuberculosis (Mtb) infection (LTBI) is the main clinical manifestation after Mtb exposure. During the latent phase, Mtb retards the attempts of eradication by the host immune system. The dormancy survival regulator (DosR) is held as essential for Mtb persistence. Rv1737c is predominantly expressed by the Mtb in latent infection. However, the role of Rv1737c in the immune evasion is still largely unknown. In this study, we have characterized the Rv1737c functions in the recruitment and activation of macrophages, which play a cardinal role in the innate and adaptive immunity. For the first time, we have revealed that Rv1737c induced the tolerogenic phenotype of macrophages by upregulating the expression of indoleamine 2,3-dioxygenase 1 (IDO1). Rv1737c-activated macrophages upregulated interleukin (IL)-4, IL-10, and Foxp3 T cells proliferation in vitro. Furthermore, the interaction of Rv1737c with macrophages was found to depend on the Toll-like receptor 2 (TLR2) pathway. It augmented nuclear factor κB (NF-κB) phosphorylation and co-stimulatory molecule expression. Thus, this study provides a crucial insight into a strategy adopted by Mtb to survive in the host by inducing tolerogenic macrophage expansion.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China.
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Rui Yuan
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Haojie Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
17
|
Singh M, Bhatt P, Sharma M, Varma-Basil M, Chaudhry A, Sharma S. Immunogenicity of late stage specific peptide antigens of Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2019; 74:103930. [PMID: 31228643 DOI: 10.1016/j.meegid.2019.103930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Global burden of latent TB infection comprises one-third of the world population. Identifying potential Mycobacterium tuberculosis (Mtb) latency associated antigens that can generate protective immunity against the pathogen is crucial for designing an effective TB vaccine. Usually the immune system responds to a small number of amino acids as MHC Class I or Class II peptides. The precision to trigger epitope specific protective T-cell immune response could therefore be achieved with synthetic peptide-based subunit vaccine. In the present study we have considered an immunoinformatic approach using available softwares (ProPred, IEDB, NETMHC, BIMAS, Vaxijen2.0) and docking and visualizing softwares (CABSDOCK, HEX, Pymol, Discovery Studio) to select 10 peptides as latency antigens from 4 proteins (Rv2626, Rv2627, Rv2628, and Rv2032) of DosR regulon of Mtb. As Intracellular IFN-γ secreted by T cells is the most essential cytokine in Th1 mediated protective immunity, these peptides were verified as potential immunogenic epitopes in Peripheral Blood Mononuclear Cells (PBMCs) of 10 healthy contacts of TB patients (HTB) and 10 Category I Pulmonary TB patients (PTB).The antigen-specific CD4 and CD8 T cells expressing intracellular IFN-γ were analyzed using monoclonal antibodies in all subjects by multi-parameter flow cytometry. Both, PTB and HTB individuals responded to DosR peptides by showing increased frequency of IFN-γ+CD4 and IFN-γ+CD8 T cells. The T-cell responses were significantly higher in PTB patients in comparision to the HTB individuals. Additionally, our synthetic peptides and pools showed higher frequencies of IFN-γ+CD4 and IFN-γ+CD8 T cells than the peptides of Ag85B. This pilot study can be taken up further in larger sample size which may support the untapped opportunity of designing Mtb DosR inclusive peptide based post-exposure subunit vaccine.
Collapse
Affiliation(s)
- Medha Singh
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Parul Bhatt
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Monika Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | | | - Anil Chaudhry
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis Hospital, GTB Nagar, Delhi 110009, India
| | - Sadhna Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
18
|
Chang Y, Meng X, Li Y, Liang J, Li T, Meng D, Zhu T, Yu P. Synthesis and immunogenicity of the Mycobacterium tuberculosis arabinomannan-CRM197 conjugate. MEDCHEMCOMM 2019; 10:543-553. [PMID: 31057734 DOI: 10.1039/c8md00546j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Lipoarabinomannan (LAM) is a major structural surface component of Mycobacterium tuberculosis. This study describes the synthesis of the well-defined lipoarabinomannan (LAM) specific dodecasaccharide-protein conjugate and immunological studies. Arabinomannan (AM) dodecasaccharide has been efficiently synthesized and covalently conjugated to carrier proteins, including cross reactive mutant (CRM197) diphtheria toxoid and bovine serum albumin (BSA) for novel neoglycoconjugates, creating a potent T-dependent conjugate vaccine. Preliminary mice immunization studies on the neoglycoconjugate revealed that it could give rise to a strong IgG antibody titer in mice at 4.0 μg dose with an aluminum phosphate adjuvant. AM-CRM197 shows potential as an excellent candidate for a new carbohydrate-based vaccine that would be capable of eliciting a protective immune response against tuberculosis.
