1
|
Maitre A, Mateos-Hernandez L, Azagi T, Foucault-Simonin A, Rakotobe S, Zając Z, Banović P, Porcelli S, Heckmann A, Galon C, Sprong H, Moutailler S, Cabezas-Cruz A, Fogaça AC. Rickettsia helvetica in C3H/HeN mice: A model for studying pathogen-host interactions. Heliyon 2024; 10:e37931. [PMID: 39323843 PMCID: PMC11422568 DOI: 10.1016/j.heliyon.2024.e37931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
An infection with the tick-borne Rickettsia helvetica has been associated with a broad spectrum of clinical manifestations in humans, but patients are only seldomly reported. Understanding its disease etiology necessitates well-stablished infection models, improving to recognize and diagnose patients with R. helvetica infection and facilitating the development of effective control strategies. In this study, we used C3H/HeN mice as a model to establish R. helvetica infection, achieving a high infection prevalence (89-100 %). While the liver and the spleen DNA consistently tested positive for infection in all challenged mice, additional infected organs included the kidneys, heart, and the lungs. Notably, a low prevalence of infection was observed in I. ricinus nymphs fed on R. helvetica-challenged mice. In addition, larvae were refractory to infection, suggesting that ticks exhibit low susceptibility to the pathogen. To the best of our knowledge, this is the first study of an animal model for R. helvetica infection. It serves as a valuable tool for advancing research on the interactions among the bacterium and its vertebrate host.
Collapse
Affiliation(s)
- Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Tal Azagi
- National Institute for Public Health and the Environment, Netherlands
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sabine Rakotobe
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 st, 20-080, Lublin, Poland
| | - Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
- Diagnostics and Laboratory Research Task Force, Balkan Association for Vector-Borne Diseases, 21000, Novi Sad, Serbia
| | - Stefania Porcelli
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aurélie Heckmann
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Clémence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Hein Sprong
- National Institute for Public Health and the Environment, Netherlands
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Andrea C Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
3
|
Salimi M, Khanzadeh M, Nabipoorashrafi SA, Seyedi SA, Yaghoobpoor S, Brismée JM, Lucke-Wold B, Ebadi M, Ghaedi A, Kumar VS, Mirghaderi P, Rabie H, Khanzadeh S. Association of neutrophil to lymphocyte ratio with bone mineral density in post-menopausal women: a systematic review and meta-analysis. BMC Womens Health 2024; 24:169. [PMID: 38461235 PMCID: PMC10924380 DOI: 10.1186/s12905-024-03006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to compare the neutrophil lymphocyte ratio (NLR) levels between women with post-menopausal osteopenia or osteoporosis to those with normal bone mineral density (BMD). METHODS We used Web of Science, PubMed, and Scopus to conduct a systematic search for relevant publications published before June 19, 2022, only in English language. We reported standardized mean difference (SMD) with a 95% confidence interval (CI). Because a significant level of heterogeneity was found, we used the random-effects model to calculate pooled effects. We used the Newcastle-Ottawa scale for quality assessment. RESULTS Overall, eight articles were included in the analysis. Post-menopausal women with osteoporosis had elevated levels of NLR compared to those without osteoporosis (SMD = 1.03, 95% CI = 0.18 to 1.88, p = 0.017, I2 = 98%). In addition, there was no difference between post-menopausal women with osteopenia and those without osteopenia in neutrophil lymphocyte ratio (NLR) levels (SMD = 0.58, 95% CI=-0.08 to 1.25, p = 0.085, I2 = 96.8%). However, there was no difference between post-menopausal women with osteoporosis and those with osteopenia in NLR levels (SMD = 0.75, 95% CI=-0.01 to 1.51, p = 0.05, I2 = 97.5%, random-effect model). CONCLUSION The results of this study point to NLR as a potential biomarker that may be easily introduced into clinical settings to help predict and prevent post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Maryam Salimi
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Mehrnoosh Ebadi
- Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varun Singh Kumar
- Department of Orthopaedic Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyman Mirghaderi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rabie
