1
|
Zhang Z, De X, Sun W, Liu R, Li Y, Yang Z, Liu N, Wu J, Miao Y, Wang J, Wang F, Ge J. Biogenic Selenium Nanoparticles Synthesized by L. brevis 23017 Enhance Aluminum Adjuvanticity and Make Up for its Disadvantage in Mice. Biol Trace Elem Res 2024; 202:4640-4653. [PMID: 38273184 DOI: 10.1007/s12011-023-04042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/27/2024]
Abstract
The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runhang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyi Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yaxin Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
2
|
Cassaidy B, Moser BA, Solanki A, Chen Q, Shen J, Gotsis K, Lockhart Z, Rutledge N, Rosenberger MG, Dong Y, Davis D, Esser- Kahn AP. Immune Potentiation of PLGA Controlled-Release Vaccines for Improved Immunological Outcomes. ACS OMEGA 2024; 9:11608-11614. [PMID: 38496947 PMCID: PMC10938429 DOI: 10.1021/acsomega.3c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
With the emergence of SARS-CoV-2 and the continued emergence of new infectious diseases, there is a need to improve and expand current vaccine technology. Controlled-release subunit vaccines provide several benefits over current vaccines on the market, including the use of less antigen and fewer boost doses. Previously, our group reported molecules that alter NF-κB signaling improved the vaccine's performance and improved adjuvant-related tolerability. In this report, we test how these immune potentiators will influence responses when included as part of a controlled-release poly(lactic-co-glycolic) vaccine formulation. Murine in vivo studies revealed that SN50 and honokiol improved antibody levels at early vaccine time points. Microparticles with SN50 produced strong antibody levels over a longer period compared to microparticles without SN50. The same particles also increased T-cell activity. All of the immune potentiators tested further promoted Th2 humoral responses already exhibited by the control CpG OVA microparticle formulation. Overall, under controlled-release conditions, immune potentiators enhance the existing effects of controlled-release formulations, making it a potentially beneficial additive for controlled-release vaccine formulations.
Collapse
Affiliation(s)
- Britteny
J. Cassaidy
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brittany A. Moser
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Ani Solanki
- Animal
Resource Center, University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Kristen Gotsis
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Zoe Lockhart
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Nakisha Rutledge
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew G. Rosenberger
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yixiao Dong
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Delaney Davis
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser- Kahn
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Li Y, Yang Y, Chen D, Wang Y, Zhang X, Li W, Chen S, Wong SM, Shen M, Akerley BJ, Shen H. Memory Th17 cell-mediated protection against lethal secondary pneumococcal pneumonia following influenza infection. mBio 2023; 14:e0051923. [PMID: 37222516 PMCID: PMC10470593 DOI: 10.1128/mbio.00519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Streptococcus pneumoniae (Sp) frequently causes secondary pneumonia after influenza A virus (IAV) infection, leading to high morbidity and mortality worldwide. Concomitant pneumococcal and influenza vaccination improves protection against coinfection but does not always yield complete protection. Impaired innate and adaptive immune responses have been associated with attenuated bacterial clearance in influenza virus-infected hosts. In this study, we showed that preceding low-dose IAV infection caused persistent Sp infection and suppression of bacteria-specific T-helper type 17 (Th17) responses in mice. Prior Sp infection protected against subsequent IAV/Sp coinfection by improving bacterial clearance and rescuing bacteria-specific Th17 responses in the lungs. Furthermore, blockade of IL-17A by anti-IL-17A antibodies abrogated the protective effect of Sp preinfection. Importantly, memory Th17 responses induced by Sp preinfection overcame viral-driven Th17 inhibition and provided cross-protection against different Sp serotypes following coinfection with IAV. These results indicate that bacteria-specific Th17 memory cells play a key role in providing protection against IAV/Sp coinfection in a serotype-independent manner and suggest that a Th17-based vaccine would have excellent potential to mitigate disease caused by coinfection. IMPORTANCE Streptococcus pneumoniae (Sp) frequently causes secondary bacterial pneumonia after influenza A virus (IAV) infection, leading to increased morbidity and mortality worldwide. Current pneumococcal vaccines induce highly strain-specific antibody responses and provide limited protection against IAV/Sp coinfection. Th17 responses are broadly protective against Sp single infection, but whether the Th17 response, which is dramatically impaired by IAV infection in naïve mice, might be effective in immunization-induced protection against pneumonia caused by coinfection is not known. In this study, we have revealed that Sp-specific memory Th17 cells rescue IAV-driven inhibition and provide cross-protection against subsequent lethal coinfection with IAV and different Sp serotypes. These results indicate that a Th17-based vaccine would have excellent potential to mitigate disease caused by IAV/Sp coinfection.