Collapse
Affiliation(s)
- Yunsong Chang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Xin Meng
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Yaxin Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Jianmei Liang
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety , College of Food Engineering and Biotechnology , Tianjin University of Science & Technology , Tianjin , 300457 , PR China
| | - Tao Zhu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562.,CanSino Biologics Inc. , Tianjin 300457 , PR China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology , Ministry of Education , College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , PR China . ; ; ; Tel: +86 22 60912562
| |
Collapse
|
19
|
Kim WS, Kim H, Kwon KW, Cho SN, Shin SJ. Immunogenicity and Vaccine Potential of InsB, an ESAT-6-Like Antigen Identified in the Highly Virulent Mycobacterium tuberculosis Beijing K Strain. Front Microbiol 2019; 10:220. [PMID: 30809214 PMCID: PMC6379281 DOI: 10.3389/fmicb.2019.00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Our group recently identified InsB, an ESAT-6-like antigen belonging to the Mtb9.9 subfamily within the Esx family, in the Mycobacterium tuberculosis Korean Beijing strain (Mtb K) via a comparative genomic analysis with that of the reference Mtb H37Rv and characterized its immunogenicity and its induced immune response in patients with tuberculosis (TB). However, the vaccine potential of InsB has not been fully elucidated. In the present study, InsB was evaluated as a subunit vaccine in comparison with the most well-known ESAT-6 against the hypervirulent Mtb K. Mice immunized with InsB/MPL-DDA exhibited an antigen-specific IFN-γ response along with antigen-specific effector/memory T cell expansion in the lungs and spleen upon antigen restimulation. In addition, InsB immunization markedly induced multifunctional Th1-type CD4+ T cells coexpressing TNF-α, IL-2, and IFN-γ in the lungs following Mtb K challenge. Finally, we found that InsB immunization conferred long-term protection against Mtb K comparable to that conferred by ESAT-6 immunization, as evidenced by a similar level of CFU reduction in the lung and spleen and reduced lung inflammation. These results suggest that InsB may be an excellent vaccine antigen component for developing a multiantigenic Mtb subunit vaccine by generating Th1-biased memory T cells with a multifunctional capacity and may confer durable protection against the highly virulent Mtb K.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients. Comp Immunol Microbiol Infect Dis 2019; 62:46-53. [DOI: 10.1016/j.cimid.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
21
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Zhao HM, Du R, Li CL, Ji P, Li HC, Wu K, Hu Z, Lu SH, Lowrie DB, Fan XY. Differential T cell responses against DosR-associated antigen Rv2028c in BCG-vaccinated populations with tuberculosis infection. J Infect 2018; 78:275-280. [PMID: 30528871 DOI: 10.1016/j.jinf.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
The IFN-γ release assays (IGRAs) based on region of difference 1 (RD1) antigens have improved diagnosis of Mycobacterium tuberculosis (Mtb) infection. However, IGRAs with these antigens could not distinguish latent tuberculosis infection (LTBI) from active tuberculosis (ATB). DosR regulon genes are thought to be important for Mtb dormancy, and their products have higher immunogenicity in LTBI than ATB individuals, suggesting protective immunity mediated by DosR regulon-encoded antigens and potential utility of them for differential diagnostics of Mtb-infected populations or development of therapeutic vaccines against tuberculosis (TB). Among them, Rv2028c is a dormancy-related antigen that has demonstrated potential use in TB control, but its immunological characteristics in the BCG-vaccinated Chinese population are unknown. In this study, a total of 148 individuals, including 98 patients with ATB, 20 cases with LTBI and 30 healthy controls, were tested for Rv2028c-specific T cell responses by using an IFN-γ ELISA assay. The results showed that the T-cell responses in LTBI individuals were almost always higher than those in ATB patients, regardless of the site of infection or the results of bacteriological examination in the patients. This allowed for good differentiation between these two groups of Mtb-infected individuals even in the BCG-vaccinated high TB-incidence setting that pertains in China. In addition, the diagnostic efficacy for ATB was enhanced by combining the results from Rv2028c and RD1 antigen-based IFN-γ ELISA assays. In conclusion, Rv2028c-specific T-cell responses might contribute to natural protection against dormant Mtb infection, and the determination of these responses can aid discrimination between healthy LTBI individuals and ATB patients in the Mtb-infected populations.
Collapse
Affiliation(s)
- Hui-Min Zhao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Du
- School of Laboratory Medicine and Life Science, Jinlin Agriculture University, Changchun 130033, China
| | - Chun-Ling Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Ping Ji
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Hai-Cong Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Kang Wu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China; Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Jinlin Agriculture University, Changchun 130033, China.
| |
Collapse
|
23
|
Gao X, Wu C, Wang X, Xu H, Wu Y, Li Y, Jia Y, Wei C, He W, Wang Y, Zhang B. The DosR antigen Rv1737c from Mycobacterium tuberculosis confers inflammation regulation in tuberculosis infection. Scand J Immunol 2018; 89:e12729. [PMID: 30372549 DOI: 10.1111/sji.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
There is an urgent need to identify the potential risk factors for activating latent Mycobacterium tuberculosis infection. In this study, we evaluated the immune function of Rv1737c, which is a latency-associated antigen of dormancy survival regulator (DosR) of M. tuberculosis in a mouse model. Our data showed that mice pretreated with recombinant Rv1737c (rRv1737c) exhibited higher levels of antigen-specific antibodies (IgG, IgM and IgA) than sham-treated mice. Following Bacilli Calmette-Guerin (BCG) challenge, rRv1737c adjuvanted with cholera toxin subunit B (CTB) induced diffuse lung inflammation and fibrosis compared to the control mice. The inflammatory pathogenesis due to rRv1737c pre-exposure was associated with a switch in the macrophage phenotype from M1 to activated M2 and was characterized by IL-10 production. Intracellular cytokine analysis further showed that the rRv1737c-pretreated mice exhibited an increased frequency of Th2 cells in the lungs, lymph nodes and spleen after BCG challenge. Furthermore, IFN-γ expression increased in the lungs after rRv1737c pretreatment compared to that in the sham mice. Accordingly, lung cells from rRv1737c-immunized mice stimulated with killed BCG produced higher levels of multiple cytokines, such as IFN-γ, IL-10 and IL-6. The results confirmed that the pathological features of rRv1737c promoted inflammation. Overall, our findings provide direct evidence of the pro-inflammatory function of rRv1737c in a murine model of BCG infection, indicating that Rv1737c is a pathogenic antigen of M. tuberculosis and may be key to the recurrence of latent infection.
Collapse
Affiliation(s)
- Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Cong Wu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Hui Xu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yu Wu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Chaojun Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhua He
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Guo LP, Jiang Y, Liu YM, Cao B. First assessment of interferon gamma release assay results among healthcare workers at a general hospital in China. CLINICAL RESPIRATORY JOURNAL 2018; 12:2581-2589. [PMID: 30232836 DOI: 10.1111/crj.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/12/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION China has a very high tuberculosis (TB) burden. The interferon-gamma release assay (IGRA) is more specific for the diagnosis of latent tuberculosis infection (LTBI) than the tuberculin skin test, especially among populations with a high degree of coverage by the BCG vaccine. OBJECTIVES To evaluate the first screening of healthcare workers (HCW) for LTBI using the IGRA at a general hospital in Beijing. METHODS A pilot screening program for LTBI was triggered by accidental contact between HCW and two patients with active TB in the emergency department (ED). Given the necessity of estimating the overall LTBI prevalence in the institution, a sample of 518 HCW was enrolled in our cross-sectional study. The second IGRA was repeated with 43 of the 121 HCW in the ED after exposure to index TB cases. Data on putative risk factors were collected with a self-administered questionnaire. RESULTS The prevalence of LTBI in the targeted population was 21.8%. Differences in the prevalence of LTBI were significantly related to age, employment duration, and history of occupational exposure. A lack of childhood BCG vaccination was independently associated with the prevalence of LTBI (adjusted OR: 1.686, 95% CI: 1.045-2.723, P = .0325). No new LTBI was diagnosed 12 weeks postexposure. No HCW adopted the preventive treatment for LTBI. CONCLUSIONS Considering the high morbidity of LTBI among HCW even in general hospitals, it is essential to formulate government policies and institutional operation protocols for the systematic screening, registration, and administration of prophylaxes for the control of LTBI.