- Department of Orthopedic Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells. Vaccines (Basel) 2023; 11:vaccines11010173. [PMID: 36680017 PMCID: PMC9865178 DOI: 10.3390/vaccines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In recent years, promising vaccination strategies against rickettsiosis have been described in experimental animal models and human cells. OmpB is considered an immunodominant antigen that is recognized by T and B cells. The aim of this study was to identify TCD4+INF-γ+ and TCD8+INF-γ+ lymphocytes in an autologous system with macrophages transfected with the vaccine candidate pVAX1-OmpB24. Lymphocytes and monocytes from 14 patients with Rickettsia were isolated from whole blood. Monocytes were differentiated into macrophages and transfected with the plasmid pVAX1-OmpB24 pVax1. Isolated lymphocytes were cultured with transfected macrophages. IFN-γ-producing TCD4+ and TCD8+ lymphocyte subpopulations were identified by flow cytometry, as was the percentage of macrophages expressing CD40+, CD80+, HLA-I and HLA-II. Also, we analyzed the exhausted condition of the T lymphocyte subpopulation by PD1 expression. Macrophages transfected with pVAX1-OmpB24 stimulated TCD4+INF-γ+ cells in healthy subjects and patients infected with R. typhi. Macrophages stimulated TCD8+INF-γ+ cells in healthy subjects and patients infected with R. rickettsii and R. felis. Cells from healthy donors stimulated with OmpB-24 showed a higher percentage of TCD4+PD1+. Cells from patients infected with R. rickettsii had a higher percentage of TCD8+PD-1+, and for those infected with R. typhi the larger number of cells corresponded to TCD4+PD1+. Human macrophages transfected with pVAX1-OmpB24 activated TCD4+IFN-γ+ and CD8+IFN-γ+ in patients infected with different Rickettsia species. However, PD1 expression played an important role in the inhibition of T lymphocytes with R. felis.
Collapse
|
5
|
Efficacy and Immune Correlates of OMP-1B and VirB2-4 Vaccines for Protection of Dogs from Tick Transmission of Ehrlichia chaffeensis. mBio 2022; 13:e0214022. [PMID: 36342170 PMCID: PMC9765013 DOI: 10.1128/mbio.02140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular bacterium, causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. Here, we investigated the vaccine potential of OMP-1B and VirB2-4. Among the highly expressed and immunodominant E. chaffeensis porin P28s/OMP-1s, OMP-1B is predominantly expressed by E. chaffeensis in A. americanum ticks, whereas VirB2-4 is a pilus protein of the type IV secretion system essential for E. chaffeensis infection of host cells. Immunization with recombinant OMP-1B (rOMP-1B) or recombinant VirB2-4 (rVirB2-4) protected mice from E. chaffeensis infection as effectively as Entry-triggering protein of Ehrlichia immunization. Dogs vaccinated with a nanoparticle vaccine composed of rOMP-1B or rVirB2-4 and an immunostimulating complex developed high antibody titers against the respective antigen. Upon challenge with E. chaffeensis-infected A. americanum ticks, E. chaffeensis was undetectable in the blood of rOMP-1B or rVirB2-4 immunized dogs on day 3 or 6 post-tick attachment and for the duration of the experiment, whereas dogs sham-vaccinated with the complex alone were persistently infected for the duration of the experiment. E. chaffeensis exponentially replicates in blood-feeding ticks to facilitate transmission. Previously infected ticks removed from OMP-1B-immunized dogs showed significantly lower bacterial load relative to ticks removed from sham-immunized dogs, suggesting in-tick neutralization. Peripheral blood leukocytes from rVirB2-4-vaccinated dogs secreted significantly elevated amounts of interferon-γ soon after tick attachment by ELISpot assay and reverse transcription-quantitative PCR, suggesting interferon-γ-mediated Ehrlichia inhibition. Thus, Ehrlichia surface-exposed proteins OMP-1B and VirB2-4 represent new potential vaccine candidates for blocking tick-borne ehrlichial transmission. IMPORTANCE Ehrlichia are tick-borne pathogens that cause a potentially fatal illness-ehrlichiosis-in animals and humans worldwide. Currently, no vaccine is available for ehrlichiosis, and treatment options are limited. Ticks are biological vectors of Ehrlichia, i.e., Ehrlichia exponentially replicates in blood-sucking ticks before infecting animals. Ticks also inoculate immunomodulatory substances into animals. Thus, it is important to study effects of candidate vaccines on Ehrlichia infection in both animals and ticks and the immune responses of animals shortly after infected tick challenge. Here, we investigated the efficacy of vaccination with functionality-defined two surface-exposed outer membrane proteins of Ehrlichia chaffeensis, OMP-1B and VirB2-4, in a mouse infection model and then in a dog-tick transmission model. Our results begin to fill gaps in our understanding of Ehrlichia-derived protective antigens against tick-transmission and immune correlates and mechanisms that could help future development of vaccines for immunization of humans and animals to counter tick-transmitted ehrlichiosis.