Collapse
Affiliation(s)
- Yong Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai, China
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dafan Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xinyun Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenchao Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shengsen Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Mengwen Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Emergency Medical, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Brian J. Akerley
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Zhang X, Yang Y, Chen S, Li W, Li Y, Akerley BJ, Shao L, Zhang W, Shen H, Abt MC. Antigen-specific memory Th17 cells promote cross-protection against nontypeable Haemophilus influenzae after mild influenza A virus infection. Mucosal Immunol 2023; 16:153-166. [PMID: 36736665 DOI: 10.1016/j.mucimm.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Secondary bacterial pneumonia after influenza A virus (IAV) infection is the leading cause of hospitalization and death associated with IAV infection worldwide. Nontypeable Haemophilus influenzae (NTHi) is one of the most common causes of secondary bacterial pneumonia. Current efforts to develop vaccines against NTHi infection focus on inducing antibodies but are hindered by antigenic diversity among NTHi strains. Therefore, we investigated the contribution of the memory T helper type 17 (Th17) response in protective immunity against IAV/NTHi coinfection. We observed that even a mild IAV infection impaired the NTHi-specific Th17 response and increased morbidity and mortality compared with NTHi monoinfected mice. However, pre-existing memory NTHi-specific Th17 cells induced by a previous NTHi infection overcame IAV-driven Th17 inhibition and were cross-protective against different NTHi strains. Last, mice immunized with a NTHi protein that induced a strong Th17 memory response were broadly protected against diverse NTHi strains after challenge with coinfection. These results indicate that vaccination that limits IAV infection to mild disease may be insufficient to eliminate the risk of a lethal secondary bacterial pneumonia. However, NTHi-specific memory Th17 cells provide serotype-independent protection despite an ongoing IAV infection and demonstrate the advantage of developing broadly protective Th17-inducing vaccines against secondary bacterial pneumonia.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ying Yang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - ShengSen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Department of Endoscopy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenchao Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai, China; Department of Immunology and Rheumatology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Li
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai, China
| | - Brian J Akerley
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Linyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| | - Michael C Abt
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
5
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
6
|
Kabagenyi J, Natukunda A, Nassuuna J, Sanya RE, Nampijja M, Webb EL, Elliott AM, Nkurunungi G. Urban-rural differences in immune responses to mycobacterial and tetanus vaccine antigens in a tropical setting: A role for helminths? Parasitol Int 2020; 78:102132. [PMID: 32387542 PMCID: PMC7397513 DOI: 10.1016/j.parint.2020.102132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/31/2023]
Abstract
Several vaccines elicit lower efficacy or impaired immune responses in rural compared to urban settings, and in tropical low-income countries compared to high-income countries. An unresolved hypothesis is that immunomodulation by parasitic infections such as helminths (prevalent in rural tropical settings) contributes to suppression of vaccine responses. Among 1–17-year-old Ugandan residents of rural Schistosoma mansoni (Sm)-endemic islands and proximate urban communities with lower helminth exposure, we assessed plasma antibody and whole blood assay cytokine responses to tetanus toxoid (TT) and purified protein derivative of Mycobacterium tuberculosis (PPD). These were taken to represent recall responses to tetanus and BCG vaccination in infancy. PPD-specific responses are additionally induced by tuberculous and non-tuberculous mycobacterial exposure. Urban-rural comparisons showed that PPD-specific IFN-γ and IL-13 and TT-specific IL-13 and IgG concentrations were lower in the rural setting, but that PPD-specific IgE concentrations were higher. Among rural participants, Sm infection