Collapse
Affiliation(s)
- Li Ping Guo
- Nosocomial Infection Control Office of China-Japan Friendship Hospital, Beijing, China.,Hospital Management Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Jiang
- Hospital Management Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Mei Liu
- Department of Clinical Microbiology and Infectious Diseases of China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- Nosocomial Infection Control Office of China-Japan Friendship Hospital, Beijing, China.,Department of Clinical Microbiology and Infectious Diseases of China-Japan Friendship Hospital, Beijing, China.,National Clinical Research Centre of Respiratory Diseases, Centre for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Pulmonary Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Luo W, Qu Z, Zhang L, Xie Y, Luo F, Tan Y, Pan Q, Zhang XL. Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses. Vaccine 2018; 36:2998-3009. [PMID: 29681409 DOI: 10.1016/j.vaccine.2018.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
There is a need to develop protective vaccines against tuberculosis (TB). Recently, we identified an immunodominant T-cell antigen, Rv2645, from the region of deletion 13 (RD13) of M. tuberculosis (M. tb) H37Rv, which is absent in Bacille Calmette-Guérin (BCG). Here, a recombinant BCG expressing Rv2645, namely, BCG::Rv2645, was constructed. Compared to BCG, we found that BCG::Rv2645 improved the antigen presentation capacity of dendritic cells (DCs) and elicited much stronger Th1 and Th17 responses, higher CD44highCD62low effector memory CD4+ T cells (TEM), and fewer T regulated cells (Treg) and regulatory B10 in mice. Importantly, BCG::Rv2645 exhibited enhanced protective efficacy against virulent M. tb H37Rv challenge in both mice and rhesus monkeys, showing less severe pathology and reduced pathogens. Further, transcriptomic analysis and reverse transcription-quantitative real time PCR revealed that the mRNA levels of ISGylation (Isg)-related genes such as interferon-stimulated gene 15 (Isg15), and Th1- and Th17-related genes such as interferon-γ (IFN-γ) and interleukin-17A (IL-17A) were significantly up-regulated in splenocytes and macrophages after stimulation with Rv2645. This study shows that BCG::Rv2645 is a promising TB vaccine candidate with enhanced protective immunity. The enhanced Th1/Th17 immune responses and up-regulation of ISGylation-related genes induced by Rv2645 may be major factors contributing to the protective immunity of BCG::Rv2645.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 30052, China
| | - Zilu Qu
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Lingyun Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yang Tan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China.
| |
Collapse
|
26
|
Jiang H, Luo TL, Kang J, Xu ZK, Wang LM. Expression of Rv2031c-Rv2626c fusion protein in Mycobacterium smegmatis enhances bacillary survival and modulates innate immunity in macrophages. Mol Med Rep 2018; 17:7307-7312. [PMID: 29568875 DOI: 10.3892/mmr.2018.8758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Dormancy-associated antigens encoded by the dormancy survival regulon (DosR) genes are required for survival of Mycobacterium tuberculosis (Mtb) in macrophages. However, mechanisms underlying survival of Mtb in macrophages remains to be elucidated. A recombinant Mycobacterium smegmatis strain (rMs) expressing a fusion protein of two dormancy‑associated antigens Rv2031c and Rv2626c from Mtb was constructed in the present study. In an in vitro culture, growth rate of rMs was lower compared with Ms. A total of 24 h following infection of murine macrophages with rMs or Ms, percentage of viable cells decreased and the number of bacteria in viable cells increased compared with Ms, demonstrating that virulence and intracellular survival of rMs were enhanced. Compared with macrophages infected with Ms, necrosis of macrophages infected with rMs was increased, while apoptosis was inhibited. Macrophages infected with rMs secreted more interferon‑γ and interleukin‑6, but fewer nitric oxide and tumor necrosis factor‑α, compared with macrophages infected with Ms. The present study demonstrated that the fusion protein composed of dormancy‑associated antigens Rv2031c and Rv2626c in Ms serves a physiological function of a dormancy‑associated antigen and modulates innate immunity of host macrophages, therefore favoring intracellular bacillary survival.
Collapse
Affiliation(s)
- Hong Jiang
- Center for Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Tai-Lai Luo
- Naval Medical Research Institute, Shanghai 200433, P.R. China
| | - Jian Kang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Kai Xu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li-Mei Wang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
27
|
Su H, Zhu S, Zhu L, Kong C, Huang Q, Zhang Z, Wang H, Xu Y. Mycobacterium tuberculosis Latent Antigen Rv2029c from the Multistage DNA Vaccine A39 Drives TH1 Responses via TLR-mediated Macrophage Activation. Front Microbiol 2017; 8:2266. [PMID: 29204139 PMCID: PMC5698697 DOI: 10.3389/fmicb.2017.02266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 01/13/2023] Open
Abstract
Targeting of Mycobacterium tuberculosis (MTB) latent antigens comprises a crucial strategy for the development of alternative tuberculosis (TB) vaccine(s) that protects against TB reactivation. Here, we generated a multistage DNA vaccine, A39, containing the early antigens Ag85A and Rv3425 as well as the latency-associated protein Rv2029c, which conferred protective immunity in a pre-exposure mouse model. Moreover, administration of the A39 vaccination after MTB exposure inhibited reactivation and resulted in significantly lower bacterial loads in the lungs and spleen of mice, compared to those in the control population. Subsequently, we investigated the effect of Rv2029c on innate immunity and characterized the molecular details of the interaction of this protein with the host via iTRAQ proteomic and biochemical assay analyses. Rv2029c activated macrophages, triggered the production of pro-inflammatory cytokines, and promoted toll-like receptor/mitogen-activated protein kinase (TLR/MAPK)-dependent macrophage apoptosis. Furthermore, Rv2029c treatment enhanced the ability of Mycobacterium bovis Bacillus Calmette-Guérin (BCG)-infected macrophages to present antigens to CD4+ T cells in vitro, which correlated with an increase in MHC-II expression. Lastly, Rv2029c-treated macrophages activated T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, and specifically expanded a population of CD44highCD62LlowCD4+/CD8+ effector/memory cells, indicating that Rv2029c, as a specific recall antigen, contributes to Th1 polarization in T cell immunity. These results suggest that Rv2029c and A39 comprise promising targets for the development of next-generation clinical TB therapeutic vaccines.