Collapse
|
6
|
Peng C, Guo Z, Zhao Y, Li R, Wang L, Gong W. Effect of Lymphocyte Subsets on Bone Density in Senile Osteoporosis: A Retrospective Study. J Immunol Res 2022; 2022:3337622. [PMID: 36339939 PMCID: PMC9629916 DOI: 10.1155/2022/3337622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Several studies have shown that lymphocyte subsets can mediate the occurrence of osteoporosis (OP); however, the predictive ability of lymphocyte subsets in senile OP has not been elucidated. Purpose To investigate the ability of lymphocyte subsets to predict senile osteoporosis (OP). Methods and Materials This study included 44 patients with senile OP and 44 without OP. Dual-energy X-ray absorptiometry (DEXA) was used to determine bone mineral density (BMD). Flow cytometry was used to analyze the absolute counts of the lymphocyte subsets and cytokine levels. Finally, the correlation between BMD and lymphocyte subset counts in the two groups was analyzed. Results There were no significant differences in age, sex, or weight between the OP and non-OP groups. The absolute counts of total T lymphocytes and CD8+ T lymphocytes in the OP group were significantly lower than those in the non-OP group. The levels of IFN-γ or TNF-α in the OP group were significantly higher or lower, respectively, than those in the non-OP group. PCA showed that age, BMI, total T lymphocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes were the principal components of senile OP. The linear regression equation showed that BMD of the right femoral neck significantly decreased with a decline in CD8+ T lymphocyte counts. Conclusion BMD decreased with a decrease in CD8+ T lymphocytes. The mechanism by which lower lymphocyte subsets lead to lower BMD may be related to abnormal bone metabolism caused by immune aging. Therefore, we considered that CD8+ T lymphocytes could be used to predict the incidence of senile OP.
Collapse
Affiliation(s)
- Cong Peng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, 075000 Hebei, China
| | - Zongwei Guo
- Institute of Respiratory and Critical Medicine/Beijing Key Laboratory of OTIR, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yue Zhao
- Academy of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Rui Li
- Hebei North University, Zhangjiakou, 075000 Hebei, China
- Institute of Respiratory and Critical Medicine/Beijing Key Laboratory of OTIR, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Liang Wang
- Department of Geriatrics, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
7
|
Gong W, Liang Y, Mi J, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice. Indian J Tuberc 2022; 69:482-495. [PMID: 36460380 DOI: 10.1016/j.ijtb.2021.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a global infectious disease, but there is no ideal vaccine against TB except the Bacille Calmette-Guérin (BCG) vaccine. METHODS Herein, 25 candidate peptides were predicted from four antigens of Mycobacterium tuberculosis based on their high-affinity binding capacity for the human leukocyte antigen (HLA) DRB1∗0101. Three T-helper 1 (Th1) immunodominant peptides (Ag85B12-26, CFP2112-26, and PPE18149-163) were identified by ELISPOT assays in the humanized C57BL/6 mice. They resulted in a novel Th1 peptide-based vaccine ACP named by the first letter of the three peptides. In addition, the protective efficacy was evaluated in humanized or wild-type C57BL/6 mice and the humoral and cellular immune responses were confirmed in vitro. RESULTS Compared with the PBS group, the ACP vaccinated mice showed slight decreases in colony-forming units (CFUs) and pathological lesions. However, when using it as a booster, the ACP vaccine did not significantly enhance the protective efficacy of BCG in humanized or wild-type mice. Interestingly, we found that ACP vaccination significantly increased the number of interferon-γ positive (IFN-γ+) T lymphocytes and the levels of IFN-γ cytokines as well as antibodies. Furthermore, the IL-2 level was significantly higher in humanized mice prime-boosted with BCG and ACP. CONCLUSIONS Our results suggested that ACP vaccination could stimulate higher levels of cytokines and antibodies but failed to improve the protective efficacy of BCG in mice, indicating that the secretion level of IFN-γ may not be positively correlated with the protection efficiency of the vaccine. These findings provided important information on the feasibility of a peptide vaccine as a booster for enhancing the protective efficacy of BCG.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
8
|
Walker DH, Blanton LS, Laroche M, Fang R, Narra HP. A Vaccine for Canine Rocky Mountain Spotted Fever: An Unmet One Health Need. Vaccines (Basel) 2022; 10:1626. [PMID: 36298491 PMCID: PMC9610744 DOI: 10.3390/vaccines10101626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as gene knockout methods are applied to these obligately intracellular pathogens.
