1
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024; 151:1045-1052. [PMID: 38586999 PMCID: PMC11770523 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
2
|
Sun M, Wu F, Xu Z, Wang Y, Cao J, Zhou Y, Zhou J, Zhang H, Xu Q. The TCTP is essential for ovarian development and oviposition of Rhipicephalus haemaphysaloides. Vet Parasitol 2024; 329:110212. [PMID: 38781831 DOI: 10.1016/j.vetpar.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.
Collapse
Affiliation(s)
- Meng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Zeb I, Parizi LF, Israr M, da Silva Vaz I, Ali A. Cross-species immunoprotective antigens (subolesin, ferritin 2 and P0) provide protection against Rhipicephalus sanguineus sensu lato. Parasit Vectors 2024; 17:3. [PMID: 38172894 PMCID: PMC10765945 DOI: 10.1186/s13071-023-06079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tick control is mostly hampered by the rise of acaricide-resistant tick populations. Significant efforts have focused on developing alternative control methods, including cross-species protective and/or cocktail-based anti-tick vaccines, to achieve protection against various tick species. METHODS In this study, full-length open reading frames encoding subolesin (SUB) from Rhipicephalus microplus and ferritin 2 (FER2) from Hyalomma anatolicum as well as the partial 60S acidic ribosomal protein (P0) from R. microplus were cloned, expressed in Escherichia coli and used as vaccine antigens against Rhipicephalus sanguineus sensu lato (R. sanguineus s.l.) infestation in rabbits. RESULTS In silico analyses revealed that the SUB, P0 and FER2 proteins were antigenic and displayed limited similarity to the host's homologous proteins. The proteins shared identities of 97.5%, 100% and 89.5% with their SUB, P0 and FER2 R. sanguineus s.l. orthologous sequences, respectively. Antibodies against each recombinant protein cross-recognized the native proteins in the different tissues and developmental stages of R. sanguineus s.l. Overall efficacy of the SUB, FER2 and cocktail (SUB+FER2+P0) vaccines against R. sanguineus s.l. infestation was 86.3%, 95.9% and 90.9%, respectively. CONCLUSIONS Both mono-antigen and the cocktail anti-tick vaccines affected the biological parameters of R. sanguineus s.l. infestation in the rabbit model, which could be extrapolated to its infested host under natural conditions. These findings support the possibility of using mono-antigenic and cocktail-based vaccines for large-scale anti-tick vaccine development against multiple tick species.
Collapse
Affiliation(s)
- Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
4
|
Nandy K, Tamakloe C, Sonenshine DE, Sultana H, Neelakanta G. Anti-tick vaccine candidate subolesin is important for blood feeding and innate immune gene expression in soft ticks. PLoS Negl Trop Dis 2023; 17:e0011719. [PMID: 37934730 PMCID: PMC10629623 DOI: 10.1371/journal.pntd.0011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.
Collapse
Affiliation(s)
- Krittika Nandy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Comfort Tamakloe
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- The University of Queensland- Ochsner Clinical School, Jefferson, Loiusiana, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
5
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
6
|
Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicum Tick Infestations. Pathogens 2023; 12:pathogens12030433. [PMID: 36986356 PMCID: PMC10058648 DOI: 10.3390/pathogens12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6–99.8%, 98.7–99.6%, and 98.9–99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.
Collapse
|
7
|
Abbas MN, Jmel MA, Mekki I, Dijkgraaf I, Kotsyfakis M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int J Mol Sci 2023; 24:4969. [PMID: 36902400 PMCID: PMC10003026 DOI: 10.3390/ijms24054969] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ticks can seriously affect human and animal health around the globe, causing significant economic losses each year. Chemical acaricides are widely used to control ticks, which negatively impact the environment and result in the emergence of acaricide-resistant tick populations. A vaccine is considered as one of the best alternative approaches to control ticks and tick-borne diseases, as it is less expensive and more effective than chemical controls. Many antigen-based vaccines have been developed as a result of current advances in transcriptomics, genomics, and proteomic techniques. A few of these (e.g., Gavac® and TickGARD®) are commercially available and are commonly used in different countries. Furthermore, a significant number of novel antigens are being investigated with the perspective of developing new anti-tick vaccines. However, more research is required to develop new and more efficient antigen-based vaccines, including on assessing the efficiency of various epitopes against different tick species to confirm their cross-reactivity and their high immunogenicity. In this review, we discuss the recent advancements in the development of antigen-based vaccines (traditional and RNA-based) and provide a brief overview of recent discoveries of novel antigens, along with their sources, characteristics, and the methods used to test their efficiency.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ingrid Dijkgraaf
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Bonnet SI, Vourc’h G, Raffetin A, Falchi A, Figoni J, Fite J, Hoch T, Moutailler S, Quillery E. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: Where are we now and where are we going? PLoS Negl Trop Dis 2022; 16:e0010846. [PMCID: PMC9671348 DOI: 10.1371/journal.pntd.0010846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At a time of major global, societal, and environmental changes, the shifting distribution of pathogen vectors represents a real danger in certain regions of the world as generating opportunities for emergency. For example, the recent arrival of the Hyalomma marginatum ticks in southern France and the concurrent appearance of cases of Crimean–Congo hemorrhagic fever (CCHF)—a disease vectored by this tick species—in neighboring Spain raises many concerns about the associated risks for the European continent. This context has created an urgent need for effective methods for control, surveillance, and risk assessment for ticks and tick-borne diseases with a particular concern regarding Hyalomma sp. Here, we then review the current body of knowledge on different methods of tick control—including chemical, biological, genetical, immunological, and ecological methods—and the latest developments in the field, with a focus on those that have been tested against ticks from the genus Hyalomma. In the absence of a fully and unique efficient approach, we demonstrated that integrated pest management combining several approaches adapted to the local context and species is currently the best strategy for tick control together with a rational use of acaricide. Continued efforts are needed to develop and implement new and innovative methods of tick control. Disease-bearing Hyalomma ticks are an increasingly emerging threat to humans and livestock worldwide. Various chemical, biological, genetic, and ecological methods for tick control have been developed, with variable efficiencies. Today, the best tick control strategy involves an integrated pest management approach.