Collapse
Affiliation(s)
- Haibo Su
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,GMU-GIBH Joint School of Life Science, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.,The Second People's Hospital of Guangdong Province, Guangzhou, China
| | - Shengling Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Cong Kong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Qi Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhi Zhang
- The Second People's Hospital of Guangdong Province, Guangzhou, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Habib Z, Xu W, Jamal M, Rehman K, Dai J, Fu ZF, Chen X, Cao G. Adaptive gene profiling of Mycobacterium tuberculosis during sub-lethal kanamycin exposure. Microb Pathog 2017; 112:243-253. [PMID: 28966063 DOI: 10.1016/j.micpath.2017.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Resistance to anti-tuberculosis drugs is a formidable obstacle to effective tuberculosis (TB) treatment and prevention globally. New forms of multidrug, extensive drug and total drug resistance Mycobacterium tuberculosis (Mtb) causing a serious threat to human as well as animal's population. Mtb shows diverse adaptability under stress conditions especially antibiotic treatment, however underlying physiological mechanism remained elusive. In present study, we investigated Mtb's response and adaptation with reference to gene expression during sub-lethal kanamycin exposure. Mtb were cultured under sub-lethal drug and control conditions, where half were sub-cultured every 3-days to observe serial adaptation under same conditions and the remaining were subjected to RNA-seq. We identified 98 up-regulated and 198 down-regulated responsive genes compared to control through differential analysis, of which Ra1750 and Ra3160 were the most responsive genes. In adaptive analysis, we found Ra1750, Ra3160, Ra3161, Ra3893 and Ra2492 up-regulation at early stage and gradually showed low expression levels at the later stages of drug exposure. The adaptive expression of Ra1750, Ra3160 and Ra3161 were further confirmed by real time qPCR. These results suggested that these genes contributed in Mtb's physiological adaptation during sub-lethal kanamycin exposure. Our findings may aid to edify these potential targets for drug development against drug resistance tuberculosis.
Collapse
Affiliation(s)
- Zeshan Habib
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Weize Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Muhammad Jamal
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Khaista Rehman
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Jinxia Dai
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zhen Fang Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Xi Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Gang Cao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Bio-Medcial Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
29
|
Li F, Kang H, Li J, Zhang D, Zhang Y, Dannenberg AM, Liu X, Niu H, Ma L, Tang R, Han X, Gan C, Ma X, Tan J, Zhu B. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection. Scand J Immunol 2017; 85:425-432. [PMID: 28426145 DOI: 10.1111/sji.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Abstract
To screen effective antigens as therapeutic subunit vaccines against Mycobacterium latent infection, we did bioinformatics analysis and literature review to identify effective antigens and evaluated the immunogenicity of five antigens highly expressed in dormant bacteria, which included Rv2031c (HspX), Rv2626c (Hrp1), Rv2007c (FdxA), Rv1738 and Rv3130c. Then, several fusion proteins such as Rv2007c-Rv2626c (F6), Rv2031c-Rv1738-Rv1733c (H83), ESAT6-Rv1738-Rv2626c (LT40), ESAT6-Ag85B-MPT64<190-198> -Mtb8.4 (EAMM), and EAMM-Rv2626c (LT70) were constructed and their therapeutic effects were evaluated in pulmonary Mycobacterium bovis Bacilli Calmette-Guérin (BCG) - latently infected rabbit or mouse models. The results showed that EAMM and F6 plus H83 had therapeutic effect against BCG latent infection in the rabbit model, respectively, and that the combination of EAMM with F6 plus H83 significantly reduced the bacterial load. In addition, the fusion proteins LT40 and LT70 consisting of multistage antigens showed promising therapeutic effects in the mouse model. We conclude that subunit vaccines consisting of both latency and replicating-associated antigens show promising therapeutic effects in BCG latent infection animal models.
Collapse
Affiliation(s)
- F Li
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H Kang
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - J Li
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - D Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Y Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A M Dannenberg
- Departments of Environmental Health Sciences, Epidemiology, Molecular Microbiology and Immunologyand Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - X Liu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - H Niu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - L Ma
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - R Tang
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - X Han
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu University of Chinese Medicine, Lanzhou, China
| | - C Gan
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - X Ma
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - J Tan
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - B Zhu
- Gansu Key Lab of Evidence Based Medicine and Clinical Transfer Medicine & Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Kasempimolporn S, Thaveekarn W, Promrungreang K, Khow O, Boonchang S, Sitprija V. Improved Serodiagnostic Sensitivity of Strip Test for Latent Tuberculosis. J Clin Diagn Res 2017; 11:DC01-DC03. [PMID: 28764156 DOI: 10.7860/jcdr/2017/25860.9994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Diagnosis of Latent Tuberculosis Infection (LTBI) is difficult due to no clinical manifestations. Cases of LTBI are mostly sputum negative. The World Health Organization recommends the Tuberculin Skin Test (TST) as the current diagnostic standard for LTBI. Our previously developed serologic strip test for LTBI detection had suboptimal sensitivity. Additional Mycobacteriumtuberculosis (MTB) latency-associated antigens may improve the detection rate of LTBI. AIM The present study aimed to optimize sensitivity of existing strip test. MATERIALS AND METHODS A combination of recombinant latency proteins Rv2029c, Rv2031c, Rv2032, Rv2627c, Rv3133c, and Rv3716c was used to prepare the strips and evaluate the performance with the sera of patients in four well-classified categories: LTBI, active pulmonary TB, healthy TB contacts and other non-TB diseases. RESULTS A total of 91 serum samples from various clinical categories were screened with the strips. Among clinically diagnosed LTBI patients, strip test yielded a sensitivity of 75.0%. Among clinically diagnosed non-LTBI subjects, strip test yielded 88.1% specificity. The diagnostic positive and negative predictive values for strip test in reference to various clinical contexts were 77.4% and 86.7%, respectively. CONCLUSION Addition of the six potential latency proteins could improve the diagnostic performance of existing strip test for LTBI. The use of suitable immunodominant antigens could maximize sensitivity in the diagnosis and differentiate MTB infection status.