Collapse
Affiliation(s)
- David H. Walker
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Lucas S. Blanton
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0435, USA
| | - Maureen Laroche
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1019, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Hema P. Narra
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| |
Collapse
|
9
|
Gong W, Liang Y, Wang J, Liu Y, Xue Y, Mi J, Li P, Wang X, Wang L, Wu X. Prediction of Th1 and Cytotoxic T Lymphocyte Epitopes of Mycobacterium tuberculosis and Evaluation of Their Potential in the Diagnosis of Tuberculosis in a Mouse Model and in Humans. Microbiol Spectr 2022; 10:e0143822. [PMID: 35938824 PMCID: PMC9430503 DOI: 10.1128/spectrum.01438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is the primary source of tuberculosis (TB) but there is no suitable detection method to distinguish LTBI from active tuberculosis (ATB). In this study, five antigens of Mycobacterium tuberculosis belonging to LTBI and regions of difference (RDs) were selected to predict Th1 and cytotoxic T lymphocyte (CTL) epitopes. The immunodominant Th1 and CTL peptides were identified in mouse models, and their performance in distinguishing LTBI from ATB was determined in mice and humans. Ten Th1 and ten CTL immunodominant peptides were predicted and synthesized in vitro. The enzyme-linked immunosorbent spot assay results showed that the combination of five Th1 peptides (area under the curve [AUC] = 1, P < 0.0001; sensitivity = 100% and specificity = 93.33%), the combination of seven CTL peptides (AUC = 1, P < 0.0001; 100 and 95.24%), and the combination of four peptide pools (AUC = 1, P < 0.0001; sensitivity = 100% and specificity = 91.67%) could significantly discriminate mice with LTBI from mice with ATB or uninfected controls (UCs). The combined peptides or peptide pools induced significantly different cytokine levels between the three groups, improving their ability to differentiate ATB from LTBI. Furthermore, it was found that pool 2 could distinguish patients with ATB from UCs (AUC = 0.6728, P = 0.0041; sensitivity = 72.58% and specificity = 59.46%). The combination of Th1 and CTL immunodominant peptides derived from LTBI-RD antigens might be a promising strategy for diagnosing ATB and LTBI in mice and patients with ATB and uninfected controls. IMPORTANCE Latent tuberculosis infection (LTBI) is a challenging problem in preventing, diagnosing, and treating tuberculosis (TB). The innate and adaptive immune responses are essential for eliminating or killing the mycobacteria. Antigen-presenting cells (APCs) present and display mycobacterium peptides on their surfaces, and recognition between T cells and APCs is based on some essential peptides rather than the full-length protein. Therefore, the selection of candidate antigens and the prediction and screening of potential immunodominant peptides have become a key to designing a new generation of TB diagnostic biomarkers. This study is the first to report that the combination of Th1 and CTL immunodominant peptides derived from LTBI-RD antigens can distinguish LTBI from active TB (ATB) in animals and ATB patients from uninfected individuals. These findings provide a novel insight for discovering potential biomarkers for the differential diagnosis of ATB and LTBI in the future.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Pengchuan Li
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoou Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
11
|
Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines (Basel) 2021; 9:vaccines9080896. [PMID: 34452021 PMCID: PMC8402588 DOI: 10.3390/vaccines9080896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Rickettsioses are febrile, potentially lethal infectious diseases that are a serious health threat, especially in poor income countries. The causative agents are small obligate intracellular bacteria, rickettsiae. Rickettsial infections are emerging worldwide with increasing incidence and geographic distribution. Nonetheless, these infections are clearly underdiagnosed because methods of diagnosis are still limited and often not available. Another problem is that the bacteria respond to only a few antibiotics, so delayed or wrong antibiotic treatment often leads to a more severe outcome of the disease. In addition to that, the development of antibiotic resistance is a serious threat because alternative antibiotics are missing. For these reasons, prophylactic vaccines against rickettsiae are urgently needed. In the past years, knowledge about protective immunity against rickettsiae and immunogenic determinants has been increasing and provides a basis for vaccine development against these bacterial pathogens. This review provides an overview of experimental vaccination approaches against rickettsial infections and perspectives on vaccination strategies.