was inversely associated with PPD-specific IFN-γ, while nematode infection was positively associated with PPD-specific IgG. Among urban participants, Sm infection was positively associated with PPD-specific responses but inversely associated with TT-specific responses, while nematode infection was inversely associated with TT-specific IgG and IgG4, but no associations were observed with PPD-specific responses. Despite these associations, for the urban-rural comparisons there were no notable changes in test statistics after adjusting for current helminth infections, suggesting that helminths were not the sole explanation for the urban-rural differences observed. Helminths likely work in concert with other environmental exposures and operational factors to influence vaccine response. Vaccine (BCG, tetanus)-specific immune responses differ by urban/rural setting. Associations between helminths and vaccine-specific response also differ by setting. Urban-rural differences are not fully explained by helminth infection prevalence. Helminths likely work in concert with other factors to influence vaccine response.
Collapse
Affiliation(s)
- Joyce Kabagenyi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Richard E Sanya
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
| |
Collapse
|
7
|
Jain S, George PJ, Deng W, Koussa J, Parkhouse K, Hensley SE, Jiang J, Lu J, Liu Z, Wei J, Zhan B, Bottazzi ME, Shen H, Lustigman S. The parasite-derived rOv-ASP-1 is an effective antigen-sparing CD4 + T cell-dependent adjuvant for the trivalent inactivated influenza vaccine, and functions in the absence of MyD88 pathway. Vaccine 2018; 36:3650-3665. [PMID: 29764680 DOI: 10.1016/j.vaccine.2018.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4+ T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4+ T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works.
Collapse
Affiliation(s)
- Sonia Jain
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 100045, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph Koussa
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, United States; Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiu Jiang
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Jie Lu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 400715, China
| | - Zhuyun Liu
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States.
| |
Collapse
|
8
|
Sanya RE, Nkurunungi G, Andia Biraro I, Mpairwe H, Elliott AM. A life without worms. Trans R Soc Trop Med Hyg 2018; 111:3-11. [PMID: 28340138 PMCID: PMC5412073 DOI: 10.1093/trstmh/trx010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
Worms have co-evolved with humans over millions of years. To survive, they manipulate host systems by modulating immune responses so that they cause (in the majority of hosts) relatively subtle harm. Anthelminthic treatment has been promoted as a measure for averting worm specific pathology and to mitigate subtle morbidities which may include effects on anaemia, growth, cognitive function and economic activity. With our changing environment marked by rapid population growth, urbanisation, better hygiene practices and anthelminthic treatment, there has been a decline in worm infections and other infectious diseases and a rise in non-communicable diseases such as allergy, diabetes and cardiovascular disease. This review reflects upon our age-old interaction with worms, and the broader ramifications of life without worms for vaccine responses and susceptibility to other infections, and for allergy-related and metabolic disease. We touch upon the controversy around the benefits of mass drug administration for the more-subtle morbidities that have been associated with worm infections and then focus our attention on broader, additional aspects of life without worms, which may be either beneficial or detrimental.
Collapse
Affiliation(s)
- Richard E Sanya
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gyaviira Nkurunungi
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | - Harriet Mpairwe
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda
| | - Alison M Elliott
- MRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
9
|
Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1. Vaccine 2016; 34:887-92. [PMID: 26795365 PMCID: PMC4731280 DOI: 10.1016/j.vaccine.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Influenza-specific antibody levels were significantly increased after immunization with TIV + rOv-ASP-1 in aged mice. rOv-ASP-1 was superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice. Co-administration of rOv-ASP-1 induced cross-reactive antibody and enhanced cross-protection.
Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV + rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV + rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.
Collapse
|
10
|
Haemophilus influenzae LicB contributes to lung damage in an aged mice co-infection model. Microb Pathog 2016; 90:1-6. [DOI: 10.1016/j.micpath.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/21/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
11
|
Sun H, Wei C, Liu B, Jing H, Feng Q, Tong Y, Yang Y, Yang L, Zuo Q, Zhang Y, Zou Q, Zeng H. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. Int J Nanomedicine 2015; 10:7275-90. [PMID: 26664118 PMCID: PMC4672755 DOI: 10.2147/ijn.s91529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Gram-positive bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA) can cause infections in the bloodstream, endocardial tissue, respiratory tract, culture-confirmed skin, or soft tissue. There are currently no effective vaccines, and none are expected to become available in the near future. An effective vaccine capable of eliciting both systemic and mucosal immune responses is also urgently needed. Here, we reported a novel oil-in-water nanoemulsion adjuvant vaccine containing an MRSA recombination protein antigen, Cremophor EL-35® as a surfactant, and propylene glycol as a co-surfactant. This nanoemulsion vaccine, whose average diameter was 31.34±0.49 nm, demonstrated good protein structure integrity, protein specificity, and good stability at room temperature for 1 year. The intramuscular systemic and nasal mucosal immune responses demonstrated that this nanoemulsion vaccine could improve the specific immune responses of immunoglobulin (Ig)G and related subclasses, such as IgG1, IgG2a, and IgG2b, as well as IgA, in the serum after Balb/c mice intramuscular immunization and C57 mice nasal immunization. Furthermore, this nanoemulsion vaccine also markedly enhanced the interferon-γ and interleukin-17A cytokine cell immune response, improved the survival ratio, and reduced bacterial colonization. Taken together, our results show that this novel nanoemulsion vaccine has great potential and is a robust generator of an effective intramuscular systemic and nasal mucosal immune response without the need for an additional adjuvant. Thus, the present study serves as a sound scientific foundation for future strategies in the development of this novel nanoemulsion adjuvant vaccine to enhance both the intramuscular systemic and nasal mucosal immune responses.
Collapse
Affiliation(s)
- HongWu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Chao Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - BaoShuai Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - HaiMing Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Qiang Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, People's Republic of China
| | - YaNan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - LiuYang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - QianFei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - QuanMing Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University of Chinese PLA, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Guo J, Yang Y, Xiao W, Sun W, Yu H, Du L, Lustigman S, Jiang S, Kou Z, Zhou Y. A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein. Vaccine 2015; 33:1974-80. [PMID: 25736195 PMCID: PMC7115538 DOI: 10.1016/j.vaccine.2015.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022]
Abstract
The Onchocerca volvulus activation-associated secreted protein-1 (Ov-ASP-1) has good adjuvanticity for a variety of antigens and vaccines, probably due to its ability activate antigen-processing cells (APCs). However, the functional domain of Ov-ASP-1 as an adjuvant is not clearly defined. Based on the structural prediction of this protein family, we constructed a 16-kDa recombinant protein of Ov-ASP-1 that contains only the core pathogenesis-related-1 (PR-1) domain (residues 10-153), designated ASPPR. We found that ASPPR exhibits adjuvanticity similar to that of the full-length Ov-ASP-1 (residues 10-220) for various antigens, including ovalbumin (OVA), HBsAg protein antigen, and the HIV peptide 5 (Pep5) antigen, but it is more suitable for vaccine design in ASPPR-antigen fusion proteins, and more stable in PBS than Ov-ASP-1 stored at -70 °C. These results suggest that ASPPR might be the functional region of Ov-ASP-1 as an adjuvant, and therefore could be developed as an adjuvant for human use.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yi Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenjun Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Weilai Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhihua Kou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|