1
|
Mlingo TAM, Theron J, Mokoena NB. Plasmid DNA-based reverse genetics as a platform for manufacturing of bluetongue vaccine. J Virol 2025; 99:e0013925. [PMID: 40130823 PMCID: PMC11998535 DOI: 10.1128/jvi.00139-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Control of bluetongue disease is predominantly through vaccination with licensed inactivated or live-attenuated vaccines (LAVs). Manufacturing of LAVs in endemic countries requires formulation with a high number of serotypes for effective protection. Herein, we evaluated a plasmid DNA-based reverse genetics platform for manufacturing a multivalent vaccine. The synthetic vaccine was characterized by a common BTV1 backbone, with exchange of outer capsid proteins. Recombinant South African vaccine serotypes 1, 5, and 14 were rescued by exchanging the VP2 protein on the backbone. BTV6 rescue was achieved following the exchange of VP2 and VP5 proteins. The particle sizes were comparable to commercial vaccines of respective serotypes. BTV1, BTV5, and BTV6 had distinct growth profiles compared to commercial vaccines, while BTV14 was indistinguishable. Stability and shelf-life determination under various storage conditions showed that commercial vaccines were more stable. Formulated antigens were evaluated for vaccine safety and immunogenicity in sheep. Serotyped BTV1 monovalent vaccine was safe, as no clinical signs were observed. Neutralizing antibodies (nAbs) were induced on day 14 and peaked at 32 on day 28. The multivalent synthetic vaccine containing four serotypes elicited BTV6 nAbs from day 21 with a titer of 52, which decreased to 33 by day 42. BTV1 elicited a weak immune response with a titer of 1 on day 42. No nAbs were detected against BTV5 and BTV14. This is a first report comparing reverse genetics-derived antigens with commercial vaccines. Data generated on production yields, stability, and immunogenicity demonstrated that some serotypes can be implemented as novel synthetic vaccines using this platform.IMPORTANCEVaccination is the most effective control strategy for viral diseases that affect livestock. To date, only live-attenuated and inactivated vaccines have been licensed for control of bluetongue (BT). This study demonstrated the use of reverse genetics as a possible platform for BTV vaccine production. Data generated in the study contribute toward the advancement of an alternative manufacturing platform for licensing of BT vaccines. Information on production yields and stability of synthetic vaccines in comparison to the conventional products demonstrated that optimization is required for some serotypes to fully translate the reverse genetics platform for manufacturing the BTV vaccine. The study highlighted the safety and immunogenicity of vaccines manufactured using the plasmid DNA-based reverse-genetics platform.
Collapse
MESH Headings
- Animals
- Bluetongue virus/immunology
- Bluetongue virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Sheep
- Plasmids/genetics
- Plasmids/immunology
- Bluetongue/prevention & control
- Bluetongue/immunology
- Bluetongue/virology
- Reverse Genetics/methods
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Serogroup
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Tendai A. M. Mlingo
- Onderstepoort Biological Products SOC Ltd., Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
2
|
van Rijn PA, Maris-Veldhuis MA, Spedicato M, Savini G, van Gennip RGP. Pentavalent Disabled Infectious Single Animal (DISA)/DIVA Vaccine Provides Protection in Sheep and Cattle against Different Serotypes of Bluetongue Virus. Vaccines (Basel) 2021; 9:vaccines9101150. [PMID: 34696258 PMCID: PMC8537505 DOI: 10.3390/vaccines9101150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bluetongue (BT) is a midge-borne OIE-notifiable disease of ruminants caused by the bluetongue virus (BTV). There are at least 29 BTV serotypes as determined by serum neutralization tests and genetic analyses of genome segment 2 encoding serotype immunodominant VP2 protein. Large parts of the world are endemic for multiple serotypes. The most effective control measure of BT is vaccination. Conventionally live-attenuated and inactivated BT vaccines are available but have their specific pros and cons and are not DIVA compatible. The prototype Disabled Infectious Single Animal (DISA)/DIVA vaccine based on knockout of NS3/NS3a protein of live-attenuated BTV, shortly named DISA8, fulfills all criteria for modern veterinary vaccines of sheep. Recently, DISA8 with an internal in-frame deletion of 72 amino acid codons in NS3/NS3a showed a similar ideal vaccine profile in cattle. Here, the DISA/DIVA vaccine platform was applied for other serotypes, and pentavalent DISA/DIVA vaccine for “European” serotypes 1, 2, 3, 4, 8 was studied in sheep and cattle. Protection was demonstrated for two serotypes, and neutralization Ab titers indicate protection against other included serotypes. The DISA/DIVA vaccine platform is flexible in use and generates monovalent and multivalent DISA vaccines to combat specific field situations with respect to Bluetongue.