Collapse
|
12
|
Gong W, Liang Y, Mi J, Jia Z, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. Peptides-Based Vaccine MP3RT Induced Protective Immunity Against Mycobacterium Tuberculosis Infection in a Humanized Mouse Model. Front Immunol 2021; 12:666290. [PMID: 33981313 PMCID: PMC8108698 DOI: 10.3389/fimmu.2021.666290] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Tuberculosis (TB) is still a global infectious disease that seriously threatens human beings. The only licensed TB vaccine Bacille Calmette-Guérin (BCG)’s protective efficacy varies significantly among populations and regions. It is very urgent to develop more effective vaccines. Methods In this study, eleven candidate proteins of Mycobacterium tuberculosis were selected to predict peptides with high-affinity binding capacity for the HLA-DRB1*01:01 molecule. The immunodominant peptides were identified with the enzyme-linked immunospot assay (ELISPOT) and linked in silico to result in a novel polypeptide vaccine in Escherichia coli cells. The vaccine’s protective efficacy was evaluated in humanized and wild-type C57BL/6 mice. The potential immune protective mechanisms were explored with Enzyme-linked Immunosorbent Assay (ELISA), flow cytometry, and ELISPOT. Results Six immunodominant peptides screened from 50 predicted peptides were used to construct a new polypeptide vaccine named MP3RT. After challenge with M. tuberculosis, the colony-forming units (CFUs), lung lesion area, and the number of inflammatory cells in humanized mice rather than wild-type mice vaccinated with MP3RT were significantly lower than these in mice immunized with PBS. The humanized mice vaccinated with MP3RT revealed significant increases in IFN-γ cytokine production, IFN-γ+ T lymphocytes, CD3+IFN-γ+ T lymphocytes, and the MP3RT-specific IgG antibody. Conclusions Taken together, MP3RT is a promising peptides-based TB vaccine characterized by inducing high levels of IFN-γ and CD3+IFN-γ+ T lymphocytes in humanized mice. These new findings will lay a foundation for the development of peptides-based vaccines against TB.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Graduate School, Hebei North University, Zhangjiakou, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
13
|
Chinese Traditional Medicine NiuBeiXiaoHe (NBXH) Extracts Have the Function of Antituberculosis and Immune Recovery in BALB/c Mice. J Immunol Res 2021; 2021:6234560. [PMID: 33575361 PMCID: PMC7857905 DOI: 10.1155/2021/6234560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The Traditional Chinese Medicine NiuBeiXiaoHe (NBXH) is a valid antituberculosis (TB) prescription from the experience of clinical practice. However, the mechanism of NBXH extracts' immunotherapy has been poorly understood. Herein, the immunotherapeutic efficacy and the differentially expressed (DE) genes of NBXH extracts were evaluated and identified in BALB/c mice. Methods The total RNA was extracted from peripheral blood mononuclear cells, and the DE genes were identified by gene chip. The enrichment and signaling pathway analyses were performed using Gene Ontology (GO) and KEGG database. Results It was shown that the treatment of NBXH extracts (high dose) significantly reduced mycobacteria loads and histopathological lesions in mice infected by Mycobacterium tuberculosis and resulted in 3,454 DE upregulated genes and 3,594 downregulated DE genes. Furthermore, NBXH extracts killed mycobacteria by inhibiting the supply of necessary ingredients for their growth and proliferation. They restored the disordered immune microenvironments by up- or downregulating immune and inflammation-related pathways. Conclusions Taken together, NBXH extracts not only efficiently decreased the mycobacteria loads but also balanced the immune disorders in mice. These new findings provide a fresh perspective for elucidating the immunotherapeutic mechanism of NBXH extracts and pointed out the direction for improving the treatment efficacy of NBXH extracts.