Collapse
Affiliation(s)
- Sarah I. Bonnet
- Animal Health Department, INRAE, Nouzilly, France
- Ecology and Emergence of Arthropod-borne Pathogens Unit, Institut Pasteur, CNRS UMR 2000, Université Paris-cité, Paris, France
- * E-mail:
| | - Gwenaël Vourc’h
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l’Etoile, France
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 40 allée de la Source, Villeneuve-Saint-Georges, France
- EA 7380 Dynamyc, UPEC, Créteil, France
- Unité de recherche EpiMAI, USC ANSES, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Alessandra Falchi
- UR7310, Faculté de Sciences, Campus Grimaldi, Université de Corse, Corte, France
| | - Julie Figoni
- Santé publique France, 94410 Saint-Maurice, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| | | | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| |
Collapse
|
9
|
Neelakanta G, Sultana H. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2022; 11:816547. [PMID: 35127563 PMCID: PMC8809362 DOI: 10.3389/fcimb.2021.816547] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Ticks are blood-sucking arthropods that have developed myriad of strategies to get a blood meal from the vertebrate host. They first attach to the host skin, select a bite site for a blood meal, create a feeding niche at the bite site, secrete plethora of molecules in its saliva and then starts feeding. On the other side, host defenses will try to counter-attack and stop tick feeding at the bite site. In this constant battle between ticks and the host, arthropods successfully pacify the host and completes a blood meal and then replete after full engorgement. In this review, we discuss some of the known and emerging roles for arthropod components such as cement, salivary proteins, lipocalins, HSP70s, OATPs, and extracellular vesicles/exosomes in facilitating successful blood feeding from ticks. In addition, we discuss how tick-borne pathogens modulate(s) these components to infect the vertebrate host. Understanding the biology of arthropod blood feeding and molecular interactions at the tick-host interface during pathogen transmission is very important. This information would eventually lead us in the identification of candidates for the development of transmission-blocking vaccines to prevent diseases caused by medically important vector-borne pathogens.
Collapse
|
10
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Mendoza-Martínez N, Alonso-Díaz MA, Merino O, Fernández-Salas A, Lagunes-Quintanilla R. Protective efficacy of the peptide Subolesin antigen against the cattle tick Rhipicephalus microplus under natural infestation. Vet Parasitol 2021; 299:109577. [PMID: 34560320 DOI: 10.1016/j.vetpar.2021.109577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The cattle tick Rhipicephalus microplus affect animal health, welfare, and cattle production in tropical and subtropical zones of the world. Anti-tick vaccines have been an effective alternative for cattle tick control instead of traditional chemical products. To date, Subolesin antigen has shown efficacy for the control of tick infestation in cattle, and previous studies showed that one peptide derived from this protein has demonstrated to elicit a strong and specific humoral immune response. Based on these findings, herein we characterized the efficacy of the peptide Subolesin for the control of cattle tick, R. microplus infestation under field conditions. Twenty-four female calves were assigned to four experimental groups and immunized with three subcutaneous doses of the peptide Subolesin, Bm86, both antigens (dual vaccine) and adjuvant/saline alone, respectively. Serum antibody levels (IgG) were assessed by ELISA and confirmed by Western blot; also, reproductive performance of naturally infested R. microplus was determined. The results showed that immunizations with the experimental antigens reduced tick infestations with vaccine's efficacy of 67 % (peptide Subolesin), 56 % (Bm86), and 49 % (dual vaccine) based on adult tick numbers, oviposition, and egg fertility between vaccinated and control animals. Peptide Subolesin-immunized calves developed a strong humoral immune response expressed by high anti-pSubolesin IgG levels, and the Western blot analysis confirmed that it is immunogenic. Cattle receiving Bm86 and dual vaccine showed less protection, although Bm86 was within the range reported previously. The negative correlation between antibody levels and reduction of naturally infested R. microplus strongly suggested that the effect of the vaccine was the result of the antibody response in immunized cattle. In conclusion, it was demonstrated that the peptide Subolesin induced a specific immune response in cattle under field conditions, resulting in reduced R. microplus populations in subsequent generations. Finally, integrated tick control must consider anti-tick vaccines as a cost-effective, sustainable, and successful tool for controlling cattle tick infestations.