Collapse
Affiliation(s)
- Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +31-320-238-686
| | - Mieke A. Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| | - Massimo Spedicato
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - Giovanni Savini
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - René G. P. van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| |
Collapse
|
3
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
4
|
Guo Y, Huang L, Bi K, Xu Q, Bu Z, Wang F, Sun E. Recombinant bluetongue virus with hemagglutinin epitopes in VP2 has potential as a labeled vaccine. Vet Microbiol 2020; 248:108825. [PMID: 32891953 DOI: 10.1016/j.vetmic.2020.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022]
Abstract
Bluetongue (BT) is an arbovirus-borne disease of ruminants caused by bluetongue virus (BTV) that has the potential to have a serious economic impact. Currently available commercial vaccines include attenuated vaccines and inactivated vaccines, both of which have achieved great success in the prevention and control of BTV. However, these vaccines cannot distinguish between infected animals and immunized animals. To control outbreaks of BTV, the development of labeled vaccines is urgently needed. In this study, we used the plasmid-based reverse genetics system (RGS) of BTV to rescue four recombinant viruses in which HA (influenza hemagglutinin) tags were inserted at different sites of VP2. In vitro, the recombinant tagged viruses exhibited morphologies, plaque, and growth kinetics similar to the parental BTV-16, and expressed both VP2 and HA tag. Subsequently, the selected recombinant tagged viruses were prepared as inactivated vaccines to immunize IFNAR(-/-) mice and sheep, and serological detection results of anti-HA antibody provided discriminative detection. In summary, we used plasmid-based RGS to rescue BTV recombinant viruses with HA tags inserted into VP2, and detected several sites on VP2 that can accommodate HA tags. Some of the recombinant tagged viruses have potential to be developed into distinctive inactivated vaccines.
Collapse
Affiliation(s)
- Yunze Guo
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China; The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liping Huang
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Kaixuan Bi
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qingyuan Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Fenglong Wang
- Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Encheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
5
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
van Weezep E, Kooi EA, van Rijn PA. PCR diagnostics: In silico validation by an automated tool using freely available software programs. J Virol Methods 2019; 270:106-112. [PMID: 31095975 PMCID: PMC7113775 DOI: 10.1016/j.jviromet.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 05/11/2019] [Indexed: 11/15/2022]
Abstract
In silico validation of PCR tests using exponentially expanding databases. The need of regular in silico validation of PCR tests by expanding databases. Fulfilling quality standards of in silico validation of molecular diagnostics.
PCR diagnostics are often the first line of laboratory diagnostics and are regularly designed to either differentiate between or detect all pathogen variants of a family, genus or species. The ideal PCR test detects all variants of the target pathogen, including newly discovered and emerging variants, while closely related pathogens and their variants should not be detected. This is challenging as pathogens show a high degree of genetic variation due to genetic drift, adaptation and evolution. Therefore, frequent re-evaluation of PCR diagnostics is needed to monitor its usefulness. Validation of PCR diagnostics recognizes three stages, in silico, in vitro and in vivo validation. In vitro and in vivo testing are usually costly, labour intensive and imply a risk of handling dangerous pathogens. In silico validation reduces this burden. In silico validation checks primers and probes by comparing their sequences with available nucleotide sequences. In recent years the amount of available sequences has dramatically increased by high throughput and deep sequencing projects. This makes in silico validation more informative, but also more computing intensive. To facilitate validation of PCR tests, a software tool named PCRv was developed. PCRv consists of a user friendly graphical user interface and coordinates the use of the software programs ClustalW and SSEARCH in order to perform in silico validation of PCR tests of different formats. Use of internal control sequences makes the analysis compliant to laboratory quality control systems. Finally, PCRv generates a validation report that includes an overview as well as a list of detailed results. In-house developed, published and OIE-recommended PCR tests were easily (re-) evaluated by use of PCRv. To demonstrate the power of PCRv, in silico validation of several PCR tests are shown and discussed.