Collapse
|
14
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
15
|
Comparative Analysis of Infection by Rickettsia rickettsii Sheila Smith and Taiaçu Strains in a Murine Model. Pathogens 2020; 9:pathogens9090744. [PMID: 32927666 PMCID: PMC7557639 DOI: 10.3390/pathogens9090744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease caused by Rickettsia rickettsii, which is widely distributed throughout the Americas. Over 4000 cases of RMSF are recorded annually in the United States, while only around 100 cases are reported in Brazil. Conversely, while case fatality rates in the United States oscillate around 5%, in Brazil they can surpass 70%, suggesting that differences in tick vectoring capacity, population sensitivity, and/or variability in virulence of the rickettsial strains may exist. In this study, we compared the susceptibility of C3H/HeN mice to two highly virulent strains of R. rickettsii, one from the United States (Sheila Smith) and the other from Brazil (Taiaçu). Animals inoculated with the Taiaçu strain succumbed to infection earlier and exhibited severe histological lesions in both liver and spleen sooner than mice infected with the Sheila Smith strain. These differences in survival and signs of the disease are not related to a greater proliferation of the Taiaçu strain, as there were no significant differences in the rickettsial load in mice tissues inoculated with either strain. The present study is the first step to experimentally assess differences in fatality rates of RMSF in two different regions of the American continent.
Collapse
|
16
|
Gong WP, Liang Y, Ling YB, Zhang JX, Yang YR, Wang L, Wang J, Shi YC, Wu XQ. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Mil Med Res 2020; 7:25. [PMID: 32493477 PMCID: PMC7268289 DOI: 10.1186/s40779-020-00258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tuberculosis is a leading cause of death worldwide. BCG is an effective vaccine, but not widely used in many parts of the world due to a variety of issues. Mycobacterium vaccae (M. vaccae) is another vaccine used in human subjects to prevent tuberculosis. In the current study, we investigated the potential mechanisms of M. vaccae vaccination by determining differentially expressed genes in mice infected with M. tuberculosis before and after M. vaccae vaccination. METHODS Three days after exposure to M. tuberculosis H37Rv strain (5 × 105 CFU), adult BALB/c mice randomly received either M. vaccae vaccine (22.5 μg) or vehicle via intramuscular injection (n = 8). Booster immunization was conducted 14 and 28 days after the primary immunization. Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis. RESULTS M. vaccae vaccination provided protection against M. tuberculosis infection (most prominent in the lungs). We identified 2326 upregulated and 2221 downregulated genes in vaccinated mice. These changes could be mapped to a total of 123 signaling pathways (68 upregulated and 55 downregulated). Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3K-Akt signaling pathway as most likely to be functional. CONCLUSIONS M. vaccae vaccine provided good protection in mice against M. tuberculosis infection, via a highly complex set of molecular changes. Our findings may provide clue to guide development of more effective vaccine against tuberculosis.
