1
|
Stefanizzi P, Bianchi FP, Spinelli G, Amoruso F, Ancona D, Stella P, Tafuri S. Postmarketing surveillance of adverse events following meningococcal B vaccination: data from Apulia Region, 2014-19. Hum Vaccin Immunother 2021; 18:1-6. [PMID: 34435938 PMCID: PMC8920168 DOI: 10.1080/21645515.2021.1963171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Since the multicomponent meningococcal B vaccine introduction, the Apulian Regional Health Authority implemented postmarketing surveillance program, as provided by Italian laws. From National Pharmacovigilance Network, we selected 4CMenB AEFIs reported in Apulia from 01 January 2014 to 31 December 2019, while the number of 4 cMen B doses administered per year was obtained from the regional immunization database (GIAVA). For each subject who experienced an adverse event following meningococcal B vaccine (AEFIs), a predefined form was filled in. A total of 214 AEFIs (26.5 × 100.000 doses) were reported after any dose of MenB-4 c vaccination of which 58/214 (27.1%) were classified as serious (7.2 × 100,000 doses), 145/214 (67.8%) as not serious (180 × 100,000 doses), and 11/214 (5.1%) as undefined (1.3 × 100,000 doses). The average age of subjects who experimented and AEFI was 30 months. The majority of serious AEFIs were reported in 2- to 11-month-old children (44/57; 77.2%). A total of 31/58 (3.8 × 100,000 doses; 53.4%) serious AEFIs were reported as having a ‘consistent causal association’ with vaccination. Of these, fever/hyperpyrexia was reported in 21/31 (2.6 × 100,000 doses; 67.7%); hypotonic-hyporesponsive episode was reported in 7/31 (0.9 × 100,000 doses [add %-age]) and was the most frequent adverse event with neurological symptoms. A total of 13/31 (41.9%) serious AEFIs classified as ‘consistent causal association’ were reported after the first dose of 4cMenB, of these 5/13 (38.5%) children did not complete the vaccination schedule. Our data seemed to confirm, in a large population, the a good safety profile of the universal mass vaccination with 4CMENB.
Collapse
Affiliation(s)
- Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Paolo Bianchi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Giuseppe Spinelli
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Fabio Amoruso
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Domenica Ancona
- Apulian Regional Health Department, Regional Center for Pharmacovigilance Activities, Bari, Italy
| | - Paolo Stella
- Apulian Regional Health Department, Regional Center for Pharmacovigilance Activities, Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
2
|
Huang L, Mauskopf J, Farkouh R, Masaquel C. Use of Cost-Effectiveness Analyses for Decisions About Vaccination Programs for Meningococcal Disease in the United States, United Kingdom, The Netherlands, and Canada. Expert Rev Vaccines 2021; 20:59-72. [PMID: 33455487 DOI: 10.1080/14760584.2021.1878030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Meningococcal vaccines to protect against invasive meningococcal disease (IMD) vary in terms of vaccine technology and serogroup coverage (Polysaccharide MnACWY, conjugated C and ACWY, outer membrane vesicle-based or protein-based B vaccines), and the national recommendations for each of them vary in terms of target population and number of doses. We sought to understand factors associated with the evolution of meningococcal vaccination program recommendations in four countries with formal evaluation processes: the UK, US, the Netherlands, and Canada. AREAS COVERED A targeted review of published literature and internet sources for the four countries relating to meningococcal vaccination decision-making was conducted. The review focused on the impact of cost-effectiveness analyses on vaccine policy decisions and the extent to which variation in incidence of IMD and its potential catastrophic consequences influenced policy decisions.The evolution of meningococcal vaccine recommendations in the four countries was mainly driven by changes in vaccine availability and changes in serogroup incidence. Public pressure due to the catastrophic nature of IMD influenced recommendations. The role of cost-effectiveness analyses varied across the 4 countries. EXPERT OPINION The value of implementing meningococcal vaccination programs should be assessed using factors beyond those included in traditional cost-effectiveness analyses.