Collapse
Affiliation(s)
- Songsri Kasempimolporn
- Senior Advisory Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Wichit Thaveekarn
- Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Kanyanat Promrungreang
- Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Orawan Khow
- Senior Scientist, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Supatsorn Boonchang
- Laboratory Officer, Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Visith Sitprija
- Director Professor, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
31
|
Solanki AK, Bhatia B, Kaushik H, Deshmukh SK, Dixit A, Garg LC. Clostridium perfringens beta toxin DNA prime-protein boost elicits enhanced protective immune response in mice. Appl Microbiol Biotechnol 2017; 101:5699-5708. [PMID: 28523396 DOI: 10.1007/s00253-017-8333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 01/09/2023]
Abstract
Clostridium perfringens beta toxin (CPB) is the primary pathogenic factor responsible for necrotic enteritis in sheep, cattle and humans. Owing to rapid progression of the disease, vaccination is the only possible recourse to avoid high mortality in animal farms and huge economic losses. The present study reports evaluation of a cpb gene-based DNA vaccine encoding the beta toxin of C. perfringens with homologous as well as heterologous booster strategy. Immunization strategy employing heterologous booster with heat-inactivated rCPB mounted stronger immune response when compared to that generated by homologous booster. Antibody isotyping and cytokine ELISA demonstrated the immune response to be Th1-biased mixed immune response. While moderate protection of immunized BALB/c and C57BL/6 mice against rCPB challenge was observed with homologous booster strategy, heterologous booster strategy led to complete protection. Thus, beta toxin-based DNA vaccine using the heterologous prime-boosting strategy was able to generate better immune response and conferred greater degree of protection against high of dose rCPB challenge than homologous booster regimen, making it an effective vaccination approach against C. perfringens beta toxin.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Vaccines/immunology
- Clostridium perfringens/immunology
- Clostridium perfringens/metabolism
- Disease Models, Animal
- Enterocolitis, Pseudomembranous/immunology
- Enterocolitis, Pseudomembranous/microbiology
- Enterocolitis, Pseudomembranous/prevention & control
- Enterocytes/microbiology
- Immunization/methods
- Immunization, Secondary
- Intestines/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Th1 Cells/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Amit Kumar Solanki
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bharati Bhatia
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sachin K Deshmukh
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
Abstract
Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality worldwide. As CD8+ T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8+ T cell response, an effective tuberculosis vaccine may need to induce CD8+ T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8+ T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis-infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity. Specific bacterial proteins have been found that drive effective immune responses to tuberculosis, with use in making more effective vaccines. Immunity to tuberculosis (TB) is facilitated by two types of white blood cell; however, most research has focused on one: the CD4+ T cell. Deborah A. Lewinsohn and David Lewinsohn, of the Oregon Health & Science University, USA, and collaborators lay out the essential functions of the oft-neglected CD8+ T cell, and undertook a broad approach to catalogue and define the bacterial proteins that activate the CD8+ T cell response. The team found that TB-infected humans reacted strongly to their protein library, and described several characteristics of CD8+ T cell ‘antigens’ (activators of immune cells) that will likely prove highly useful in the design of more protective TB vaccines.
Collapse
|
33
|
Novel vaccine potential of Rv3131, a DosR regulon-encoded putative nitroreductase, against hyper-virulent Mycobacterium tuberculosis strain K. Sci Rep 2017; 7:44151. [PMID: 28272457 PMCID: PMC5341159 DOI: 10.1038/srep44151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates that latency-associated Mycobacterium tuberculosis (Mtb)-specific antigens from the dormancy survival regulator regulon (DosR) may be promising novel vaccine target antigens for the development of an improved tuberculosis vaccine. After transcriptional profiling of DosR-related genes in the hyper-virulent Beijing Mtb strain K and the reference Mtb strain H37Rv, we selected Rv3131, a hypothetical nitroreductase, as a vaccine antigen and evaluated its vaccine efficacy against Mtb K. Mtb K exhibited stable and constitutive up-regulation of rv3131 relative to Mtb H37Rv under three different growth conditions (at least 2-fold induction) including exponential growth in normal culture conditions, hypoxia, and inside macrophages. Mice immunised with Rv3131 formulated in GLA-SE, a well-defined TLR4 adjuvant, displayed enhanced Rv3131-specific IFN-γ and serum IgG2c responses along with effector/memory T cell expansion and remarkable generation of Rv3131-specific multifunctional CD4+ T cells co-producing TNF-α, IFN-γ and IL-2 in both spleen and lung. Following challenge with Mtb K, the Rv3131/GLA-SE-immunised group exhibited a significant reduction in bacterial number and less extensive lung inflammation accompanied by the obvious persistence of Rv3131-specific multifunctional CD4+ T cells. These results suggest that Rv3131 could be an excellent candidate for potential use in a multi-antigenic Mtb subunit vaccine, especially against Mtb Beijing strains.
Collapse
|
34
|
Designing a Novel Multi-epitope DNA- Based Vaccine Against Tuberculosis: In Silico Approach. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.43950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
35
|
Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term Mycobacterium tuberculosis-Infected Individuals in Colombia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:813-824. [PMID: 27489136 DOI: 10.1128/cvi.00217-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
Abstract
Multifunctional T cells have been shown to be protective in chronic viral infections. In mycobacterial infections, however, evidence for a protective role of multifunctional T cells remains inconclusive. Short-term cultures of peripheral blood mononuclear cells stimulated with the Mycobacterium tuberculosis RD1 antigens 6-kDa early secretory antigenic target (ESAT6) and 10-kDa culture filtrate antigen (CFP10), which are induced in the early infection phase, have been mainly used to assess T cell multifunctionality, although long-term culture assays have been proposed to be more sensitive than short-term assays for assessment of memory T cells, which are essential for long-term immunity. Here we used a long-term culture assay system to study the T cell immune responses to the M. tuberculosis latency-associated DosR antigens and reactivation-associated Rpf antigens, compared to ESAT6 and CFP10, in patients with pulmonary tuberculosis (PTB) and household contacts of PTB patients with long-term latent tuberculosis infection (ltLTBI), in a community in which M. tuberculosis is endemic. Our results showed that the DosR antigens Rv1737c (narK2) and Rv2029c (pfkB) and the Rv2389c (rpfD) antigen of M. tuberculosis induced higher frequencies of CD4+ or CD8+ mono- or bifunctional (but not multifunctional) T cells producing interferon gamma (IFN-γ) and/or tumor necrosis alpha (TNF-α) in ltLTBI, compared to PTB. Moreover, the frequencies of CD4+ and/or CD8+ T cells with a CD45RO+ CD27+ phenotype were higher in ltLTBI than in PTB. Thus, the immune responses to selected DosR and Rpf antigens may be associated with long-term latency, correlating with protection from M. tuberculosis reactivation in ltLTBI. Further study of the functional and memory phenotypes may contribute to further discrimination between the different states of M. tuberculosis infections.