Collapse
Affiliation(s)
- Nancy Mendoza-Martínez
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Miguel Angel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5, Carretera Victoria‑Mante, CP 87000, Ciudad Victoria, Tamaulipas, Mexico
| | - Agustín Fernández-Salas
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, C.P. 62550, Jiutepec, Morelos, Mexico.
| |
Collapse
|
12
|
Pereira DFS, Ribeiro HS, Gonçalves AAM, da Silva AV, Lair DF, de Oliveira DS, Boas DFV, Conrado IDSS, Leite JC, Barata LM, Reis PCC, Mariano RMDS, Santos TAP, Coutinho DCO, Gontijo NDF, Araujo RN, Galdino AS, Paes PRDO, Melo MM, Nagem RAP, Dutra WO, Silveira-Lemos DD, Rodrigues DS, Giunchetti RC. Rhipicephalus microplus: An overview of vaccine antigens against the cattle tick. Ticks Tick Borne Dis 2021; 13:101828. [PMID: 34628330 DOI: 10.1016/j.ttbdis.2021.101828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Rhipicephalus microplus, popularly known as the cattle tick, is the most important tick of livestock as it is responsible for significant economic losses. The use of chemical acaricides is still the most widely used control method despite its known disadvantages. Vaccination would be a safe alternative for the control of R. microplus and holds advantages over the use of chemical acaricides as it is environmental-friendly and leaves no residues in meat or milk. Two vaccines based on the Bm86 protein were commercialized, TickGARD® and Gavac®, with varying reported efficacies in different countries. The use of other vaccines, such as Tick Vac®, Go-Tick®, and Bovimune Ixovac® have been restricted to some countries. Several other proteins have been analyzed as possible antigens for more effective vaccines against R. microplus, including peptidases, serine proteinase inhibitors, glutathione S-transferases, metalloproteases, and ribosomal proteins, with efficacies ranging from 14% to 96%. Nonetheless, more research is needed to develop safe and efficient tick vaccines, such as the evaluation of the efficacy of antigens against other tick species to verify cross-reactivity and inclusion of additional antigens to promote the blocking of the infection and spreading of tick-borne diseases. This review summarizes the discoveries of candidate antigens for R. microplus tick vaccines as well as the methods used to test their efficacy.
Collapse
Affiliation(s)
- Diogo Fonseca Soares Pereira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Augusto Ventura da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Diego Fernandes Vilas Boas
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ingrid Dos Santos Soares Conrado
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Jaqueline Costa Leite
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Luccas Miranda Barata
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Pedro Campos Carvalhaes Reis
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Danielle Carvalho Oliveira Coutinho
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Nascimento Araujo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Biochemistry, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Paulo Ricardo de Oliveira Paes
- Department of Veterinary Clinical Medicine and Surgery, College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinical Medicine and Surgery, College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Structural Biology and Biotechnology Laboratory, Department of biochemistry and immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | | | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Analysis of Genetic Diversity in Indian Isolates of Rhipicephalus microplus Based on Bm86 Gene Sequence. Vaccines (Basel) 2021; 9:vaccines9030194. [PMID: 33652549 PMCID: PMC7996562 DOI: 10.3390/vaccines9030194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The control of cattle tick, Rhipicephalus microplus, is focused on repeated use of acaricides. However, due to growing acaricide resistance and residues problem, immunization of animals along with limited use of effective acaricides is considered a suitable option for the control of tick infestations. To date, more than fifty vaccine candidates have been identified and tested worldwide, but two vaccines were developed using the extensively studied candidate, Bm86. The main reason for limited vaccine commercialization in other countries is genetic diversity in the Bm86 gene leading to considerable variation in vaccine efficacy. India, with 193.46 million cattle population distributed in 28 states and 9 union territories, is suffering from multiple tick infestation dominated by R. microplus. As R. microplus has developed multi-acaricide resistance, an efficacious vaccine may provide a sustainable intervention for tick control. Preliminary experiments revealed that the presently available commercial vaccine based on the BM86 gene is not efficacious against Indian strain. In concert with the principle of reverse vaccinology, genetic polymorphism of the Bm86 gene within Indian isolates of R. microplus was studied. A 578 bp conserved nucleotide sequences of Bm86 from 65 R. microplus isolates collected from 9 Indian states was sequenced and revealed 95.6-99.8% and 93.2-99.5% identity in nucleotides and amino acids sequences, respectively. The identities of nucleotides and deduced amino acids were 94.7-99.8% and 91.8-99.5%, respectively, between full-length sequence (orf) of the Bm86 gene of IVRI-I strain and published sequences of vaccine strains. Six nucleotides deletion were observed in Indian Bm86 sequences. Four B-cell epitopes (D519-K554, H563-Q587, C598-T606, T609-K623), which are present in the conserved region of the IVRI-I Bm86 sequence, were selected. The results confirm that the use of available commercial Bm86 vaccines is not a suitable option against Indian isolates of R. microplus. A country-specific multi-epitope Bm86 vaccine consisting of four specific B-cell epitopes along with candidate molecules, subolesin and tropomyosin in chimeric/co-immunization format may provide a sustainable option for implementation in an integrated tick management system.