Collapse
Affiliation(s)
- Erik van Weezep
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands.
| | - Engbert A Kooi
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands.
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, North West University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
van Rijn PA, Maris-Veldhuis MA, Boonstra J, van Gennip RGP. Diagnostic DIVA tests accompanying the Disabled Infectious Single Animal (DISA) vaccine platform for African horse sickness. Vaccine 2018; 36:3584-3592. [PMID: 29759377 DOI: 10.1016/j.vaccine.2018.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
African Horse Sickness Virus (AHSV) (Orbivirus genus, Reoviridae family) causes high mortality in naïve domestic horses with enormous economic and socio-emotional impact. There are nine AHSV serotypes showing limited cross neutralization. AHSV is transmitted by competent species of Culicoides biting midges. AHS is a serious threat beyond the African continent as endemic Culicoides species in moderate climates transmit the closely related prototype bluetongue virus. There is a desperate need for safe and efficacious vaccines, while DIVA (Differentiating Infected from Vaccinated) vaccines would accelerate control of AHS. Previously, we have shown that highly virulent AHSV with an in-frame deletion of 77 amino acids (aa) in NS3/NS3a is completely safe, does not cause viremia and shows protective capacity. This deletion mutant is a promising DISA (Disabled Infectious Single Animal) vaccine platform, since exchange of serotype specific virus proteins has been shown for all nine serotypes. Here, we show that a prototype NS3 competitive ELISA is DIVA compliant to AHS DISA vaccine platforms. Epitope mapping of NS3/NS3a shows that more research is needed to evaluate this prototype serological DIVA assay regarding sensitivity and specificity, in particular for AHSVs expressing antigenically different NS3/NS3a proteins. Further, an experimental panAHSV PCR test targeting genome segment 10 is developed that detects reference AHSV strains, whereas AHS DISA vaccine platforms were not detected. This DIVA PCR test completely guarantees genetic DIVA based on in silico and in vitro validation, although test validation regarding diagnostic sensitivity and specificity has not been performed yet. In conclusion, the prototype NS3 cELISA and the PCR test described here enable serological and genetic DIVA accompanying AHS DISA vaccine platforms.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mieke A Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| |
Collapse
|
8
|
van Rijn PA, Maris-Veldhuis MA, Potgieter CA, van Gennip RG. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform. Vaccine 2018. [DOI: 10.1016/j.vaccine.2018.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
More S, Bicout D, Bøtner A, Butterworth A, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Mertens P, Savini G, Zientara S, Broglia A, Baldinelli F, Gogin A, Kohnle L, Calistri P. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bluetongue. EFSA J 2017; 15:e04957. [PMID: 32625623 PMCID: PMC7010010 DOI: 10.2903/j.efsa.2017.4957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A specific concept of strain was developed in order to classify the BTV serotypes ever reported in Europe based on their properties of animal health impact: the genotype, morbidity, mortality, speed of spread, period and geographical area of occurrence were considered as classification parameters. According to this methodology the strain groups identified were (i) the BTV strains belonging to serotypes BTV-1-24, (ii) some strains of serotypes BTV-16 and (iii) small ruminant-adapted strains belonging to serotypes BTV-25, -27, -30. Those strain groups were assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7, Article 5 on the eligibility of bluetongue to be listed, Article 9 for the categorisation according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bluetongue. The assessment has been performed following a methodology composed of information collection, expert judgement at individual and collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. The strain group BTV (1-24) can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, while the strain group BTV-25-30 and BTV-16 cannot. The strain group BTV-1-24 meets the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1) of the AHL. The animal species that can be considered to be listed for BTV-1-24 according to Article 8(3) are several species of Bovidae, Cervidae and Camelidae as susceptible species; domestic cattle, sheep and red deer as reservoir hosts, midges insect of genus Culicoides spp. as vector species.