Collapse
Affiliation(s)
- Liping Huang
- Health Economics and Outcomes Research, Collegeville, PA
| | - Josephine Mauskopf
- Health Economics Department, RTI Health Solutions, 3040 East Cornwallis Road, Research Triangle Park, North Carolina, USA
| | - Ray Farkouh
- Health Economics and Outcomes Research, Collegeville, PA
| | - Catherine Masaquel
- Market Access and Outcomes Strategy Departments, RTI Health Solutions, 3040 East Cornwallis Road, Research Triangle Park, Research Triangle Park, USA
| |
Collapse
|
3
|
Brito LT, Rinaldi FM, Gaspar EB, Correa VA, Gonçalves CA, Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Study of different routes of immunization using outer membrane vesicles of Neisseria meningitidis B and comparison of two adjuvants. Vaccine 2020; 38:7674-7682. [PMID: 33082014 DOI: 10.1016/j.vaccine.2020.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Outer membrane vesicles (OMVs) of Neisseria meningitidis contain important antigens to trigger an immune response against meningococci and have been studied as vaccines compounds. The immune response to a vaccine may be affected by its constitution and route of administration. Therefore, Swiss mice were immunized by different routes with OMVs of N. meningitidis B with dimethyl dioctadecyl ammonium bromide in bilayer fragments (DDA-BF) or aluminum hydroxide (AH) as adjuvants. The adjuvants and different routes were compared regarding the immune responses by ELISA, western blot, delayed type hypersensitivity (DTH) and histopathologic analysis. The antigenic preparation generated humoral and cellular immune responses. In quantitative analyzes, in general, AH was superior to DDA-BF. However, analysis such as IgG avidity index, bactericidal activity and immunoblot, revealed no important differences regarding the adjuvant or route of immunization. Regarding the parameters tested, it was not possible to define a superiority between the adjuvants and routes of immunization proposed by this study.
Collapse
Affiliation(s)
- Luciana T Brito
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiana M Rinaldi
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Victor Araujo Correa
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Amanda Izeli Portilho
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Trzewikoswki de Lima
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Department of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Post-Graduate Program Interunities in Biotechnology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Stawasz A, Huang L, Kirby P, Bloom D. Health Technology Assessment for Vaccines Against Rare, Severe Infections: Properly Accounting for Serogroup B Meningococcal Vaccination's Full Social and Economic Benefits. Front Public Health 2020; 8:261. [PMID: 32754566 PMCID: PMC7366491 DOI: 10.3389/fpubh.2020.00261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/22/2020] [Indexed: 02/04/2023] Open
Abstract
The high price of new generations of vaccines relative to their predecessors has become an important consideration in debates over whether the benefits of the new vaccines justify their costs. An increasingly central line of inquiry in the literature on valuing vaccination surrounds accounting for the full social and economic benefits of vaccination. This paper applies this emerging perspective to the particular case of vaccination against serogroup B meningococcal disease (MenB). We explore key issues involved in health technology assessments of MenB vaccination, which have led to pronounced heterogeneity in evaluation methods and recommendation outcomes across countries such as France, Germany, the US, and the UK. Accounting for typically neglected sources of socioeconomic benefit could potentially impact recommendation and reimbursement decisions. We propose a taxonomy of such benefits built around four dimensions: (i) internalized health benefits, (ii) internalized non-health benefits, (iii) externalized health benefits, and (iv) externalized non-health benefits. This approach offers a systematic, comprehensive evaluation framework that can be used in future assessment of MenB vaccines as well as other health technologies.