Collapse
|
14
|
Evaluation of the vaccine efficacy of three digestive protease antigens from Dermanyssus gallinae using an in vivo rearing system. Vaccine 2020; 38:7842-7849. [PMID: 33164806 DOI: 10.1016/j.vaccine.2020.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite considered as the major pest in the egg-laying industry. Vaccination is feasible strategy for controlling the haematophagous PRMs. Cathepsin D (CatD), cathepsin L (CatL) and legumain (Lgm) are three endopeptidases participating in digestion of hemoglobin in ticks. The in vitro test and the on-hen feeding device have been used to evaluate the efficacy of vaccines against D. gallinae, however they lacked some of the natural feeding cues for mites, resulting in unreliable results. In the present study, a reliable in vivo rearing system which was nearly close to the natural infestation status of mites was applied to evaluate the efficacy of vaccines against D. gallinae. After vaccinations with rDg-CatD-1, rDg-CatL-1 or rDg-Lgm, chicks developed the antigen-specific IgY immune response to each antigen. The survival rates of D. gallinae in three groups decreased significantly after they fed on the immunized birds. And the oviposition rate and fecundity were significantly reduced by 13.18% and 49.90% in the rDg-CatD-1 immunized group, 5.49% and 38.55% in the rDg-CatL-1 immunized group, respectively. Moreover, immunization with rDg-CatD-1 or rDg-CatL-1 significantly decreased the blood digestion rate of D. gallinae. However, no statistically significant effects on reproduction performance and blood digestion rate of mite were observed in group immunized with rDg-Lgm. Our results demonstrated that immunization with rDg-CatD-1 or rDg-CatL-1 could prevent and control D. gallinae by reducing the survival, reproductive capacity and blood digestion of mite. Importantly, the evaluation system based on the in vivo rearing system was reliable and practical, and it can accurately evaluate the effects of immunization on D. gallinae for pre-screening of potential novel antigens.
Collapse
|
15
|
Lee SH, Li J, Moumouni PFA, Okado K, Zheng W, Liu M, Ji S, Kim S, Umemiya-Shirafuji R, Xuan X. Subolesin vaccination inhibits blood feeding and reproduction of Haemaphysalis longicornis in rabbits. Parasit Vectors 2020; 13:478. [PMID: 32948229 PMCID: PMC7501621 DOI: 10.1186/s13071-020-04359-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Ticks can transmit numerous tick-borne pathogens and cause a huge economic loss to the livestock industry. Tick vaccines can contribute to the prevention of tick-borne diseases by inhibiting tick infestation or reproduction. Subolesin is an antigenic molecule proven to be a potential tick vaccine against different tick species and even some tick-borne pathogens. However, its effectivity has not been verified in Haemaphysalis longicornis, which is a widely distributed tick species, especially in East Asian countries. Therefore, the purpose of this study was to evaluate the effectivity of subolesin vaccination against H. longicornis in a rabbit model. METHODS Haemaphysalis longicornis (Okayama strain, female, adult, parthenogenetic strain) and Japanese white rabbits were used as the model tick and animal, respectively. The whole open reading frame of H. longicornis subolesin (HlSu) was identified and expressed as a recombinant protein using E. coli. The expression was verified using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the immunogenicity of rHlSu against anti-H. longicornis rabbit serum was confirmed using Western blotting. After vaccination of rHlSu in rabbits, experimental infestation of H. longicornis was performed. Variables related to blood-feeding periods, pre-oviposition periods, body weight at engorgement, egg mass, egg mass to body weight ratio, and egg-hatching periods were measured to evaluate the effectiveness of subolesin vaccination. RESULTS The whole open reading frame of HlSu was 540 bp, and it was expressed as a recombinant protein. Vaccination with rHlSu stimulated an immune response in rabbits. In the rHlSu-vaccinated group, body weight at engorgement, egg mass, and egg mass to body weight ratio were statistically significantly lower than those in the control group. Besides, egg-hatching periods were extended significantly. Blood-feeding periods and pre-oviposition periods were not different between the two groups. In total, the calculated vaccine efficacy was 37.4%. CONCLUSIONS Vaccination of rabbits with rHlSu significantly affected the blood-feeding and reproduction in H. longicornis. Combined with findings from previous studies, our findings suggest subolesin has the potential to be used as a universal tick vaccine.