Collapse
|
36
|
Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules. INFECTION GENETICS AND EVOLUTION 2016; 44:182-189. [DOI: 10.1016/j.meegid.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/24/2016] [Accepted: 07/03/2016] [Indexed: 11/21/2022]
|
37
|
Wu M, Li M, Yue Y, Xu W. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis
vaccine. Microbiol Immunol 2016; 60:634-45. [DOI: 10.1111/1348-0421.12410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Manli Wu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Min Li
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Yan Yue
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Wei Xu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| |
Collapse
|
38
|
Counoupas C, Pinto R, Nagalingam G, Hill-Cawthorne GA, Feng CG, Britton WJ, Triccas JA. Mycobacterium tuberculosis components expressed during chronic infection of the lung contribute to long-term control of pulmonary tuberculosis in mice. NPJ Vaccines 2016; 1:16012. [PMID: 29263854 PMCID: PMC5707878 DOI: 10.1038/npjvaccines.2016.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 07/05/2016] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, yet current control strategies, including the existing BCG vaccine, have had little impact on disease control. The tubercle bacillus modifies protein expression to adapt to chronic infection of the host, and this can potentially be exploited to develop novel therapeutics. We identified the gene encoding the first step of the Mycobacterium tuberculosis sulphur assimilation pathway, cysD, as highly induced during chronic infection in the mouse lung, suggesting therapies based on CysD could be used to target infection. Vaccination with the composite vaccine CysVac2, a fusion of CysD and the immunogenic Ag85B of M. tuberculosis, resulted in the generation of multifunctional CD4+ T cells (interferon (IFN)-γ+TNF+IL-2+IL-17+) in the lung both pre- and post-aerosol challenge with M. tuberculosis. CysVac2 conferred significant protection against pulmonary M. tuberculosis challenge and was particularly effective at controlling late-stage infection, a property not shared by BCG. CysVac2 delivered as a booster following BCG vaccination afforded greater protection against M. tuberculosis challenge than BCG alone. The antigenic components of CysVac2 were conserved amongst M. tuberculosis strains, and protective efficacy afforded by CysVac2 was observed across varying murine MHC haplotypes. Strikingly, administration of CysVac2 to mice previously infected with M. tuberculosis reduced bacterial load and immunopathology in the lung compared with BCG-vaccinated mice. These results indicate that CysVac2 warrants further investigation to assess its potential to control pulmonary TB in humans.
Collapse
Affiliation(s)
- Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Rachel Pinto
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Gayathri Nagalingam
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Grant A Hill-Cawthorne
- Sydney Medical School and The Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Sydney Medical School and The Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Sydney Medical School and The Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Sydney Medical School and The Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Guapillo C, Hernández-Pando R, Flores-Valdez MA. Multiantigenic subunitary vaccines against tuberculosis in clinical trials: Where do we stand and where do we need to go? Hum Vaccin Immunother 2016; 12:1193-5. [PMID: 27049797 DOI: 10.1080/21645515.2015.1136760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The idea of presenting this commentary is to bring attention to the current status of clinical tests from several multiantigen vaccine candidates based on proteins produced by means of genetic engineering and molecular biology approaches and to suggest how new emerging technologies (OMICs) and bioinformatics might benefit vaccine development for better control of tuberculosis.
Collapse
Affiliation(s)
- Carolina Guapillo
- a Sección de Patología Experimental , Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , Mexico DF
| | - Rogelio Hernández-Pando
- a Sección de Patología Experimental , Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , Mexico DF
| | - Mario Alberto Flores-Valdez
- b Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, A.C., Biotecnología Médica y Farmacéutica, Col. Colinas de la Normal , Guadalajara , Jalisco , México
| |
Collapse
|
40
|
Mohammad O, Kaur J, Singh G, Faisal SM, Azhar A, Rauf MA, Gupta UD, Gupta P, Pal R, Zubair S. TLR Agonist Augments Prophylactic Potential of Acid Inducible Antigen Rv3203 against Mycobacterium tuberculosis H37Rv in Experimental Animals. PLoS One 2016; 11:e0152240. [PMID: 27023750 PMCID: PMC4811581 DOI: 10.1371/journal.pone.0152240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
In general, the members of Lip gene family of Mycobacterium tuberculosis evoke strong immune response in the host. Keeping this fact into consideration, we investigated role of Rv3203, a cell wall associated protein with lipolytic activity, in imparting protection against experimental murine tuberculosis. The data of the present study suggested that archaeosome encapsulated Rv3203 induce strong lymphocyte proliferation, up-regulated Th-1 biased cytokines profile, increased expression of co-stimulatory markers on both antigen presenting cells and T lymphocytes. The immuno-prophylactic response was further modulated by exposure of the animals to zymosan, a TLR2/6 agonist, prior to immunization with archaeosome encapsulated Rv3203. Interestingly, pre-treatment of experimental animals with zymosan boosted strong immunological memory as compared to archaeosome encapsulated Rv3203 as well as BCG vaccine. We conclude that priming of immunized animal with TLR agonist followed by immunization with archaeosomes encapsulated Rv3203 offer substantial protection against tuberculosis infection and could be a potential subunit vaccine based prophylactic strategy.
