1
|
Tobin GJ, Tobin JK, Wiggins TJ, Bushnell RV, Kozar AV, Maale MF, MacLeod DA, Meeks HN, Daly MJ, Dollery SJ. A highly immunogenic UVC inactivated Sabin based polio vaccine. NPJ Vaccines 2024; 9:217. [PMID: 39543143 PMCID: PMC11564903 DOI: 10.1038/s41541-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Despite their efficacy, the currently available polio vaccines, oral polio vaccine (OPV) and inactivated polio vaccine (IPV), possess inherent flaws posing significant challenges in the global eradication of polio. OPV, which uses live Sabin attenuated strains, carries the risk of reversion to pathogenic forms and causing vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polio disease (VDPD) in incompletely vaccinated or immune-compromised individuals. Conventional IPVs, which are non-replicative, are more expensive to manufacture and introduce biohazard and biosecurity risks due to the use of neuropathogenic strains in production. These types of limitations have led to a call by the Global Polio Eradication Initiative and others for the development of updated polio vaccines. We are developing a novel Ultraviolet-C radiation (UVC) inactivation method that preserves immunogenicity and is compatible with attenuated strains of polio. The method incorporates an antioxidant complex, manganese-decapeptide-phosphate (MDP), derived from the radioresistant bacterium Deinococcus radiodurans. The inclusion of MDP protects the immunogenic neutralizing epitopes from damage during UVC inactivation. The novel vaccine candidate, ultraIPVTM, produced using these methods demonstrates three crucial attributes: complete inactivation, which precludes the risk of vaccine-associated disease; use of non-pathogenic strains to reduce production risks; and significantly enhanced yield of doses per milligram of input virus, which could increase vaccine supply while reducing costs. Additionally, ultraIPVTM retains antigenicity post-freeze-thaw cycles, a testament to its robustness.
Collapse
Affiliation(s)
- Gregory J Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| | - John K Tobin
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | | | - Ruth V Bushnell
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Arina V Kozar
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Matthew F Maale
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - David A MacLeod
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA
| | - Heather N Meeks
- Defense Threat Reduction Agency, 8725 John J. Kingman Rd #6201,Ft, Belvoir, VA, 22060, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., 20814, Bethesda, MD, USA
| | - Stephen J Dollery
- Biological Mimetics Inc., 124 Byte Drive, 21702, Frederick, MD, USA.
| |
Collapse
|
2
|
Kouiavskaia D, Mirochnitchenko O, Troy S, Chumakov K. Antigenic diversity of type 1 polioviruses and its implications for the efficacy of polio vaccines. Vaccine 2023; 41:2147-2154. [PMID: 36828716 DOI: 10.1016/j.vaccine.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/24/2023]
Abstract
Inactivated Polio Vaccines (IPV) and live Oral Polio Vaccine (OPV) were introduced in the mid-20th century, and their coordinated worldwide use led to almost complete elimination of the disease, with only one serotype of poliovirus remaining endemic in just two countries. Polio eradication will lead to discontinuation of OPV use and its replacement with IPV or other vaccines that are currently under development that will need to be tested in clinical trials. Despite decades of research, questions remain about the serological correlates of polio vaccine efficacy, specifically whether the vaccines are equally protective against immunologically different strains of the same serotype. The absence of significant morbidity does not allow use of a protection endpoint in clinical trials, so the answer could be obtained only by using surrogate markers such as immunogenicity. In this study, a panel of wild and vaccine-derived polioviruses of serotype 1 were tested in neutralization assays with sera from vaccine-immunized individuals. The results demonstrated that there was a significant difference in titers of neutralizing antibodies in human sera when measured against different strains. When measured with a homologous strain used for vaccine manufacture all subjects had detectable levels of antibodies, while neutralization tests with some heterologous strains failed to detect neutralizing antibodies in a number of subjects. Administration of a booster dose of IPV led to a significant increase in neutralizing titers against all strains. Results of the experiments using animal sera, performed to obtain more information on protectivity of neutralizing antibodies against heterologous strains, were consistent with the results obtained in the assays using human sera. These results are discussed in the context of serological biomarkers of protection against poliomyelitis, suggesting that potency of vaccines made from serologically different strains should be determined against both homologous and heterologous challenge viruses.