Collapse
Affiliation(s)
- Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 South Korea
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Kiyoshi Okado
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Weiqing Zheng
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 South Korea
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| |
Collapse
|
16
|
Lugo-Caro Del Castillo SM, Hernández-Ortiz R, Gómez-Romero N, Martínez-Velázquez M, Castro-Saines E, Lagunes-Quintanilla R. Genetic diversity of the ATAQ gene in Rhipicephalus microplus collected in Mexico and implications as anti-tick vaccine. Parasitol Res 2020; 119:3523-3529. [PMID: 32572573 PMCID: PMC7306492 DOI: 10.1007/s00436-020-06773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022]
Abstract
The cattle tick Rhipicephalus microplus has a large impact on cattle production due to its bloodsucking habit and transmission of pathogens that cause babesiosis and anaplasmosis. Application of acaricides constitutes the major control method but is often accompanied by serious drawbacks, including environmental contamination and an increase in acaricide resistance by ticks. The recent development of anti-tick vaccines has provided positive results in the post-genomic era, owing to the rise of reverse vaccinological and bioinformatics approaches to analyze and identify candidate protective antigens for use against ticks. The ATAQ protein is considered a novel antigen for the control of the cattle tick R. microplus; it is expressed in midguts and Malpighian tubules of all ticks from the Rhipicephalus genus. However, genetic diversity studies are required. Here, the ATAQ gene was sequenced of seven R. microplus tick isolates from different regions in Mexico to understand the genetic diversity. The results showed that sequence identity among the Mexican isolates ranged between 98 and 100% and 97.8-100% at the nucleotide and protein levels, respectively. Alignments of deduced amino acid sequences from different R. microplus ATAQ isolates in Mexico revealed a high degree of conservation. However, the Mexican isolates differed from the R. microplus "Mozambique" strain, at 20 amino acid residues. Finally, the analysis of more R. microplus isolates, and possibly of other Rhipicephalus species, to determine the genetic diversity in the ATAQ locus is essential to suggest this antigen as a vaccine candidate that might control tick infestations.
Collapse
Affiliation(s)
| | - Rubén Hernández-Ortiz
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México
| | - Ninnet Gómez-Romero
- Laboratorio de Vacunología y Constatación, Facultad de Medicina Veterinaria y Zootecnia - UNAM, Avenida Universidad 3000, CP 04510, Ciudad de México, México
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas 800, Col. Colinas de la Normal, CP 44270, Guadalajara, Jalisco, México
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, CP 62574, Jiutepec, Morelos, México.
| |
Collapse
|
17
|
Kasaija PD, Contreras M, Kabi F, Mugerwa S, de la Fuente J. Vaccination with Recombinant Subolesin Antigens Provides Cross-Tick Species Protection in Bos indicus and Crossbred Cattle in Uganda. Vaccines (Basel) 2020; 8:vaccines8020319. [PMID: 32570925 PMCID: PMC7350222 DOI: 10.3390/vaccines8020319] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cattle tick infestations and transmitted pathogens affect animal health, production and welfare with an impact on cattle industry in tropical and subtropical countries. Anti-tick vaccines constitute an effective and sustainable alternative to the traditional methods for the control of tick infestations. Subolesin (SUB)-based vaccines have shown efficacy for the control of multiple tick species, but several factors affect the development of new and more effective vaccines for the control of tick infestations. To address this challenge, herein we used a regional and host/tick species driven approach for vaccine design and implementation. The objective of the study was to develop SUB-based vaccines for the control of the most important tick species (Rhipicephalus appendiculatus, R. decoloratus and Amblyomma variegatum) affecting production of common cattle breeds (Bos indicus and B. indicus x B. taurus crossbred) in Uganda. In this way, we addressed the development of anti-tick vaccines as an intervention to prevent the economic losses caused by ticks and tick-borne diseases in the cattle industry in Uganda. The results showed the possibility of using SUB antigens for the control of multiple tick species in B. indicus and crossbred cattle and suggested the use of R. appendiculatus SUB to continue research on vaccine design and formulation for the control of cattle ticks in Uganda. Future directions would include quantum vaccinology approaches based on the characterization of the SUB protective epitopes, modeling of the vaccine E under Ugandan ecological and epidemiological conditions and optimization of vaccine formulation including the possibility of oral administration.
Collapse
Affiliation(s)
- Paul D. Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704 Kampala, Uganda; (F.K.); (S.M.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.D.K.); (M.C.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence: or
| |
Collapse
|
18
|
Identification of functional epitopes of structural proteins and in-silico designing of dual acting multiepitope anti-tick vaccine against emerging Crimean-Congo hemorrhagic fever virus. Eur J Pharm Sci 2020; 151:105396. [PMID: 32479862 DOI: 10.1016/j.ejps.2020.105396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022]
Abstract
Recurrent outbreaks of Crimean-Congo hemorrhagic fever (CCHF) virus infection in different parts of world are a major global health concern. The CCHF viral infection is associated with severe hemorrhagic fevers and mortality up to 40%. More than 30 countries in Asia, Europe and Africa are affected with CCHF infection. Prevention of infection through vaccine becomes more important when no effective antiviral and associated therapies are available. Further ticks play a crucial role in maintenance and transmission of CCHFV. Therefore, the control of transmission by ticks is warranted for ultimate prevention of outbreak. The study employed a series of immunoinformatics approaches to design novel multiepitope vaccine targeting highly immunodominant epitopes of major structural proteins (Nucleoprotein and Glycoprotein complex) of CCHFV. Vaccine was designed by incorporating linear and conformational B cell, helper and cytotoxic T cell epitopes from these crucial immunogenic proteins adjoined with appropriate linkers and adjuvant. This vaccine construct was also complemented with a highly immunogenic and conserved protective tick salivary antigen named subolesin to impart dual activity as a unique transmission blocking vaccine. The B-cell peptides were also experimentally validated. The designed vaccine was further in silico validated for its physiochemical properties, allergenicity and immunogenicity etc. The proposed candidate vaccine construct has the potential to function both as a vaccine against CCHF virus as well as a universal anti-tick vaccine.
