1
|
Haslund MM, Sørensen JK, Graff Stensballe L. Genetics and measles, mumps and rubella vaccine response in childhood and adolescence-A systematic review. Scand J Immunol 2023; 97:e13266. [PMID: 38157324 DOI: 10.1111/sji.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
Measles, mumps and rubella (MMR) are contagious infectious diseases that can be prevented by immunization. However, MMR infections can occur in previously immunized individuals. The vaccine response is, among other factors, influenced by the combined effects of many genes. This systematic review investigates the genetic influence on measles, mumps and rubella antibody responses after childhood vaccination. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), systematic literature searches were conducted in the medical databases PubMed, EMBASE and PsycINFO. Search strings were adjusted for each database. Citations were included if they measured and compared the immune response with immunogenetics after vaccination with a vaccine containing one or more of the following components: measles, mumps and/or rubella, MMR. The measure of vaccine response studied was antibodies after vaccination. Forty-eight articles were included in the final analysis. The results suggest that genetic determinants, including host genes, and single nucleotide polymorphisms in immune-related genes influence the MMR antibody responses after vaccination. Specifically, replicated associations were found between HLA, CD46, RARB, IRF9, EIF2AK2, cytokine genes and MMR vaccine-induced humoral immune responses. This knowledge can be useful in understanding and predicting immune responses and may have implications for future vaccine strategies.
Collapse
Affiliation(s)
- Marie Mykløy Haslund
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| | - Jesper Kiehn Sørensen
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| | - Lone Graff Stensballe
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| |
Collapse
|
2
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Puente-Marin S, Dietrich F, Achenbach P, Barcenilla H, Ludvigsson J, Casas R. Intralymphatic glutamic acid decarboxylase administration in type 1 diabetes patients induced a distinctive early immune response in patients with DR3DQ2 haplotype. Front Immunol 2023; 14:1112570. [PMID: 36817467 PMCID: PMC9933867 DOI: 10.3389/fimmu.2023.1112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
GAD-alum given into lymph nodes to Type 1 diabetes (T1D) patients participating in a multicenter, randomized, placebo-controlled double-blind study seemed to have a positive effect for patients with DR3DQ2 haplotype, who showed better preservation of C-peptide than the placebo group. Here we compared the immunomodulatory effect of GAD-alum administered into lymph nodes of patients with T1D versus placebo with focus on patients with DR3DQ2 haplotype. Methods GAD autoantibodies, GADA subclasses, GAD65-induced cytokine secretion (Luminex panel) and proliferation of peripheral mononuclear cells were analyzed in T1D patients (n=109) who received either three intra-lymphatic injections (one month apart) with 4 µg GAD-alum and oral vitamin D supplementation (2000 IE daily for 120 days), or placebo. Results Higher GADA, GADA subclasses, GAD65-induced proliferation and cytokine secretion was observed in actively treated patients after the second injection of GAD-alum compared to the placebo group. Following the second injection of GAD-alum, actively treated subjects with DR3DQ2 haplotype had higher GAD65-induced secretion of several cytokine (IL4, IL5, IL7, IL10, IL13, IFNγ, GM-CSF and MIP1β) and proliferation compared to treated individuals without DR3DQ2. Stratification of samples from GAD-alum treated patients according to C-peptide preservation at 15 months revealed that "good responder" individuals with better preservation of C-peptide secretion, independently of the HLA haplotype, had increased GAD65-induced proliferation and IL13 secretion at 3 months, and a 2,5-fold increase of IL5 and IL10 as compared to "poor responders". The second dose of GAD-alum also induced a more pronounced cytokine secretion in "good responders" with DR3DQ2, compared to few "good responders" without DR3DQ2 haplotype. Conclusion Patients with DR3DQ2 haplotype had a distinct early cellular immune response to GAD-alum injections into the lymph node, and predominant GAD65-induced IL13 secretion and proliferation that seems to be associated with a better clinical outcome. If confirmed in the ongoing larger randomized double-blind placebo-controlled clinical trial (DIAGNODE-3), including only patients carrying DR3DQ2 haplotype, these results might be used as early surrogate markers for clinical efficacy.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fabrícia Dietrich
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Hugo Barcenilla
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Rosaura Casas,
| |
Collapse
|
4
|
Abstract
Rubella is an acute illness caused by rubella virus and characterised by fever and rash. Although rubella is a clinically mild illness, primary rubella virus infection in early pregnancy can result in congenital rubella syndrome, which has serious medical and public health consequences. WHO estimates that approximately 100 000 congenital rubella syndrome cases occur per year. Rubella virus is transmitted through respiratory droplets and direct contact. 25-50% of people infected with rubella virus are asymptomatic. Clinical disease often results in mild, self-limited illness characterised by fever, a generalised erythematous maculopapular rash, and lymphadenopathy. Complications include arthralgia, arthritis, thrombocytopenic purpura, and encephalitis. Common presenting signs and symptoms of congenital rubella syndrome include cataracts, sensorineural hearing impairment, congenital heart disease, jaundice, purpura, hepatosplenomegaly, and microcephaly. Rubella and congenital rubella syndrome can be prevented by rubella-containing vaccines, which are commonly administered in combination with measles vaccine. Although global rubella vaccine coverage reached only 70% in 2020 global rubella eradiation remains an ambitious but achievable goal.