Collapse
Affiliation(s)
- Andrew Stawasz
- Data for Decisions, LLC, Waltham, MA, United States.,Harvard Law School, Cambridge, MA, United States
| | | | - Paige Kirby
- Data for Decisions, LLC, Waltham, MA, United States
| | - David Bloom
- Data for Decisions, LLC, Waltham, MA, United States.,Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
5
|
Characteristics of Neisseria Species Colonized in the Human’s Nasopharynx. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Neisseria meningitidis is the causative agent of a life-threatening infection with high mortality and morbidity worldwide. The most common types of this bacterium are serogroups A, B, C, W135, X, and Y. Although in some countries, such as Iran, the meningococcal meningitis has been well monitored and controlled by the use of divalent and quadrivalent vaccines, other fatal infections caused by these bacteria are still an important threat. For the above reason, this review focused on the differences of Neisseria characteristics, particularly in capsular composition, pathogenic and commensal stages to a better understanding of how to manage Neisseria infections. Evidence Acquisition: In this review, PubMed, EMBASE, ScienceDirect, Scopus, and Google Scholar were searched for English-language publications on pathogenic or commensal strains of Neisseria, meningococcal disease, Neisseria biology, genetic diversity, molecular typing, serogroups, diagnostic, and epidemiology around the world up to July 2019. All articles and academic reports in the defined area of this research were considered too. The data were extracted and descriptively discussed. Results: We included 85 studies in the survey. The data analysis revealed that the distribution of meningococcal serogroups was different regionally. For example, the serogroups C and W-135 accounted for Africa and Latin America regions, serogroup B in the European countries, and rarely in the Western Pacific, and serogroups A and C were dominant in Asian countries. Although data set for laboratory-based diagnosis of N. meningitidis are available for all countries, only 30% of the countries rely on reference laboratories for serogroup determination, and more than half of the countries lack the ability of surveillance system. Nevertheless, molecular detection procedure is also available for all countries. The use of the meningococcal vaccine is a variable country by country, but most countries have applied the meningococcal vaccine, either divalent or quadrivalent, for the protection of high-risk groups. Conclusions: Owing to the geographical distribution of N. meningitidis serogroups in circulating, each country has to monitor for changes in serogroups diversity and its control management. Furthermore, laboratories should scale up the epidemiology and disease burden. It should be mentioned that quadrivalent meningococcal vaccines reduce the meningococcal disease burden sharply.
Collapse
|
6
|
Azevedo AC, Franco NEC, de Carvalho Rocha MR, Andrade C, Torres MC, de Filippis I. Molecular surveillance of brazilian meningococcal isolates serogroup c in the pre and post-men-c-vaccination period: Emergence of ST-3780. INFECTION GENETICS AND EVOLUTION 2020; 78:104079. [DOI: 10.1016/j.meegid.2019.104079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
7
|
Development of a SimpleProbe real-Time PCR Assay for rapid detection and identification of the US novel urethrotropic clade of Neisseria meningitidis ST-11 (US_NmUC). PLoS One 2020; 15:e0228467. [PMID: 32040516 PMCID: PMC7010270 DOI: 10.1371/journal.pone.0228467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022] Open
Abstract
Urethritis, or inflammation of the urethra, is one of the most common reasons men seek clinical care. Sexually transmitted pathogens including Neisseria gonorrhoeae are responsible for over half of the symptomatic urethritis cases in U.S. men. Recently, clinics in Indianapolis, Columbus, Atlanta, and other U.S. cities began to note increasing numbers of men presenting with urethritis and Gram-negative intracellular diplococci in their urethral smears who test negative for N. gonorrhoeae. Many of these discordant cases, which have periodically reached highs of more than 25% of presumed gonococcal cases in some sexually transmitted infection clinics in the U.S. Midwest, are infected with strains in a novel urethrotropic clade of Neisseria meningitidis ST-11 (US_NmUC). However, no cultivation-independent tests are available for the US_NmUC strains, and prior studies relied on microbial culture and genome sequencing to identify them. Here, we describe a PCR test that can identify the US_NmUC strains and distinguish them from commensal and invasive N. meningitidis strains as well as N. gonorrhoeae. Our SimpleProbe®-based real-time PCR assay targets a conserved nucleotide substitution in a horizontally acquired region of US_NmUC strain genomes. We applied the assay to 241 urine specimens whose microbial compositions had previously been determined by deep shotgun metagenomic sequencing. The assay detected the single US_NmUC positive case in this cohort, with no false positives. Overall, our simple and readily adaptable assay could facilitate investigation of the pathogenesis and epidemiology of the US_NmUC clade.