Collapse
|
10
|
Mayo C, Lee J, Kopanke J, MacLachlan NJ. A review of potential bluetongue virus vaccine strategies. Vet Microbiol 2017; 206:84-90. [PMID: 28377132 DOI: 10.1016/j.vetmic.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Bluetongue (BT) is an economically important, non-zoonotic arboviral disease of certain wild and domestic species of cloven-hooved ungulates. Bluetongue virus (BTV) is the causative agent and the occurrence of BTV infection is distinctly seasonal in temperate regions of the world, and dependent on the presence of vector biting midges (e.g. Culicoides sonorensis in much of North America). In recent years, severe outbreaks have occurred throughout Europe and BTV is endemic in most tropical and temperate regions of the world. Several vaccines have been licensed for commercial use, including modified live (live-attenuated) and inactivated products, and this review summarizes recent strategies developed for BTV vaccines with emphasis on technologies suitable for differentiating naturally infected from vaccinated animals. The goal of this review is to evaluate realistic vaccine strategies that might be utilized to control or prevent future outbreaks of BT.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States.
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States
| | - Jennifer Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80526, United States
| | - N James MacLachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|
11
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
12
|
Replication-Deficient Particles: New Insights into the Next Generation of Bluetongue Virus Vaccines. J Virol 2016; 91:JVI.01892-16. [PMID: 27795442 PMCID: PMC5165199 DOI: 10.1128/jvi.01892-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV. IMPORTANCE Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce highly attenuated, safer vaccines was evident after the development of the BTV reverse-genetics system that allows the introduction of targeted mutations in the virus genome. We targeted an essential gene to develop disabled virus strains as vaccine candidates. The results presented in this report further substantiate our previous evidence and support the suitability of these virus strains as the next-generation BTV vaccines.
Collapse
|
13
|
van Rijn PA, Daus FJ, Maris-Veldhuis MA, Feenstra F, van Gennip RGP. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep. Vaccine 2016; 35:231-237. [PMID: 27916409 DOI: 10.1016/j.vaccine.2016.11.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/20/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost-competitive to commercially available live attenuated and inactivated vaccines for Bluetongue.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Franz J Daus
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Femke Feenstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| |
Collapse
|
14
|
Feenstra F, van Rijn PA. Current and next-generation bluetongue vaccines: Requirements, strategies, and prospects for different field situations. Crit Rev Microbiol 2016; 43:142-155. [PMID: 27800699 DOI: 10.1080/1040841x.2016.1186005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bluetongue virus (BTV) causes the hemorrhagic disease bluetongue (BT) in ruminants. The best way to control outbreaks is vaccination. Currently, conventionally modified-live and inactivated vaccines are commercially available, which have been successfully used to control BT, but nonetheless have their specific shortcomings. Therefore, there is a need for improved BT vaccines. The ideal BT vaccine is efficacious, safe, affordable, protective against multiple serotypes and enables the differentiation of infected from vaccinated animals. Different field situations require specific vaccine profiles. Single serotype outbreaks in former BT-free areas need rapid onset of protection against viremia of the respective serotype. In contrary, endemic multiple serotype situations require long-lasting protection against all circulating serotypes. The ideal BT vaccine for all field situations does not exist and balancing between vaccine properties is needed. Many new vaccines candidates, ranging from non-replicating subunits to replicating next-generation reverse genetics based vaccines, have been developed. Some have been tested extensively in large numbers of ruminants, whereas others were developed recently and have only been tested in vitro and in mice models. Most vaccine candidates are promising, but have their specific shortcomings and advantages. In this review, current and next-generation BT vaccines are discussed in the light of prerequisites for different field situations.
Collapse
Affiliation(s)
- Femke Feenstra
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,b Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - Piet A van Rijn
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,c Department of Biochemistry , Center for Human Metabolomics, North-West University , Potchefstroom , South Africa
| |
Collapse
|
15
|
Conradie AM, Stassen L, Huismans H, Potgieter CA, Theron J. Establishment of different plasmid only-based reverse genetics systems for the recovery of African horse sickness virus. Virology 2016; 499:144-155. [PMID: 27657835 PMCID: PMC7172382 DOI: 10.1016/j.virol.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
In an effort to simplify and expand the utility of African horse sickness virus (AHSV) reverse genetics, different plasmid-based reverse genetics systems were developed. Plasmids containing cDNAs corresponding to each of the full-length double-stranded RNA genome segments of AHSV-4 under control of a T7 RNA polymerase promoter were co-transfected in cells expressing T7 RNA polymerase, and infectious AHSV-4 was recovered. This reverse genetics system was improved by reducing the required plasmids from 10 to five and resulted in enhanced virus recovery. Subsequently, a T7 RNA polymerase expression cassette was incorporated into one of the AHSV-4 rescue plasmids. This modified 5-plasmid set enabled virus recovery in BSR or L929 cells, thus offering the possibility to generate AHSV-4 in any cell line. Moreover, mutant and cross-serotype reassortant viruses were recovered. These plasmid DNA-based reverse genetics systems thus offer new possibilities for investigating AHSV biology and development of designer AHSV vaccine strains. An entirely plasmid-based reverse genetics system was developed for AHSV. Novel improvements were made that increases flexibility of AHSV plasmid-based reverse genetics. Virus recovery efficiency was increased by reducing plasmids required for rescue from 10 to 5. T7 RNA polymerase encoded by rescue plasmid backbone allows virus recovery in different cell lines. Recombinant wild-type AHSV, mutant and reassortant viruses were rescued from plasmid cDNA only.