Collapse
Affiliation(s)
| | | | - Stephanie Troy
- Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
3
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
4
|
Ong-Lim AL, Shukarev G, Trinidad-Aseron M, Caparas-Yu D, Greijer A, Duchene M, Scheper G, van Paassen V, Le Gars M, Cahill CP, Schuitemaker H, Douoguih M, Jacquet JM. Safety and immunogenicity of 3 formulations of a Sabin inactivated poliovirus vaccine produced on the PER.C6® cell line: A phase 2, double-blind, randomized, controlled study in infants vaccinated at 6, 10 and 14 weeks of age. Hum Vaccin Immunother 2022; 18:2044255. [PMID: 35344464 PMCID: PMC9196784 DOI: 10.1080/21645515.2022.2044255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An inactivated poliovirus vaccine candidate using Sabin strains (sIPV) grown on the PER.C6® cell line was assessed in infants after demonstrated immunogenicity and safety in adults. The study recruited 300 infants who were randomized (1:1:1:1) to receive one of 3 dose levels of sIPV or a conventional IPV based on Salk strains (cIPV). Poliovirus-neutralizing antibodies were measured before the first dose and 28 days after the third dose. Reactogenicity was assessed for 7 days and unsolicited adverse events (AEs) for 28 days after each vaccination. Serious AEs (SAEs) were recorded throughout the study. Solicited AEs were mostly mild to moderate. None of the SAEs reported in the study were judged vaccine related, including one fatal SAE due to aspiration of vomitus that occurred 26 days after the third dose of low-dose sIPV. After 3 sIPV vaccinations and across all dose levels, seroconversion (SC) rates were at least 92% against Sabin poliovirus types and at least 80% against Salk types, with a dose-response in neutralizing antibody geometric mean titers (GMTs) observed across the 3 sIPV groups. Compared to cIPV, the 3 sIPV groups displayed similar or higher SC rates and GMTs against the 3 Sabin types but showed a lower response against Salk types 1 and 2; this was most visible for Salk type 1. While the PER.C6® cell line-based sIPV showed an acceptable safety profile and immunogenicity in infants, lower seroprotection against type 1 warrants optimization of dose level and additional clinical evaluation.
Collapse
Affiliation(s)
- Anna Lisa Ong-Lim
- Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | | | | | - Delia Caparas-Yu
- De La Salle Medical and Health Sciences Institute, Cavite, Philippines
| | - Astrid Greijer
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Michel Duchene
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | - Gert Scheper
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | - Conor P Cahill
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | | | |
Collapse
|
5
|
Immunogenicity and Safety of Inactivated Sabin-Strain Polio Vaccine "PoliovacSin": Clinical Trials Phase I and II. Vaccines (Basel) 2021; 9:vaccines9060565. [PMID: 34072466 PMCID: PMC8229617 DOI: 10.3390/vaccines9060565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Global polio eradication requires both safe and effective vaccines, and safe production processes. Sabin oral poliomyelitis vaccine (OPV) strains can evolve to virulent viruses and result in poliomyelitis outbreaks, and conventional inactivated poliomyelitis vaccine (Salk-IPV) production includes accumulation of large stocks of neurovirulent wild polioviruses. Therefore, IPV based on attenuated OPV strains seems a viable option. To increase the global supply of affordable inactivated vaccine in the still not-polio free world we developed an IPV made from the Sabin strains–PoliovacSin. Clinical trials included participants 18–60 years of age. A phase I single-center, randomized, double-blind placebo-controlled clinical trial included 60 participants, who received one dose of PoliovacSin or Placebo. A phase II multicenter, randomized, double-blind, comparative clinical trial included 200 participants, who received one dose of PoliovacSin or Imovax Polio. All vaccinations were well tolerated, and PoliovacSin had a comparable safety profile to the Placebo or the reference Imovax Polio preparations. A significant increase in neutralizing antibody levels to polioviruses types 1–3 (Sabin and wild) was observed in PoliovacSin and Imovax Polio vaccinated groups. Therefore, clinical trials confirmed good tolerability, low reactogenicity, and high safety profile of the PoliovacSin and its pronounced immunogenic properties. The preparation was approved for clinical trials involving infants.