Collapse
Affiliation(s)
- Owais Mohammad
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (OM)
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asim Azhar
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Ahmar Rauf
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Umesh Dutt Gupta
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Tajganj, Agra, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Tajganj, Agra, India
| | - Rahul Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Swaleha Zubair
- Women’s College, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (OM)
| |
Collapse
|
41
|
Pandey K, Sharma M, Saarav I, Singh S, Dutta P, Bhardwaj A, Sharma S. Analysis of the DosR regulon genes to select cytotoxic T lymphocyte epitope specific vaccine candidates using a reverse vaccinology approach. Int J Mycobacteriol 2016; 5:34-43. [DOI: 10.1016/j.ijmyco.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022] Open
|
42
|
Arroyo L, Rojas M, Ortíz BL, Franken KLMC, García LF, Ottenhoff THM, Barrera LF. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis (Edinb) 2016; 97:97-107. [PMID: 26980501 DOI: 10.1016/j.tube.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/28/2022]
Abstract
Immune response to DosR and Rpf antigens from Mycobacterium tuberculosis (Mtb) seems to be important for latency maintenance. Little is known about the dynamics of the immune response to these antigens in an endemic community. Thus, the IFNγ response and cytokine production in response to PPD, Esat6-Cfp10 (E6-C10), DosR and Rpf antigens in healthy HHC of tuberculosis (TB) patients over a 12 (T12) months period (short-term, stLTBI) was investigated. This response was compared with a group of LTBI, who have remained healthy for 5-7 years (long-term, ltLTBI). According to the IFNγ response, two groups of HHCs were identified in stLTBI in response to E6-C10. At T12, E6-C10(+) HHCs displayed a decrease in the IFNγ levels and a generalized decrease in cytokines production. The E6-C10(-) HHC showed an increase in the IFNγ response and cytokine levels. In stLTBI, the responses to E6-C10, DosR, and Rpf may be interpreted as a protective immune response controlling Mtb infection and may be leading to a state of latent infection. Comparing the response of stLTBI and ltLTBI, we observed significant changes in the proportions of CD45RO(+)CD27(+) T cells to specific DosR and Rpf, which may indicate a persistent immune response to Mtb antigens in ltLTBI.
Collapse
Affiliation(s)
- Leonar Arroyo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia.
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Blanca L Ortíz
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
43
|
Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:137-47. [PMID: 26656121 DOI: 10.1128/cvi.00458-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis HN878 represents a virulent clinical strain from the W-Beijing family, which has been tested in small animal models in order to study its virulence and its induction of host immune responses following infection. This isolate causes death and extensive lung pathology in infected C57BL/6 mice, whereas lab-adapted strains, such as M. tuberculosis H37Rv, do not. The use of this clinically relevant isolate of M. tuberculosis increases the possibilities of assessing the long-lived efficacy of tuberculosis vaccines in a relatively inexpensive small animal model. This model will also allow for the use of knockout mouse strains to critically examine key immunological factors responsible for long-lived, vaccine-induced immunity in addition to vaccine-mediated prevention of pulmonary immunopathology. In this study, we show that the ID93/glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) tuberculosis vaccine candidate, currently in human clinical trials, is able to elicit protection against M. tuberculosis HN878 by reducing the bacterial burden in the lung and spleen and by preventing the extensive lung pathology induced by this pathogen in C57BL/6 mice.
Collapse
|
44
|
Latorre I, Domínguez J. Dormancy antigens as biomarkers of latent tuberculosis infection. EBioMedicine 2015; 2:790-1. [PMID: 26425678 PMCID: PMC4563125 DOI: 10.1016/j.ebiom.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/29/2022] Open
Affiliation(s)
- Irene Latorre
- Molecular Microbiology Department, Hospital Universitari Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias (CIBERES), Badalona, Spain
| |
Collapse
|
45
|
Mycobacterium tuberculosis dormancy-associated antigen of Rv2660c induces stronger immune response in latent Mycobacterium tuberculosis infection than that in active tuberculosis in a Chinese population. Eur J Clin Microbiol Infect Dis 2015; 34:1103-9. [DOI: 10.1007/s10096-015-2335-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 11/27/2022]
|
46
|
Yihao D, Hongyun H, Maodan T. Latency-associated protein Rv2660c of Mycobacterium tuberculosis augments expression of proinflammatory cytokines in human macrophages by interacting with TLR2. Infect Dis (Lond) 2015; 47:168-77. [DOI: 10.3109/00365548.2014.982167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Kasempimolporn S, Thaveekarn W, Kerdpanich P, Skulpichetrat U, Saekhow O, Boonchang S, Bharnthong T, Sitprija V. Performance of a rapid strip test for the serologic diagnosis of latent tuberculosis in children. J Clin Diagn Res 2015; 9:DC11-4. [PMID: 25737986 DOI: 10.7860/jcdr/2015/10989.5403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/02/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND The serodiagnostic tests for tuberculosis (TB) present a high variability in terms of sensitivity and specificity. Data on patients with latent TB infection (LTBI) and children in high prevalence settings are still limited. The present study aimed to evaluate an in-house strip test for detection of anti-M. tuberculosis antibodies in TB patients, mostly children aged under 15 y, grouped into four diagnostic categories: active TB, LTBI, healthy TB contacts, and other non-TB diseases. MATERIALS AND METHODS The diagnostic performance of strip test was compared with the tuberculin skin test (TST) and interferon-gamma release assay (IGRA). Sensitivity and specificity were assessed for all three diagnostic tests. The detection accuracy among the tests was calculated by using a receiver operating characteristic analysis. RESULTS TST and IGRA could diagnose the active TB cases correctly (100%). The sensitivity of strip test for active TB was 58.3% and 37.5% for LTBI, while the sensitivities of TST and IGRA for LTBI were 90.3% and 37.5%, respectively. The overall specificities of strip test and IGRA were 91.5% and 95.7%, respectively, which were superior to that of TST (68.1%). CONCLUSION The strip test did not appear to be useful for diagnosis of active TB in comparison with the current diagnostic standard. The assay may be particularly significant in situations where TB is clinically difficult to diagnose like LTBI and could be a meaningful tool in terms of high specificity and simplicity for ruling in pediatric TB in countries with high TB infection rate. Further studies are needed to determine whether strip test can be improved in its sensitivity and should be implemented into routine clinical practice.