Collapse
Affiliation(s)
- Andelé M Conradie
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Liesel Stassen
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Henk Huismans
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Christiaan A Potgieter
- Deltamune (Pty) Ltd., Lyttelton, Centurion, South Africa; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - Jacques Theron
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
16
|
van Rijn PA, van de Water SG, Maris-Veldhuis MA, van Gennip RG. Experimental infection of small ruminants with bluetongue virus expressing Toggenburg Orbivirus proteins. Vet Microbiol 2016; 192:145-151. [DOI: 10.1016/j.vetmic.2016.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
|
17
|
Marín-López A, Barriales D, Moreno S, Ortego J, Calvo-Pinilla E. Defeating Bluetongue virus: new approaches in the development of multiserotype vaccines. Future Virol 2016. [DOI: 10.2217/fvl-2016-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bluetongue virus (BTV) is a global threat to domestic and wild ruminants, causing massive economic losses throughout the world. New serotypes of the virus are rapidly emerging in different continents, unfortunately there is little cross-protection between BTV serotypes. The eradication of the virus from a region is particularly complicated in areas where multiple serotypes circulate for a long time. The present review summarizes the actual concerns about the spread of the virus and relevant approaches to develop efficient vaccines against BTV, in particular those focused on a multiserotype design.
Collapse
Affiliation(s)
| | - Diego Barriales
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| |
Collapse
|
18
|
Lorusso A, Baba D, Spedicato M, Teodori L, Bonfini B, Marcacci M, Di Provvido A, Isselmou K, Marini V, Carmine I, Scacchia M, Di Sabatino D, Petrini A, Bezeid BA, Savini G. Bluetongue virus surveillance in the Islamic Republic of Mauritania: Is serotype 26 circulating among cattle and dromedaries? INFECTION GENETICS AND EVOLUTION 2016; 40:109-112. [PMID: 26932578 DOI: 10.1016/j.meegid.2016.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 11/26/2022]
Abstract
In March 2013, EDTA-blood and serum samples were collected from 119 cattle and 159 dromedaries at the slaughterhouse of Nouakchott, the capital city of the Islamic Republic of Mauritania. Serum samples were screened for the presence of Bluetongue (BT) antibodies by competitive ELISA (cELISA). Positive samples were then tested by serum-neutralization (SN) to determine BTV serotype. RNA from blood samples was first tested by a genus-specific quantitative RT-PCR assay which is able to detect all 27 existing BTV serotypes (RT-qPCR1-27). Positive samples were further screened by a RT-qPCR assay which, instead, is able to detect the classical 24 BTV serotypes only (RT-qPCR1-24). Of the 278 serum samples tested, 177 (mean=63.7%; 95% CI: 57.9%-69.1%) resulted positive by cELISA. Of these, 69 were from cattle (mean=58.0%; 95% CI: 49.0%-66.5%) and 108 from dromedaries (mean=67.9%; 95% CI: 60.3%-74.7%). BTV-26 neutralizing antibodies were by far the most frequently found as they were detected in 146 animals with titres ranging from 1:10 to 1:80. Out of 278 blood samples, 25 (mean=9.0%; 95% CI: 6.2%-12.9%) were found positive for BTV by RT-qPCR1-27, 20 (mean=16.8%; 95% CI: 11.2%-24.6%) were from cattle and 5 (mean=3.1%; 95% CI: 1.4%-7.1%) from dromedaries. When tested by RT-qPCR1-24 the 25 BTV positive samples were negative. Unfortunately, no genetic information by molecular typing or by next generation sequencing has been obtained as for the very low levels of RNA in the blood samples.