Collapse
|
8
|
Harrison LH, Stephens DS. Good News and Bad News - 4CMenB Vaccine for Group B Neisseria meningitidis. N Engl J Med 2020; 382:376-378. [PMID: 31971684 DOI: 10.1056/nejme1916440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Lee H Harrison
- From the Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh (L.H.H.); and the Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, and Woodruff Health Sciences Center, Emory University, Atlanta (D.S.S.)
| | - David S Stephens
- From the Infectious Diseases Epidemiology Research Unit, School of Medicine and Graduate School of Public Health, University of Pittsburgh, Pittsburgh (L.H.H.); and the Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, and Woodruff Health Sciences Center, Emory University, Atlanta (D.S.S.)
| |
Collapse
|
9
|
Mentzer D, Oberle D, Keller-Stanislawski B. Adverse events following immunisation with a meningococcal serogroup B vaccine: report from post-marketing surveillance, Germany, 2013 to 2016. ACTA ACUST UNITED AC 2019; 23. [PMID: 29717697 PMCID: PMC5930728 DOI: 10.2807/1560-7917.es.2018.23.17.17-00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In January 2013, a novel vaccine against Neisseria meningitidis serogroup B, the multicomponent meningococcal serogroup B vaccine (4CMenB), was approved by the European Medicines Agency. We aimed to evaluate the safety profile of this vaccine. Methods: All adverse events following immunisation (AEFI) reported from Germany since the vaccine’s launch in Germany in November 2013 through December 2016 were reviewed and analysed. Results: Through December 2016, a total of 664 individual case safety reports (ICSR) notifying 1,960 AEFI were received. A majority of vaccinees for whom AEFI were reported were children 2 to 11 years of age (n = 280; 42.2%) followed by infants and toddlers aged 28 days to 23 months (n = 170; 25.6%). General disorders and administration site conditions was the System Organ Class (SOC) with the majority of AEFI (n = 977; 49.8%), followed by nervous system disorders (n = 249; 12.7%), and skin and subcutaneous tissue disorders (n = 191; 9.7%). Screening of patient records for immune-mediated and neurological diseases did not raise any safety signal in terms of an increased proportional reporting ratio (PRR). Conclusions: The safety profile described in the Summary of Product Characteristics, in general, is confirmed by data from spontaneous reporting. No safety concerns were identified.
Collapse
Affiliation(s)
- Dirk Mentzer
- DM and DO contributed equally to this article.,Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Doris Oberle
- DM and DO contributed equally to this article.,Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Brigitte Keller-Stanislawski
- Department Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| |
Collapse
|
10
|
Retchless AC, Congo-Ouédraogo M, Kambiré D, Vuong J, Chen A, Hu F, Ba AK, Ouédraogo AS, Hema-Ouangraoua S, Patel JC, Traoré RO, Sangaré L, Wang X. Molecular characterization of invasive meningococcal isolates in Burkina Faso as the relative importance of serogroups X and W increases, 2008-2012. BMC Infect Dis 2018; 18:337. [PMID: 30021533 PMCID: PMC6052536 DOI: 10.1186/s12879-018-3247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Neisseria meningitidis serogroup A disease in Burkina Faso has greatly decreased following introduction of a meningococcal A conjugate vaccine in 2010, yet other serogroups continue to pose a risk of life-threatening disease. Capsule switching among epidemic-associated serogroup A N. meningitidis strains could allow these lineages to persist despite vaccination. The introduction of new strains at the national or sub-national levels could affect the epidemiology of disease. Methods Isolates collected from invasive meningococcal disease in Burkina Faso between 2008 and 2012 were characterized by serogrouping and molecular typing. Genome sequences from a subset of isolates were used to infer phylogenetic relationships. Results The ST-5 clonal complex (CC5) was identified only among serogroup A isolates, which were rare after 2010. CC181 and CC11 were the most common clonal complexes after 2010, having serogroup X and W isolates, respectively. Whole-genome phylogenetic analysis showed that the CC181 isolates collected during and after the epidemic of 2010 formed a single clade that was closely related to isolates collected in Niger during 2005 and Burkina Faso during 2007. Geographic population structure was identified among the CC181 isolates, where pairs of isolates collected from the