Collapse
Affiliation(s)
- Songsri Kasempimolporn
- Advisory Scientist, Department of Research and Development, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| | - Wichit Thaveekarn
- Scientist, Department of Research and Development, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| | - Phirangkul Kerdpanich
- Associate Professor, Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital , Bangkok, Thailand
| | - Urailak Skulpichetrat
- Pediatric Fellow, Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital , Bangkok, Thailand
| | - Orawan Saekhow
- Senior Scientist, Department of Research and Development, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| | - Supatsorn Boonchang
- Laboratory Officer, Department of Research and Development, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| | - Thipchuta Bharnthong
- Former Head, Department of BCG Vaccine Production, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| | - Visith Sitprija
- Director Professor, Queen Saovabha Memorial Institute , Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
48
|
Chen YY, Lin CW, Huang WF, Chang JR, Su IJ, Hsu CH, Cheng HY, Hsu SC, Dou HY. Recombinant bacille Calmette-Guerin coexpressing Ag85b, CFP10, and interleukin-12 elicits effective protection against Mycobacterium tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 50:90-96. [PMID: 25732698 DOI: 10.1016/j.jmii.2014.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/29/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The tuberculosis (TB) pandemic remains a leading cause of human morbidity and mortality, despite widespread use of the only licensed anti-TB vaccine, bacille Calmette-Guerin (BCG). The protective efficacy of BCG in preventing pulmonary TB is highly variable; therefore, an effective new vaccine is urgently required. METHODS In the present study, we assessed the ability of novel recombinant BCG vaccine (rBCG) against Mycobacterium tuberculosis by using modern immunological methods. RESULTS Enzyme-linked immunospot assays demonstrated that the rBCG vaccine, which coexpresses two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 (rBCG2) elicits greater interferon-γ (IFN-γ) release in the mouse lung and spleen, compared to the parental BCG. In addition, rBCG2 triggers a Th1-polarized response. Our results also showed that rBCG2 vaccination significantly limits M. tuberculosis H37Rv multiplication in macrophages. The rBCG2 vaccine surprisingly induces significantly higher tumor necrosis factor-α (TNF-α) production by peripheral blood mononuclear cells that were exposed to a nonmycobacterial stimulus, compared to the parental BCG. CONCLUSION In this study, we demonstrated that the novel rBCG2 vaccine may be a promising candidate vaccine against M. tuberculosis infection.
Collapse
MESH Headings
- Acyltransferases/administration & dosage
- Acyltransferases/genetics
- Acyltransferases/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Enzyme-Linked Immunospot Assay
- Female
- Humans
- Interferon-gamma/metabolism
- Interleukin-12/administration & dosage
- Interleukin-12/genetics
- Leukocytes, Mononuclear/immunology
- Lung/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mycobacterium bovis/genetics
- Mycobacterium bovis/immunology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Spleen/immunology
- Th1 Cells/immunology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Wei Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Han-Yin Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
49
|
McGillivray A, Golden NA, Kaushal D. The Mycobacterium tuberculosis Clp gene regulator is required for in vitro reactivation from hypoxia-induced dormancy. J Biol Chem 2014; 290:2351-67. [PMID: 25422323 DOI: 10.1074/jbc.m114.615534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the leading cause of death from an infectious disease worldwide and is the causative agent of tuberculosis (Chao, M. C., and Rubin, E. J. (2010) Annu. Rev. Microbiol. 64, 293-311). Throughout infection, Mtb encounters a variety of host pressures. Thus, responding to these host stresses via the induction of multiple regulatory networks is needed for survival within the host. The Clp protease gene regulator, Rv2745c (clgR), is induced in response to environmental stress conditions, implicating its potential role in Mtb pathogenesis. Transcriptional activation of genes downstream of Rv2745c occurs in a condition-dependent manner. Our isogenic Mtb:ΔRv2745c mutant expresses a significantly different phenotype upon reaeration conditions. Transcriptional analysis revealed differential gene expression profiles relative to wild-type Mtb. Rv2745c is strongly induced in response to hypoxic and reaeration conditions, implicating a role of Rv2745c in vivo during both establishment of infection and reactivation. We found dysregulation of downstream genes within both the σ(H)/σ(E) regulon as well as the dosR regulon in the isogenic mutant, Mtb:ΔRv2745c. Upon hypoxic and reaeration conditions, Clp protease induction occurred within wild-type Mtb, indicating that activation of clgR, which subsequently leads to Clp protease induction, is crucial for degradation of misfolded proteins and ultimately survival of Mtb upon specific stress conditions. Our data indicate the diverse response of Rv2745c, σ(H) and σ(E) in response to a variety of stress conditions. Activation of Rv2745c in response to various stress conditions leads to differential activation of downstream genes, indicating the diverse role of Rv2745c and its importance for Mtb survival in vivo.
Collapse
Affiliation(s)
- Amanda McGillivray
- From the Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana 70433
| | - Nadia A Golden
- From the Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana 70433
| | - Deepak Kaushal
- From the Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana 70433
| |
Collapse
|
50
|
Saraav I, Singh S, Sharma S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunol Cell Biol 2014; 92:741-6. [PMID: 24983458 DOI: 10.1038/icb.2014.52] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is an intracellular bacterium capable of surviving and persisting within host mononuclear cells. The host response against tubercle bacilli is dominated by fine-tuned interaction of innate and adaptive immune responses. Toll-like receptors (TLRs) play a critical role in the formation of this immune response by facilitating in elaboration of protective T helper type 1 (Th1) cytokines and microbicidal molecules, but the intracellular persistence of M. tuberculosis in the phagosome and processing and presentation of TLR ligands by host antigen-presenting cell leads to continuous and chronic TLR2 signaling. The prolonged stimulation of TLR ultimately results in elaboration of immunosuppressive cytokines and downregulation of antigen presentation by major histocompatibility complex (MHC) class II and therefore becomes beneficial for M. tuberculosis, resulting in its continued survival inside macrophages. An understanding of the host-pathogen interaction in tuberculosis is important to delineate the mechanisms that can modulate the immune response toward protection. This review focuses on the role of TLRs in immune response and immune evasion and how M. tuberculosis maintains its dominance over the host during infection. A precise understanding of the TLRs and M. tuberculosis interaction will undoubtedly lead to the development of novel therapies to combat tuberculosis.
Collapse
Affiliation(s)
- Iti Saraav
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| | - Swati Singh
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| | - Sadhna Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, India
| |
Collapse
|