Collapse
Affiliation(s)
- Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy.
| | - Doumbia Baba
- Centre National d'Elevage et de Recherches Vétérinaires (CNERV), Nouakchott, Mauritania
| | - Massimo Spedicato
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Liana Teodori
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Barbara Bonfini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Maurilia Marcacci
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Andrea Di Provvido
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Katia Isselmou
- Centre National d'Elevage et de Recherches Vétérinaires (CNERV), Nouakchott, Mauritania
| | - Valeria Marini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Irene Carmine
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Massimo Scacchia
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Daria Di Sabatino
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Antonio Petrini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| | - Beyatt Ahmed Bezeid
- Centre National d'Elevage et de Recherches Vétérinaires (CNERV), Nouakchott, Mauritania
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo (IZSAM)-Italy
| |
Collapse
|
19
|
Pretorius JM, Huismans H, Theron J. Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus. Virology 2015; 486:71-7. [PMID: 26408855 DOI: 10.1016/j.virol.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023]
Abstract
Bluetongue virus (BTV), the type species of the genus Orbivirus within the family Reoviridae, has a genome consisting of 10 linear double-stranded RNA genome segments. Current reverse genetics approaches for engineering the BTV genome rely upon in vitro synthesis of capped RNA transcripts from cloned cDNA corresponding to viral genome segments. In an effort to expand the utility of BTV reverse genetics, we constructed a reverse genetics vector containing a T7 RNA polymerase promoter, hepatitis delta ribozyme sequence and T7 RNA polymerase terminator sequence. Viable virus was recovered following transfection of mammalian cells, expressing T7 RNA polymerase, with 10 plasmid constructs representing the cloned BTV-1 genome. Furthermore, the plasmid-based reverse genetics system was used successfully to isolate viable cross-serotype reassortant viruses and a mutant virus containing a defined mutation in the replicating viral genome. The new reverse genetics platform established here for BTV is likely applicable to other orbiviruses.
Collapse
Affiliation(s)
- Jakobus M Pretorius
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Henk Huismans
- Department of Genetics, University of Pretoria, Pretoria 0002, South Africa
| | - Jacques Theron
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
20
|
Tacken MGJ, Daus FJ, Feenstra F, van Gennip RGP, van Rijn PA. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for Bluetongue. Vaccine 2015; 33:5539-5545. [PMID: 26387435 DOI: 10.1016/j.vaccine.2015.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
Abstract
Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or reversion to virulence by mutations, reassortment with field virus, horizontal spread by vectors and vertical transmission. The immune response induced by BT DISA vaccines is rapidly induced, highly protective and serotype specific which is dependent on the immunodominant and serotype determining VP2 protein. The BT DISA vaccine platform provides the replacement of exclusively VP2 from different serotypes in order to safely formulate multivalent cocktail vaccines. The lack of NS3/NS3a directed antibodies by BT DISA vaccination enables differentiation of infected from vaccinated animals (DIVA principle). A highly conserved immunogenic site corresponding to the late domain was mapped in the N-terminal region of NS3. We here established an NS3-specific competitive ELISA (NS3 cELISA) as serological DIVA test accompanying BT DISA vaccines. To this end, NS3 protein missing putative transmembrane regions was produced in large amounts in bacteria and used as antigen in the NS3 cELISA which was investigated with a variety of sera. The NS3 cELISA displayed a high sensitivity and specificity similar to the commercially available VP7-specific cELISA. Results of previously performed vaccination-challenge trials with BT DISA vaccines clearly demonstrate the DIVA system based on the NS3 cELISA and BT vaccine free of NS3 protein.