same region of Burkina Faso within a single year had less phylogenetic diversity than the CC181 isolate collection as a whole. However, the reduction of phylogenetic diversity within a region did not extend across multiple years. Instead, CC181 isolates collected during the same year had lower than average diversity, even when collected from different regions, indicating geographic mixing of strains across years. The CC11 isolates were primarily collected during the epidemic of 2012, with sparse sampling during 2011. These isolates belong to a clade that includes previously described isolates collected in Burkina Faso, Mali, and Niger from 2011 to 2015. Similar to CC181, reduced phylogenetic diversity was observed among CC11 isolate pairs collected from the same regions during a single year. Conclusions The population of disease-associated N. meningitidis strains within Burkina Faso was highly dynamic between 2008 and 2012, reflecting both vaccine-imposed selection against serogroup A strains and potentially complex clonal waves of serogroup X and serogroup W strains. Electronic supplementary material The online version of this article (10.1186/s12879-018-3247-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Dinanibè Kambiré
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Jeni Vuong
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Alex Chen
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Fang Hu
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Absetou Ky Ba
- Laboratoire National de Santé Public, Ouagadougou, Burkina Faso
| | | | | | - Jaymin C Patel
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA.
| |
Collapse
|
11
|
Marshall HS, McMillan M, Koehler A, Lawrence A, MacLennan JM, Maiden MCJ, Ramsay M, Ladhani SN, Trotter C, Borrow R, Finn A, Sullivan T, Richmond P, Kahler CM, Whelan J, Vadivelu K. B Part of It protocol: a cluster randomised controlled trial to assess the impact of 4CMenB vaccine on pharyngeal carriage of Neisseria meningitidis in adolescents. BMJ Open 2018; 8:e020988. [PMID: 29991629 PMCID: PMC6082482 DOI: 10.1136/bmjopen-2017-020988] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION South Australia (SA) has the highest notification rate of invasive meningococcal disease in Australia with the majority of cases due to serogroup B. Neisseria meningitidis is carried in the pharynx, with adolescents having the highest rates of carriage. A vaccine designed to offer protection against serogroup B (4CMenB) is licensed in Australia. The SA MenB vaccine carriage study aims to assess the impact of 4CMenB on carriage of N. meningitidis in adolescents. METHODS AND ANALYSIS This is a parallel cluster randomised controlled trial enrolling year 10, 11 and 12 school students (approximately 16-18 years of age) throughout SA, in metropolitan and rural/remote areas. Schools are randomised to intervention (4CMenB vaccination at baseline) or control (4CMenB vaccination at study completion) with randomisation stratified by school size and socioeconomic status, as measured by the Index of Community Socio-Educational Advantage (Australian Curriculum). Oropharyngeal swabs will be taken from all students at visit 1, and 12 months later from year 11 and 12 students. Students unvaccinated in 2017 will receive vaccine at the 12-month follow-up. Carriage prevalence of N. meningitidis will be determined by PCR at baseline and 12 months following 4CMenB vaccination and compared with carriage prevalence at 12 months in unvaccinated students. A questionnaire will be completed at baseline and 12 months to assess risk factors associated with carriage. The primary outcome of carriage prevalence of disease causing N. meningitidis at 12 months will be compared between groups using logistic regression, with generalised estimating equations used to account for clustering at the school level. The difference in carriage prevalence between groups will be expressed as an OR with 95% CI. ETHICS AND DISSEMINATION The study was approved by the Women's and Children's Health Network Human Research Ethics Committee (WCHN HREC). The protocol, informed consent forms, recruitment materials, social media and all participant materials have been reviewed and approved by the WCHN HREC and updated on ClinicalTrials.gov. Results will be published in international peer-reviewed journals and presented at national and international conferences. The study findings will be provided in public forums and to study participants and participating schools. TRIAL REGISTRATION NUMBER ACTRN12617000079347. NCT03089086; Pre-results.