Collapse
Affiliation(s)
- Wen-Ping Gong
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yan-Bo Ling
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jun-Xian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - You-Rong Yang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jie Wang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Ying-Chang Shi
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xue-Qiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
17
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
18
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host. Infect Immun 2019; 87:IAI.00628-18. [PMID: 30396898 PMCID: PMC6346123 DOI: 10.1128/iai.00628-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. The causative agent of this disease, Rickettsia rickettsii, is transmitted by several species of ticks, including Dermacentor andersoni, Rhipicephalus sanguineus, and Amblyomma americanum. RMSF clinical signs generally include fever, headache, nausea, vomiting, muscle pain, lack of appetite, and rash. If untreated, it can quickly progress into a life-threatening illness in people and dogs, with high fatality rates ranging from 30 to 80%. While RMSF has been known for over a century, recent epidemiological data suggest that the numbers of documented cases and the fatality rates remain high in people, particularly during the last two decades in parts of North America. Currently, there are no vaccines available to prevent RMSF in either dogs or people. In this study, we investigated the efficacies of two experimental vaccines, a subunit vaccine containing two recombinant outer membrane proteins as recombinant antigens (RCA) and a whole-cell inactivated antigen vaccine (WCA), in conferring protection against virulent R. rickettsii infection challenge in a newly established canine model for RMSF. Dogs vaccinated with WCA were protected from RMSF, whereas those receiving RCA developed disease similar to that of nonvaccinated R. rickettsii-infected dogs. WCA also reduced the pathogen loads to nearly undetected levels in the blood, lungs, liver, spleen, and brain and induced bacterial antigen-specific immune responses. This study provides the first evidence of the protective ability of WCA against RMSF in dogs.
Collapse
|
20
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
21
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
22
|
Wang P, Xiong X, Jiao J, Yang X, Jiang Y, Wen B, Gong W. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine 2017; 35:7204-7212. [PMID: 29032899 DOI: 10.1016/j.vaccine.2017.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Rickettsia rickettsii is the causative pathogen of Rocky Mountain spotted fever (RMSF). Adr2, YbgF and OmpB are protective antigens of R. rickettsii. In this study, 90 candidate peptides were selected from these antigens based on their high-affinity binding capacity for the MHC class II molecule H2 I-A or H2 I-E using bioinformatic methods. Six peptides were determined using ELISPOT assay to be immunodominant based on the IFN-γ recall responses of CD4+ T cells from mice immunized with R. rickettsii. Six nucleotide sequences encoding the immunodominant peptides were linked in series and inserted into a plasmid for expression in Escherichia coli cells, resulting in a new, recombinant polypeptide termed GWP. After immunization and challenge, the rickettsial load or histopathological lesions in the organs of mice immunized with GWP or pooled peptides was significantly lower than that in organs of mice immunized with PBS or the individual peptide OmpB399. An in vitro neutralization test revealed that sera from mice immunized with GWP, OmpB399, or pooled peptides reduced R. rickettsii adherence to, and invasion of, vascular endothelial cells. Furthermore, significantly higher levels of IgG, IgG1, or IgG2a were detected in sera from mice immunized with GWP or pooled peptides, and significantly higher levels of IFN-γ or TNF-α secreted by CD4+ T cells from R. rickettsii-infected mice were detected after immunization with GWP. Altogether, our results indicated that polypeptides, especially GWP, could induce a Th1-type immune response against R. rickettsii infection, which might contribute to the rational design of peptide-based vaccines for RMSF.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China; Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, 17# Hei-Shan-Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
23
|
Horvatić A, Kuleš J, Guillemin N, Galan A, Mrljak V, Bhide M. High-throughput proteomics and the fight against pathogens. MOLECULAR BIOSYSTEMS 2017; 12:2373-84. [PMID: 27227577 DOI: 10.1039/c6mb00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogens pose a major threat to human and animal welfare. Understanding the interspecies host-pathogen protein-protein interactions could lead to the development of novel strategies to combat infectious diseases through the rapid development of new therapeutics. The first step in understanding the host-pathogen crosstalk is to identify interacting proteins in order to define crucial hot-spots in the host-pathogen interactome, such as the proposed pharmaceutical targets by means of high-throughput proteomic methodologies. In order to obtain holistic insight into the inter- and intra-species bimolecular interactions, apart from the proteomic approach, sophisticated in silico modeling is used to correlate the obtained large data sets with other omics data and clinical outcomes. Since the main focus in this area has been directed towards human medicine, it is time to extrapolate the existing expertise to a new emerging field: the 'systems veterinary medicine'. Therefore, this review addresses high-throughput mass spectrometry-based technology for monitoring protein-protein interactions in vitro and in vivo and discusses pathogen cultivation, model host cells and available bioinformatic tools employed in vaccine development.