Collapse
|
19
|
Hassan IA, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Cross protection induced by combined Subolesin-based DNA and protein immunizations against adult Haemaphysalis longicornis. Vaccine 2019; 38:907-915. [PMID: 31699505 DOI: 10.1016/j.vaccine.2019.10.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/31/2023]
Abstract
Vaccination against ticks is an environmentally friendly alternative control method compared to chemical acaricide applications. Subolesin is a conserved protein in ticks, which can provide protection against some tick species. In this study, we evaluated the capacity of cocktail vaccination with Subolesin and ribosomal acidic protein 0 (P0) peptide against adults of Haemaphysalis longicornis. Priming with DNA vaccine expressing subolesin, followed by boosters of a single antigen (rRhSub) or a chimeric polypeptide (rRhSub/P0), provided cross protection. This treatment resulted in significant mortality, reduced blood ingestion and reduced reproduction in H. longicornis adults. Vaccination efficacies of 79.3% and 86.6% are reported in groups supplemented with rRhSub and rRhSub/P0, respectively. Conserved antigens, such as subolesin, formulated as DNA vaccine and enhanced with chimeric polypeptides, could be used as an anti-tick vaccine application, especially for control of infestation involving several tick species.
Collapse
Affiliation(s)
- Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
20
|
Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, Chigure G, Ravi Kumar GVPPS, de la Fuente J, Ghosh S. Identification and characterization of vaccine candidates against Hyalomma anatolicum-Vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis 2018; 66:422-434. [PMID: 30300470 DOI: 10.1111/tbed.13038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a tick borne viral disease reported from different parts of the world. The distribution of the CCHF cases are linked with the distribution of the principal vector, Hyalomma anatolicum in the ecosystem. Presently, vector control is mainly dependent on repeated application of acaricides, results in partial efficacy and generated acaricide resistant tick strains. Amongst the different components of integrated management programme, immunization of hosts is considered as one of the sustainable component. To restrict CCHF virus spreading, use of anti-Hyalomma vaccines appears as a viable solution. Accordingly, present study was under taken to characterize and evaluate vaccine potential of two conserved molecules, ferritin2 (FER2) and tropomyosin (TPM). Silencing of the genes conferred a cumulative reduction (rejection + unable to engorge) of 61.3% in FER2 and 70.2% in TPM respectively. Furthermore, 44.2% and 72.7% reduction in engorgement weight, 63.6% and 94.9% reduction in egg masses in FER2 and TPM silenced ticks in comparison to LUC-control group was recorded. The recombinant protein, rHaFER2 was characterized as 35 kDa protein with pI of 5.84 and possesses iron binding domains. While rHaTPM is a 51kDa protein with pI of 4.94 having calcium binding domains. Immunization of cross-bred calves by rHaFER2 conferred 51.7% and 51.2% protection against larvae and adults of H. anatolicum challenge infestations. While rHaTPM conferred 63.7% and 66.4% protection against larvae and adults infestations, respectively. The results were comparable with the data generated by RNAi and it clearly showed the possibility for the development of anti-hyalomma vaccine to manage CCHF virus and Theileria annulata infection in human and animals.
Collapse
Affiliation(s)
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - Suman Choudhary
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Ashok K Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | - Gajanan Chigure
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| |
Collapse
|
21
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
22
|
Ghosh M, Sangwan N, Chakravarti S, Banerjee S, Ghosh A, Kumar R, Sangwan AK. Molecular Characterization and Immunogenicity Analysis of 4D8 Protective Antigen of Hyalomma anatolicum Ticks Collected from Western India. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Narladkar BW. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet World 2018; 11:151-160. [PMID: 29657396 PMCID: PMC5891867 DOI: 10.14202/vetworld.2018.151-160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/21/2017] [Indexed: 12/04/2022] Open
Abstract
Broadly, species of arthropods infesting livestock are grouped into flies (biting and non-biting), fleas, lice (biting and sucking), ticks (soft and hard), and mites (burrowing, non-burrowing, and follicular). Among which, biting and non-biting flies and ticks are the potent vectors for many bacterial, viral, rickettsial, and protozoan diseases. Vectors of livestock are having economic significance on three points (1) direct losses from their bite and annoyance, worries, and psychological disturbances produced during the act of biting and feeding, (2) diseases they transmit, and (3) expenditure incurred for their control. Flies such as Culicoides spp. and Musca spp. and various species of hard ticks play important role in disease transmission in addition to their direct effects. For control of vectors, recent concept of integrated pest management (IPM) provides the best solution and also addresses the problems related to acaricide resistance and environmental protection from hazardous chemicals. However, to successfully implement the concept of IPM, for each vector species, estimation of two monitory benchmarks, i.e., economic injury level (EIL) and economic threshold level (ETL) is essential prerequisite. For many vector species and under several circumstances, estimation of EIL and ETL appears to be difficult. Under such scenario, although may not be exact, an approximate estimate can be accrued by taking into account several criteria such as percent prevalence of vectors in a geographical area, percent losses produced, total livestock population, and current prices of livestock products such as milk, meat, and wool. Method for approximate estimation is first time described and elaborated in the present review article.