Collapse
Affiliation(s)
- Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ann Koehler
- Communicable Disease Control Branch, SA Health, Adelaide, South Australia, Australia
| | - Andrew Lawrence
- Microbiology Department, SA Pathology, Adelaide, South Australia, Australia
| | | | | | - Mary Ramsay
- Immunisation Department, Public Health England, London, UK
| | | | - Caroline Trotter
- Immunisation Department, Public Health England, London, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, UK
| | - Adam Finn
- School Clinical Sciences, University of Bristol, Bristol, UK
| | - Thomas Sullivan
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter Richmond
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Charlene M Kahler
- Marshall Center for Infectious Disease Research and Training, School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Jane Whelan
- GlaxoSmithKline Vaccines, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
The threat of meningococcal disease during the Hajj and Umrah mass gatherings: A comprehensive review. Travel Med Infect Dis 2018; 24:51-58. [DOI: 10.1016/j.tmaid.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 01/02/2023]
|
13
|
Vyse A, Ellsbury G, Madhava H. Protecting UK adolescents and adults against meningococcal serogroup B disease. Expert Rev Vaccines 2018; 17:229-237. [PMID: 29374982 DOI: 10.1080/14760584.2018.1432360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Meningococcal serogroup B disease (MenB) is endemic in the UK and continues to cause the majority of invasive meningococcal disease. Two broadly protective protein-based MenB vaccines are now licensed and available, both with wide age indications. Whilst the UK recently became the first country to routinely vaccinate infants against MenB, a recommendation has not yet been extended to older age groups who can also now benefit from these vaccines. AREAS COVERED This review summarizes the evidence supporting the rationale for adolescents and adults in the UK to consider MenB vaccination. EXPERT COMMENTARY Although MenB disease is rare, the UK reports one of the highest annual incidence rates within the European region, with over a third of cases occurring in those aged 10+ years. Overall, the case fatality rate following MenB disease in the UK is 4.2% but can be more than twice as high in teenagers and adults than in infants, and survivors are often left with life-changing disabling sequelae. MenB outbreaks are unpredictable and continue to occur in regions where it is endemic. These outbreaks often affect students attending school or university, with living on a campus being an important risk factor. Concerned individuals in this age group should consider MenB vaccination.
Collapse
Affiliation(s)
- Andrew Vyse
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| | - Gillian Ellsbury
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| | - Harish Madhava
- a Vaccine Medical Affairs , Pfizer Limited, Walton Oaks , Surrey , UK
| |
Collapse
|
14
|
Fiorito TM, Baird GL, Alexander-Scott N, Bornschein S, Kelleher C, Du N, Dennehy PH. Adverse Events Following Vaccination With Bivalent rLP2086 (Trumenba®): An Observational, Longitudinal Study During a College Outbreak and a Systematic Review. Pediatr Infect Dis J 2018; 37:e13-e19. [PMID: 28834957 DOI: 10.1097/inf.0000000000001742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND In February 2015, two unlinked culture-confirmed cases of Neisseria meningitidis serogroup B (MenB) disease occurred at a local college in Rhode Island ("college X") within 3 days. This represented a 489-fold increase in the incidence of MenB disease, and an outbreak was declared. For the first time, bivalent rLP2086 (Trumenba) was selected as a mandatory intervention response. A mass vaccination clinic was coordinated, which provided a unique opportunity to collect safety data in a real-world population of college-age participants. Though the Advisory Committee on Immunization Practices recommends MenB vaccination for college-age individuals (16-23 year olds), there is limited quantifiable safety data available for this population. METHODS The Dillman total design survey method was used. Adverse events of bivalent rLP2086 were solicited and quantified retrospectively 2-4 months following each dose of vaccine. Safety data from six clinical trials were used as comparison tools. RESULTS The most commonly reported adverse event following vaccination was injection site pain. Reported rates of injection site pain, fatigue, myalgia, fever, and chills were similar than those reported in clinical trials. Reported rates of headache were lower than in clinical trials. CONCLUSIONS This study is the first to examine adverse events of bivalent rLP2086 in a real-world setting where more than 90% of a college-age population was vaccinated.