Collapse
Affiliation(s)
- Anita Horvatić
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Josipa Kuleš
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Garza DA, Riley SP, Martinez JJ. Expression of Rickettsia Adr2 protein in E. coli is sufficient to promote resistance to complement-mediated killing, but not adherence to mammalian cells. PLoS One 2017; 12:e0179544. [PMID: 28662039 PMCID: PMC5491016 DOI: 10.1371/journal.pone.0179544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Bacteria exposed to host serum are subject to the antibacterial effects to the complement system. However, pathogenic microorganisms have evolved mechanisms of evading this immune attack. We have previously demonstrated that at least two R. conorii antigens, RC1281/Adr1 and OmpB β-peptide, contribute to the evasion of complement-mediated killing by binding the complement regulatory proteins vitronectin and factor H. RC1282/Adr2, a protein related to Adr1, is predicted to share similar structural features, suggesting that this protein may also contribute to evasion of complement-mediated killing. Interestingly, the R. prowazekii Adr1 and Adr2(RP828) proteins were originally found to interact with host cell surface proteins, suggesting their putative roles as adhesins in this pathogenic rickettsial species. In this study, we expressed both R. conorii and R. prowazekii Adr2 on the surface of a non-adherent, serum-sensitive strain of E. coli to examine the potential role of this protein to mediate evasion of complement-mediated killing and adherence to host cells. We demonstrate that, similar to R. conorii Adr1, R. conorii and R. prowazekii Adr2 are sufficient to mediate serum resistance and to promote interaction with the host complement regulator vitronectin. Furthermore, we demonstrate that expression of Adr2 in a non-adherent strain of E. coli is insufficient to mediate adherence to cultured mammalian endothelial cells. Together, our data demonstrate that the R. conorii and R. prowazekii Adr2 protein does not participate in the interactions with mammalian cells, but rather, participates in the evasion of killing by complement.
Collapse
Affiliation(s)
- Daniel A. Garza
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Sean P. Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Juan J. Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 2015; 33:985-92. [PMID: 25597943 DOI: 10.1016/j.vaccine.2015.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Two surface proteins of Rickettsia rickettsii, outer membrane protein B (OmpB) and adhesion 2 (Adr2), have been recognized as protective antigens. Herein, the immunization with both OmpB and Adr2 was performed in mice so as to explore whether their combination could induce an enhanced immunoprotection against R. rickettsii infection. METHODS C3H/HeN mice were immunized with recombinant protein rAdr2 or/and rOmp-4, a fragment derived from OmpB, and then mice were challenged with R. rickettsii. After which rickettsial loads in mice were measured by quantitative PCR. The specific antibodies in mouse sera were determined by ELISA and antigen-specific cytokines secretion by mouse T cells were analyzed in vitro. RESULTS After challenge with R. rickettsii, the mice immunized with rAdr2 or/and rOmpB-4 had significant lower rickettsial load in livers, spleens, or lungs compared to PBS mock-immunized mice. Particularly, the load in lungs of mice immunized with both rAdr2 and rOmpB-4 was significantly lower than that with either of them. High levels of specific antibodies were detected in sera from mice immunized with rAdr2 or/and rOmpB-4, but the ratios of specific IgG2a to IgG1 induced by their combination were significantly higher than that by either rAdr2 or rOmpB-4. Following stimulation with rAdr2 or/and rOmpB-4, the INF-γ secreted by CD4(+) T cells from infected mice was significantly higher than that by cognate cells from uninfected mice. And the TNF-α secreted by CD4(+) or CD8(+) T cells from infected mice was markedly greater than that by cognate cells from uninfected mice after stimulation by their combination but not either of them. CONCLUSION The combination of rAdr2 and rOmpB-4 conferred an enhanced protection against R. rickettsii infection in mice, which was mainly dependent on a stronger Th1-oriented immunoresponse with greater INF-γ and TNF-α secretion by antigen-specific T cells and specific IgG2a elicited by the combination.
Collapse
Affiliation(s)
- Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China; Department of Clinical Laboratory, The 105th Hospital of PLA, Hefei, Anhui 230031, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| |
Collapse
|