Collapse
Affiliation(s)
- Amy K Winter
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens GA, USA
| | - William J Moss
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
6
|
Kung WJ, Shih CT, Shih YL, Liu LY, Wang CH, Cheng YW, Liu HC, Lin CC. Faster waning of the rubella-specific immune response in young pregnant women immunized with MMR at 15 months. Am J Reprod Immunol 2020; 84:e13294. [PMID: 32569402 DOI: 10.1111/aji.13294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Vaccination is the best protection against rubella and congenital rubella infection. Although a high rate of immunization coverage is achieved in Taiwan, it is unknown if the vaccine-induced immunity persists from the age of vaccination to childbearing age. METHODS OF STUDY A total of 5,988 prenatal rubella IgG test results of young pregnant women aged 19-23 years old from six hospitals during January 2001 to December 2008 and January 2013 to December 2017 were analyzed. We compared the rubella seropositivity rates and titers in these women who were vaccinated with MMR vaccine in four different vaccination age cohorts. RESULTS The overall rubella seropositivity rate was 87.4% (95% CI: 86.6%-88.3%), and the mean rubella IgG level was 39 IU/mL among young pregnant women aged 19-23 years. Women in the elementary cohort had the highest rubella positivity of 90.8% (95% CI: 89.6%-91.9%), and levels gradually decrease to 84.6% (95% CI: 82.4%-86.7%) in 15-month plus cohort. The average rubella IgG was only 25 IU/mL for the 15-month plus cohort. Women in cohorts immunized at younger age exhibited significantly lower chances of being seropositive relative to women in older cohort after adjusting other factors (all P < .01). CONCLUSION The rubella seropositivity rate and rubella IgG levels were low among young women aged 19-23 years, especially in cohorts immunized at younger age. As rubella immunity wanes over time, a third dose of MMR may be a protective strategy for women who conceive later in life.
Collapse
Affiliation(s)
- Wan-Ju Kung
- Department of Laboratory Medicine, Fooyin University Hospital, Pingtung, Taiwan
| | - Ching-Tang Shih
- Department of Family Medicine, Fooyin University Hospital, Pingtung, Taiwan
| | - Yung-Luen Shih
- Department of Pathology & Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yao Liu
- Department of Laboratory Medicine, Mennonite Christian Hospital, Hualien, Taiwan
| | | | - Ya-Wen Cheng
- Department of Clinical Pathology, E-Da Hospital, Kaohsiung, Taiwan
| | - Hsueh-Chiao Liu
- Department of Laboratory Medicine, Fooyin University Hospital, Pingtung, Taiwan
| | - Ching-Chiang Lin
- Department of Education and Research, Fooyin University Hospital, Pingtung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Chambuso RS, Rebello G, Kaambo E. Personalized Human Papillomavirus Vaccination for Persistence of Immunity for Cervical Cancer Prevention: A Critical Review With Experts' Opinions. Front Oncol 2020; 10:548. [PMID: 32391264 PMCID: PMC7191065 DOI: 10.3389/fonc.2020.00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
The development of cervical cancer has been shown to involve both viral and host factors. The host factors are those that determine the specific response to human papillomavirus (HPV) infection by the patient's immune system. The immune responses to vaccines have been shown to be influenced by polymorphisms in genes involved in innate and adaptive immunity. The specific genetic variants that may influence the immune responses to HPV vaccine which may contribute to persistence of immunity (POI) have not been widely studied yet. In order to address the question as to “is it right to vaccinate all children, and all with equal dose?” we have critically examined the knowledge of common immunogenetic and immunogenomic variations that may influence the HPV vaccine POI across various populations. We have also identified a number of specific research questions that need to be addressed in future research into host molecular genetic variations and HPV vaccine POI in order to afford life-long protection against the development of cervical cancer. This work informs future insights for improved HPV vaccine designs based on common host molecular genetic variations.