Collapse
|
15
|
Banzhoff A. Multicomponent meningococcal B vaccination (4CMenB) of adolescents and college students in the United States. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:3-14. [PMID: 28344804 PMCID: PMC5349334 DOI: 10.1177/2051013616681365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meningococcal disease is rare, easily misdiagnosed, and potentially deadly. Diagnosis in the early stages is difficult and the disease often progresses extremely rapidly. In North America, the incidence of invasive meningococcal disease (IMD) is highest in infants and young children, with a secondary peak in adolescents, a population predominantly responsible for the carriage of disease. Neisseria meningitidis serogroup B (MenB) accounts for a large proportion of meningococcal disease in North America, with documented outbreaks in three universities in the United States (US) during 2008-2013. Vaccination is the most effective way to protect against this aggressive disease that has a narrow timeframe for diagnosis and treatment. 4CMenB is a multi-component vaccine against MenB which contains four antigenic components. We describe in detail the immunogenicity and safety profile of 4CMenB based on results from four clinical trials; the use of 4CMenB to control MenB outbreaks involving vaccination at two US colleges during outbreaks in 2013-2014; and the use of 4CMenB in a Canadian mass vaccination campaign to control the spread of MenB disease. We discuss the reasons why adolescents should be vaccinated against MenB, by examining both the peak in disease incidence and carriage. We consider whether herd protection may be attained for MenB, by discussing published models and comparing with meningitis C (MenC) vaccines. In conclusion, MenB vaccines are now available in the US for people aged 10-25 years, representing an important opportunity to reduce the incidence of IMD in the country across the whole population, and more locally to combat MenB outbreaks.
Collapse
|
16
|
Millar BC, Moore PJA, Moore JE. Meningococcal disease: has the battle been won? J ROY ARMY MED CORPS 2016; 163:235-241. [PMID: 28039342 DOI: 10.1136/jramc-2016-000695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/03/2022]
Abstract
Meningococcal disease is a worldwide life-threatening infection associated in many cases with debilitating long-term sequelae, both within the military and civilian populations. Military recruits are at a higher risk of acquiring this infection due to numerous factors, such as young recruits in the age group 18-25 years, high carriage rates of meningococci, communal and crowed living quarters and global deployment or training in regions with different meningococcal serogroup epidemiology. Although these increased risk factors among young recruits remain, the increased incidence of disease is now historic. Numerous outbreaks have been reported among military personnel, however although the incidence of the disease continues to decrease, there are still sporadic cases. The non-specific symptoms, sudden onset and rapid progression of the infection results in a limited time frame to both diagnose and successfully treat the patient. Many developments have been made in relation to the microbiological diagnosis of the disease, particularly in the era of molecular diagnostics, which have the potential to diagnose the infection more quickly. Developments in vaccinology, and in particular with relation to biotechnology and reverse vaccinology, have led to the availability of new meningococcal vaccines, further enabling disease prevention. This paper outlines the history of meningococcal disease in relation to the military and highlights the new developments in both diagnostics and vaccination, which have the potential to diagnose, treat and control meningococcal disease in a more efficient manner.