Collapse
Affiliation(s)
- Mirriam G J Tacken
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Franz J Daus
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
21
|
Feenstra F, Drolet BS, Boonstra J, van Rijn PA. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis. Parasit Vectors 2015; 8:476. [PMID: 26383094 PMCID: PMC4573936 DOI: 10.1186/s13071-015-1063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However, deletion of NS3/NS3a leads to delayed virus release from mammalian cells and largely reduces virus release from insect cells. NS3/NS3a knockout BTV in sheep causes no viremia, but induces sterile immunity and is therefore proposed to be a Disabled Infectious Single Animal (DISA) vaccine candidate. In the absence of viremia, uptake of this vaccine strain by blood-feeding midges would be highly unlikely. Nevertheless, unintended replication of vaccine strains within vectors, and subsequent recombination or re-assortment resulting in virulent phenotypes and transmission is a safety concern of modified-live vaccines. METHODS The role of NS3/NS3a in replication and dissemination of BTV1, expressing VP2 of serotype 2 within colonized Culicoides sonorensis midges was investigated. Virus strains were generated using reverse genetics and their growth was examined in vitro. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV with or without expressing NS3/NS3a and replication in the midge was examined using RT PCR. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS Although the parental NS3/NS3a expressing strain was not able to replicate and disseminate within C. sonorensis after oral feeding, this virus was able to replicate efficiently when the midgut infection barrier was bypassed by intrathoracic injection, whereas the NS3/NS3a knockout mutant was unable to replicate. This demonstrates that NS3/NS3a is required for viral replication within Culicoides. CONCLUSION The lack of viremia and the inability to replicate within the vector, clearly demonstrate the inability of NS3/NS3a knockout DISA vaccine strains to be transmitted by midges.
Collapse
Affiliation(s)
- Femke Feenstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Manhattan, KS, USA
| | - Jan Boonstra
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
22
|
VP2 Exchange and NS3/NS3a Deletion in African Horse Sickness Virus (AHSV) in Development of Disabled Infectious Single Animal Vaccine Candidates for AHSV. J Virol 2015; 89:8764-72. [PMID: 26063433 PMCID: PMC4524073 DOI: 10.1128/jvi.01052-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
Abstract
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate “synthetic” reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates are supposed to be competent vectors. By using reverse genetics, viruses of all nine serotypes were constructed by the exchange of Seg-2 expressing the serotype-determining VP2 protein. Furthermore, we demonstrated that the nonstructural protein NS3/NS3a is not essential for virus replication in vitro. However, the potential spread of the virus by biting midges is supposed to be blocked, since the in vitro release of the virus was strongly reduced due to this deletion. VP2 exchange and NS3/NS3a deletion in African horse sickness virus were combined in the concept of a disabled infectious single animal vaccine for all nine serotypes.
Collapse
|
23
|
Application of bluetongue Disabled Infectious Single Animal (DISA) vaccine for different serotypes by VP2 exchange or incorporation of chimeric VP2. Vaccine 2014; 33:812-8. [PMID: 25510389 DOI: 10.1016/j.vaccine.2014.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
Bluetongue is a disease of ruminants caused by the bluetongue virus (BTV). Bluetongue outbreaks can be controlled by vaccination, however, currently available vaccines have several drawbacks. Further, there are at least 26 BTV serotypes, with low cross protection. A next-generation vaccine based on live-attenuated BTV without expression of non-structural proteins NS3/NS3a, named Disabled Infectious Single Animal (DISA) vaccine, was recently developed for serotype 8 by exchange of the serotype determining outer capsid protein VP2. DISA vaccines are replicating vaccines but do not cause detectable viremia, and induce serotype specific protection. Here, we exchanged VP2 of laboratory strain BTV1 for VP2 of European serotypes 2, 4, 8 and 9 using reverse genetics, without observing large effects on virus growth. Exchange of VP2 from serotype 16 and 25 was however not possible. Therefore, chimeric VP2 proteins of BTV1 containing possible immunogenic regions of these serotypes were studied. BTV1, expressing 1/16 chimeric VP2 proteins was functional in virus replication in vitro and contained neutralizing epitopes of both serotype 1 and 16. For serotype 25 this approach failed. We combined VP2 exchange with the NS3/NS3a negative phenotype in BTV1 as previously described for serotype 8 DISA vaccine. DISA vaccine with 1/16 chimeric VP2 containing amino acid region 249-398 of serotype 16 raised antibodies in sheep neutralizing both BTV1 and BTV16. This suggests that DISA vaccine could be protective for both parental serotypes present in chimeric VP2. We here demonstrate the application of the BT DISA vaccine platform for several serotypes and further extend the application for serotypes that are unsuccessful in single VP2 exchange.
Collapse
|