Collapse
Affiliation(s)
- Ramadhani Salum Chambuso
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - George Rebello
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Evelyn Kaambo
- Department of Biochemistry and Medical Microbiology, School of Medicine, University of Namibia, Windhoek, Namibia.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Seroprevalence and durability of rubella virus antibodies in a highly immunized population. Vaccine 2019; 37:3876-3882. [PMID: 31126859 DOI: 10.1016/j.vaccine.2019.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the administration of the measles-mumps-rubella (MMR) vaccine has been widespread in the United States for decades, gaps in vaccine coverage still persist for various reasons. The maintenance of herd immunity against rubella virus (RV) is important to controlling the spread and resurgence of rubella and congenital rubella syndrome. METHODS In this study, we sought to assess the seroprevalence of RV-specific antibodies in an adult population from a defined geographic area in Olmsted County, MN, and the surrounding municipalities, with relatively high vaccine coverage and no documented evidence of circulating RV in the past 24 years. Rubella-specific IgG antibodies were measured by ELISA in a large set of serum samples (n = 1393) obtained from the Mayo Clinic Biobank. This cohort was 80.2% female and ranged from 20 to 44 years of age. RESULTS In total, 97.8% of subjects were seropositive for rubella-specific IgG antibodies, with a median titer of 40.56 IU/mL, suggesting a high degree of immunization; however, 2.2% of subjects were found to be seronegative. Interestingly, 25.1% of subjects were seropositive but had titers lower than 25 IU/mL, indicating either a population of low responders or individuals that could potentially be at risk of waning immunity. No significant associations or differences were found between RV-specific titers and demographic variables such as age, sex, or body mass index (BMI). CONCLUSIONS A high rate of seropositivity for rubella was found among this young adult cohort, but a significant percent of the cohort had lower titers that may indicate poor initial vaccine response and potential risk if their antibody titers decline.
Collapse
|
10
|
Liu Y, Guo T, Yu Q, Zhang H, Du J, Zhang Y, Xia S, Yang H, Li Q. Association of human leukocyte antigen alleles and supertypes with immunogenicity of oral rotavirus vaccine given to infants in China. Medicine (Baltimore) 2018; 97:e12706. [PMID: 30290669 PMCID: PMC6200448 DOI: 10.1097/md.0000000000012706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rotavirus (RV) vaccines show distinct immunogenicity in dozens of clinical trials, which is associated with multiple host and environmental factors. Previous research has demonstrated that the highly polymorphic human leukocyte antigen (HLA) system plays an essential role in regulating immune response to a variety of vaccines. This study aims to investigate the relationship between HLA polymorphisms and immunogenicity of RV vaccine.A nested case-control study was carried out among infants enrolled in phase III clinical trial of trivalent human-lamb reassortant vaccine (RV3) in Henan province, China. Serum RV specific immunoglobulin A (RV-IgA) was detected before and after a 3-dose vaccination series, followed by calculation of seroconversion rates. Seroconversion was defined as a 4-fold or greater increase in RV-IgA titers between pre-vaccination and 1-month post-dose 3 vaccination. The infants who seroconverted were defined as responders, and the others without seroconversion were considered as non-responders. Their HLA genotypes were obtained by using the sequence-based typing method. The HLA allele and supertype frequencies of 2 groups were analyzed statistically.Eighty-three of 133 infants seroconverted after vaccination. Twenty-one HLA-A, 45 HLA-B, 24 HLA-Cw, 29 HLA-DRB1 and 16 HLA-DQB1 distinct alleles were detected. The frequency of HLA-B4001 (corrected P = .01, adjusted OR = 0.152, 95% CI = 0.048-0.475) in non-responder group was significantly higher than that in responder group. Furthermore, significant association was found between HLA-B44 supertype (corrected P = .02, adjusted OR = 0.414, 95% CI = 0.225-0.763) and RV non-response.Certain HLA allele (HLA-B4001) and supertype (HLA-B44) are potentially associated with non-response after immunization with the novel RV3 vaccine in Chinese infants.
Collapse
Affiliation(s)
- Yueyue Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming
- National Institutes for Food and Drug Control, Beijing, China
| | - Tai Guo
- National Institutes for Food and Drug Control, Beijing, China
| | - Qingchuan Yu
- National Institutes for Food and Drug Control, Beijing, China
| | - Haowen Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Jialiang Du
- National Institutes for Food and Drug Control, Beijing, China
| | - Yunqi Zhang
- Yunnan University, Kunming, China
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Shengli Xia
- Henan Center for Disease Control and Prevention, Zhengzhou
| | - Huan Yang
- Center for Drug Evaluation, Beijing, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming
| |
Collapse
|
11
|
Herati RS, Wherry EJ. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031583. [PMID: 28348037 DOI: 10.1101/cshperspect.a031583] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans.