Collapse
Affiliation(s)
- B. W. Narladkar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, MAFSU, Parbhani - 431 402, Maharashtra, India
| |
Collapse
|
24
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
25
|
Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 2017; 35:5682-5692. [PMID: 28911904 DOI: 10.1016/j.vaccine.2017.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/12/2023]
Abstract
Hyalomma anatolicum and Rhipicephalus microplus seriously affect dairy animals and immunization of host is considered as a sustainable option for the management of the tick species. Identification and validation of protective molecules are the major challenges in developing a cross-protective vaccine. The subolesin (SUB), calreticulin (CRT) and cathepsin L-like cysteine proteinase (CathL) genes of H. anatolicum were cloned, sequenced and analysed for sequence homology. Both Ha-SUB and Ha-CRT genes showed very high level of homogeneity within the species (97.6-99.4% and 98.2-99.7%) and among the tick species (77.3-99.3% and 85.1-99.7%) while for Ha-CathL the homogeneity was lower among ticks (57.5-89.5%). Besides tick species, both Ha-SUB and Ha- CRT genes showed high level of homogeneity with dipterans (47.2-53.4% and 72.0-74.4%) and nematodes (64.0% by CRT). The level of expression of the conserved genes in different stages of the tick species was studied. The differences in fold change of expression (FCE) of the targeted genes in life stages of tick were not statistically significant except Ha-SUB in eggs and in frustrated females, Ha-CRT in fed male and Ha-CathL in unfed and frustrated females where highest FCE was recorded. The functional properties of the genes were studied by RNAi technology and a significant level of gene suppression (p<0.05) resulted in very low percentage of engorgement of treated ticks viz., 3.7%, 11.1% and 30.0% in Ha-SUB, Ha-CRT and Ha-CathL respectively, in comparison to control was recorded. The recombinant proteins rHa-SUB, rHa-CRT and rHa-CathL encoded by the genes were expressed in prokaryotic expression system. They were evaluated for cross-protective efficacy and found to be respectively, 65.4%, 41.3% and 30.2% protective against H. anatolicum and 54.0%, 37.6% and 22.2%, against R. microplus infestations.
Collapse
|
26
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
27
|
Lempereur L, Larcombe SD, Durrani Z, Karagenc T, Bilgic HB, Bakirci S, Hacilarlioglu S, Kinnaird J, Thompson J, Weir W, Shiels B. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites. BMC Genomics 2017; 18:438. [PMID: 28583072 PMCID: PMC5460460 DOI: 10.1186/s12864-017-3788-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023] Open
Abstract
Background Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. Results A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Conclusions Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3788-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laetitia Lempereur
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: Laboratory of Parasitology and Parasitic Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Stephen D Larcombe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Zeeshan Durrani
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.,Present address: School of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE,, UK
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Serkan Bakirci
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Selin Hacilarlioglu
- Faculty of Veterinary Medicine, Department of Parasitology, Adnan Menderes University, Batı Kampus, Işıklı, Aydın, Turkey
| | - Jane Kinnaird
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FL, UK
| | - William Weir
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Brian Shiels
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
28
|
Olds CL, Mwaura S, Odongo DO, Scoles GA, Bishop R, Daubenberger C. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission. Parasit Vectors 2016; 9:484. [PMID: 27589998 PMCID: PMC5010713 DOI: 10.1186/s13071-016-1774-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
Background Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Methods Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. Results To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. Conclusion The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1774-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cassandra L Olds
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya. .,Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland.
| | - Stephen Mwaura
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - David O Odongo
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya.,School of Biological Sciences, University of Nairobi, P.O Box 30197, G.P.O, Nairobi, Kenya
| | - Glen A Scoles
- USDA Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164-6630, USA
| | - Richard Bishop
- International Livestock Research Institute, Box 30709, Nairobi, 00100, Kenya
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
| |
Collapse
|
29
|
Ma M, Chen Z, Liu A, Ren Q, Liu J, Liu Z, Li Y, Yin H, Guan G, Luo J. Biological Parameters of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) Fed on Rabbits, Sheep, and Cattle. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:301-5. [PMID: 27417084 PMCID: PMC4977778 DOI: 10.3347/kjp.2016.54.3.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 11/23/2022]
Abstract
In order to determine the effect of various hosts on feeding performance of Rhipicephalus (Boophilus) microplus, we used 3 mammalian species as hosts, cattle (Qinchuan), sheep (T an), and rabbits (Japanese white rabbit) for infest-ing ticks. Five hundreds of R. microplus larvae were exposed to each animal (3 animals/host species). Tick recoveries were 11.0%, 0.47%, and 5.5% from cattle, sheep, and rabbits, respectively. The averages of tick feeding periods were not significantly different on cattle, sheep, and rabbits, 28.8, 25.3, and 26.7 days, respectively. The average weights of individual engorged female from cattle, sheep, and rabbits were 312.5, 219.1, and 130.2 mg, respectively and those of egg mass weights each to 85.0, 96.6, and 17.8 mg. The highest egg hatching rate was in the ticks from cattle (96.0%), fol-lowed by those from rabbits (83.0%) and sheep (19.2%). These data suggest that rabbits could be as an alternative host to cultivate R. microplus for evaluating vaccines and chemical and biological medicines against the tick in the laboratory, although the biological parameters of ticks were less than those from cattle.