Collapse
Affiliation(s)
- Beverley C Millar
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, UK
| | - P J A Moore
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J E Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, UK.,School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
17
|
Baker CJ. Prevention of Meningococcal Infection in the United States: Current Recommendations and Future Considerations. J Adolesc Health 2016; 59:S29-37. [PMID: 27449147 DOI: 10.1016/j.jadohealth.2016.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Abstract
Neisseria meningitidis is a common cause of bacterial meningitis and septicemia that can lead to permanent sequelae or death. N meningitidis is classified into serogroups based on the composition of the capsular polysaccharide, with serogroups A, B, C, W, X, and Y recognized as the major disease-causing organisms. The unpredictability of infection coupled with the poor prognosis for some patients suggests immunization as an effective preventive strategy. Importantly, four of the six disease-causing serogroups (A, C, Y, and W) may be prevented with available quadrivalent capsular polysaccharide-protein conjugate vaccines; these vaccines have been successfully implemented into immunization programs in the United States. Unfortunately, quadrivalent conjugate vaccines are not effective against serogroup B, now the most common cause of invasive meningococcal disease. Two recombinant protein vaccines recently were licensed for prevention of serogroup B disease. Recommendations for use of these serogroup B vaccines in the United States have been made by the Advisory Committee on Immunization Practices. This article will discuss all available meningococcal vaccines, current recommendations for use, lessons learned from previous experiences, and future considerations, with the hope of further understanding how use of these vaccines may help reduce incidence of meningococcal disease in the United States.
Collapse
Affiliation(s)
- Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas; Center for Vaccine Awareness and Research, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
18
|
Yezli S, Bin Saeed AA, Assiri AM, Alhakeem RF, Yunus MA, Turkistani AM, Booy R, Alotaibi BM. Prevention of meningococcal disease during the Hajj and Umrah mass gatherings: past and current measures and future prospects. Int J Infect Dis 2015; 47:71-8. [PMID: 26707071 DOI: 10.1016/j.ijid.2015.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
The Kingdom of Saudi Arabia (KSA) has a long history of instituting preventative measures against meningococcal disease (MD). KSA is at risk of outbreaks of MD due to its geographic location, demography, and especially because it hosts the annual Hajj and Umrah mass gatherings. Preventative measures for Hajj and Umrah include vaccination, targeted chemoprophylaxis, health awareness and educational campaigns, as well as an active disease surveillance and response system. Preventative measures have been introduced and updated in accordance with changes in the epidemiology of MD and available preventative tools. The mandatory meningococcal vaccination policy for pilgrims has possibly been the major factor in preventing outbreaks during the pilgrimages. The policy of chemoprophylaxis for all pilgrims arriving from the African meningitis belt has also probably been important in reducing the carriage and transmission of Neisseria meningitidis in KSA and beyond. The preventative measures for Hajj and Umrah are likely to continue to focus on vaccination, but to favour the conjugate vaccine for its extra benefits over the polysaccharide vaccines. Additionally, the surveillance system will continue to be strengthened to ensure early detection and response to cases and outbreaks; ongoing disease awareness campaigns for pilgrims will continue, as will chemoprophylaxis for target groups. Local and worldwide surveillance of the disease and drug-resistant N. meningitidis are crucial in informing future recommendations for vaccination, chemoprophylaxis, and treatment. Preventative measures should be reviewed regularly and updated accordingly, and compliance with these measures should be monitored and enhanced to prevent MD during Hajj and Umrah, as well as local and international outbreaks.
Collapse
Affiliation(s)
- Saber Yezli
- The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia.
| | - Abdulaziz A Bin Saeed
- The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia; Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Rafat F Alhakeem
- Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia
| | - Muslim A Yunus
- Immunization Unit, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Robert Booy
- National Centre for Immunisation Research and Surveillance (NCIRS), The Children's Hospital at Westmead and University of Sydney, Sydney, Australia
| | - Badriah M Alotaibi
- The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|