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
12
|
John M, Gaudieri S, Mallal S. Immunogenetics and Vaccination. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Fatemi Nasab GS, Salimi V, Abbasi S, Adjami Nezhad Fard F, Mokhtari Azad T. Comparison of neutralizing antibody titers against outbreak-associated measles genotypes (D4, H1 and B3) in Iran. Pathog Dis 2016; 74:ftw089. [PMID: 27777263 DOI: 10.1093/femspd/ftw089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the accessibility of a promising vaccine, outbreaks of the measles virus (MV) take place even in well-vaccinated populations. D4, H1 and B3 genotypes have been detected regularly in different regions of Iran. These observations highlight the necessity of evaluating the protective efficacy of the vaccine against currently circulating MV genotypes during the elimination phase. A focus reduction neutralization test has been developed to measure the neutralizing antibodies against different genotypes of MV, such as H1, D4, B3 and vaccine strain (A), in children after second doses of measles vaccine. The geometric mean titer (GMT) rates of the sera against D4, H1, B3 and A genotypes were 95.9, 90.5, 32.0 and 76.1, respectively. Low GMTs of antibody against the B3 genotype compared with the other genotypes were indicated. Based on the current study results, the MV antibody titers in the sera of vaccinated cases are sufficient to neutralize all circulating genotypes in Iran; however, neutralizing antibody titers were lower for the B3 genotype than for the H1, D4 and A genotypes. The heterogeneous nature of MV, for instance the nucleotide sequence diversity between different strains, necessitates the evaluation of the protective efficacy of the vaccine against measles B3 genotype in countries where this virus has been the most commonly identified circulating genotype.
Collapse
Affiliation(s)
- Ghazal Sadat Fatemi Nasab
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Simin Abbasi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Fatemeh Adjami Nezhad Fard
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 14155, Iran
| |
Collapse
|
14
|
Hutton J. Does Rubella Cause Autism: A 2015 Reappraisal? Front Hum Neurosci 2016; 10:25. [PMID: 26869906 PMCID: PMC4734211 DOI: 10.3389/fnhum.2016.00025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
In the 1970s, Stella Chess found a high prevalence of autism in children with congenital rubella syndrome (CRS), 200 times that of the general population at the time. Many researchers quote this fact to add proof to the current theory that maternal infection with immune system activation in pregnancy leads to autism in the offspring. This rubella and autism association is presented with the notion that rubella has been eliminated in today’s world. CRS cases are no longer typically seen; yet, autistic children often share findings of CRS including deafness, congenital heart defects, and to a lesser extent visual changes. Autistic children commonly have hyperactivity and spasticity, as do CRS children. Both autistic and CRS individuals may develop type 1 diabetes as young adults. Neuropathology of CRS infants may reveal cerebral vasculitis with narrowed lumens and cerebral necrosis. Neuroradiological findings of children with CRS show calcifications, periventricular leukomalacia, and dilated perivascular spaces. Neuroradiology of autism has also demonstrated hyperintensities, leukomalacia, and prominent perivascular spaces. PET studies of autistic individuals exhibit decreased perfusion to areas of the brain similarly affected by rubella. In both autism and CRS, certain changes in the brain have implicated the immune system. Several children with autism lack antibodies to rubella, as do children with CRS. These numerous similarities increase the probability of an association between rubella virus and autism. Rubella and autism cross many ethnicities in many countries. Contrary to current belief, rubella has not been eradicated and globally affects up to 5% of pregnant women. Susceptibility continues as vaccines are not given worldwide and are not fully protective. Rubella might still cause autism, even in vaccinated populations.
Collapse
Affiliation(s)
- Jill Hutton
- Department of Obstetrics and Gynecology, The Woman's Hospital of Texas , Houston, TX , USA
| |
Collapse
|
15
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
16
|
DockTope: a Web-based tool for automated pMHC-I modelling. Sci Rep 2015; 5:18413. [PMID: 26674250 PMCID: PMC4682062 DOI: 10.1038/srep18413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/18/2015] [Indexed: 11/08/2022] Open
Abstract
The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design.
Collapse
|
17
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics 2015; 67:547-61. [PMID: 26329766 DOI: 10.1007/s00251-015-0864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Hannah M Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA.
| |
Collapse
|