Collapse
Affiliation(s)
- Miling Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, P. R. China
| |
Collapse
|
30
|
Lu P, Zhou Y, Yu Y, Cao J, Zhang H, Gong H, Li G, Zhou J. RNA interference and the vaccine effect of a subolesin homolog from the tick Rhipicephalus haemaphysaloides. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:113-26. [PMID: 26608275 DOI: 10.1007/s10493-015-9987-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/31/2015] [Indexed: 05/25/2023]
Abstract
Subolesin is a well-characterized protective antigen in many ticks and, thus, it is potentially useful in the development of a broad-spectrum vaccine or an autocidal gene silencing strategy to control tick infestations. A subolesin homolog was cloned from the tick Rhipicephalus haemaphysaloides, which is widespread in China, by rapid amplification of complementary DNA (cDNA) ends. Its full-length cDNA was 1386 base pairs (bp), containing a 483 bp open reading frame with a predicted molecular mass of 18.7 kilodaltons and an isoelectric point of 9.26. The subolesin protein had a typical nuclear localization signal in its amino-terminus. The full-length cDNA of R. haemaphysaloides showed 52 and 80% identities to those from Ixodes scapularis and R. microplus, respectively, whereas amino acid sequence alignments showed 80 and 97% identities, respectively. Native subolesin was recognized in the unfed tick midgut by an antibody against recombinant subolesin. Transcriptional analysis showed that subolesin was expressed in the tick's four developmental stages and in all of the tissues examined, except for the synganglion. The pathogen Babesia microti induced the subolesin transcript by fourfold. Subolesin gene silencing by RNA interference significantly decreased the larval engorgement rate, the attachment rate and body weight of engorged nymphs, and the body weight and attachment and engorgement rates of adults, as well as the egg weight per female tick. Vaccinating mice and rabbits with recombinant subolesin induced a significant protective effect, resulting in a reduction of blood feeding and oviposition. These results encourage further studies of using subolesin to control tick infestations in China.
Collapse
Affiliation(s)
- Pengyun Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yingfang Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou, 510642, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
31
|
A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis 2015; 7:573-85. [PMID: 26723274 DOI: 10.1016/j.ttbdis.2015.12.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/24/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023]
Abstract
The field of reverse vaccinology developed as an outcome of the genome sequence revolution. Following the introduction of live vaccinations in the western world by Edward Jenner in 1798 and the coining of the phrase 'vaccine', in 1881 Pasteur developed a rational design for vaccines. Pasteur proposed that in order to make a vaccine that one should 'isolate, inactivate and inject the microorganism' and these basic rules of vaccinology were largely followed for the next 100 years leading to the elimination of several highly infectious diseases. However, new technologies were needed to conquer many pathogens which could not be eliminated using these traditional technologies. Thus increasingly, computers were used to mine genome sequences to rationally design recombinant vaccines. Several vaccines for bacterial and viral diseases (i.e. meningococcus and HIV) have been developed, however the on-going challenge for parasite vaccines has been due to their comparatively larger genomes. Understanding the immune response is important in reverse vaccinology studies as this knowledge will influence how the genome mining is to be conducted. Vaccine candidates for anaplasmosis, cowdriosis, theileriosis, leishmaniasis, malaria, schistosomiasis, and the cattle tick have been identified using reverse vaccinology approaches. Some challenges for parasite vaccine development include the ability to address antigenic variability as well the understanding of the complex interplay between antibody, mucosal and/or T cell immune responses. To understand the complex parasite interactions with the livestock host, there is the limitation where algorithms for epitope mining using the human genome cannot directly be adapted for bovine, for example the prediction of peptide binding to major histocompatibility complex motifs. As the number of genomes for both hosts and parasites increase, the development of new algorithms for pan-genomic mining will continue to impact the future of parasite and ricketsial (and other tick borne pathogens) disease vaccine development.
Collapse
|
32
|
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines 2015; 14:1367-76. [DOI: 10.1586/14760584.2015.1076339] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Richards SA, Stutzer C, Bosman AM, Maritz-Olivier C. Transmembrane proteins--Mining the cattle tick transcriptome. Ticks Tick Borne Dis 2015; 6:695-710. [PMID: 26096851 DOI: 10.1016/j.ttbdis.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
Managing the spread and load of pathogen-transmitting ticks is an important task worldwide. The cattle tick, Rhipicephalus microplus, not only impacts the economy through losses in dairy and meat production, but also raises concerns for human health in regards to the potential of certain transmitted pathogens becoming zoonotic. However, novel strategies to control R. microplus are hindered by lack of understanding tick biology and the discovery of suitable vaccine or acaricide targets. The importance of transmembrane proteins as vaccine targets are well known, as is the case in tick vaccines with Bm86 as antigen. In this study, we describe the localization and functional annotation of 878 putative transmembrane proteins. Thirty proteins could be confirmed in the R. microplus gut using LC-MS/MS analysis and their roles in tick biology are discussed. To the best of our knowledge, 19 targets have not been reported before in any proteomics study in various tick species and the possibility of using the identified proteins as targets for tick control are discussed. Although tissue expression of identified putative proteins through expansive proteomics is necessary, this study demonstrates the possibility of using bioinformatics for the identification of targets for further evaluation in tick control strategies.
Collapse
Affiliation(s)
- Sabine A Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Anna-Mari Bosman
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|