Collapse
|
6
|
Leroux-Roels I, Leroux-Roels G, Shukarev G, Schuitemaker H, Cahill C, de Rooij R, Struijs M, van Zeeburg H, Jacquet JM. Safety and immunogenicity of a new Sabin inactivated poliovirus vaccine candidate produced on the PER.C6® cell-line: a phase 1 randomized controlled trial in adults. Hum Vaccin Immunother 2021; 17:1366-1373. [PMID: 33175637 PMCID: PMC8078678 DOI: 10.1080/21645515.2020.1812315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
This first-in-human study (NCT03032588), conducted in Belgium, evaluated a new inactivated poliovirus vaccines (IPV) candidate based on Sabin poliovirus strains grown on the high-yield PER.C6® cell line. Healthy adults (N = 32) were randomized (1:1) to receive a single dose of PER.C6-based Sabin-IPV (sIPV, 15:35:112.5 DU/dose) or conventional Salk-IPV (cIPV, 40:8:32 DU/dose). Reactogenicity was assessed up to 7 days after vaccination, immunogenicity 28 days after vaccination, and safety up to 6 months after vaccination.Solicited adverse events (AEs) were mild to moderate, no changes of concern in vital signs or safety laboratory values were observed, and no severe AEs (SAEs) or vaccine-related unsolicited AEs were reported after vaccination. A trend to more frequent solicited AEs after sIPV than after cIPV administration was observed. Most participants had preexisting neutralizing antibodies against poliovirus types (titer ≥8), which were strongly boosted by sIPV. Post-vaccination geometric mean titers were high (≥12,000) and similar across the two vaccination groups. Only participants with very high preexisting antibody levels did not show a vaccine-induced response, defined in seropositive participants as a 4-fold titer increase. The 10 initially seronegative (titer <8) participants (n = 5 in each study group) seroconverted and all participants had seroprotective antibody levels post-vaccination. The antibodies elicited by sIPV neutralized both Sabin and Salk poliovirus strains.In conclusion, the PER.C6®-based sIPV was well tolerated and highly immunogenic in adults with preexisting antibodies to poliovirus.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | - Martin Struijs
- Janssen Vaccines & Prevention B.V., Leiden, The Netherlands
| | | | | |
Collapse
|
7
|
O’Connor DJ, Buckland J, Almond N, Boyle J, Coxon C, Gaki E, Martin J, Mattiuzzo G, Metcalfe C, Page M, Rose N, Valdazo-Gonzalez B, Zhao Y, Schneider CK. Commonly setting biological standards in rare diseases. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1652598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Jenny Buckland
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Neil Almond
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Jennifer Boyle
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Carmen Coxon
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Eleni Gaki
- Medicines & Healthcare products Regulatory Agency (MHRA), London, UK
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Clive Metcalfe
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Mark Page
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Nicola Rose
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Begona Valdazo-Gonzalez
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Yuan Zhao
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
| | - Christian K. Schneider
- National Institute for Biological Standards and Control (NIBSC), Blanche Ln, South Mimms, Potters Bar, UK
- Twincore Centre for Experimental and Clinical Infection Research GmbH, Hannover, Germany
| |
Collapse
|
8
|
Farcet MR, Modrof J, Rabel PO, Schirmer A, Macadam AJ, Fox H, Minor PD, Kreil TR. Continued use of poliovirus after eradication: hyper‐attenuated strains as a safe alternative for release testing of human immunoglobulins. Transfusion 2018; 58 Suppl 3:3084-3089. [DOI: 10.1111/trf.15048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Andrew J. Macadam
- Division of Virology National Institute for Biological Standards and Control Hertfordshire UK
| | - Helen Fox
- Division of Virology National Institute for Biological Standards and Control Hertfordshire UK
| | - Philip D. Minor
- Division of Virology National Institute for Biological Standards and Control Hertfordshire UK
| | | |
Collapse
|
9
|
Bockstal V, Tiemessen MM, Achterberg R, Van Wordragen C, Knaapen AM, Serroyen J, Marissen WE, Schuitemaker H, Zahn R. An inactivated poliovirus vaccine using Sabin strains produced on the serum-free PER.C6® cell culture platform is immunogenic and safe in a non-human primate model. Vaccine 2018; 36:6979-6987. [PMID: 30314910 PMCID: PMC6219454 DOI: 10.1016/j.vaccine.2018.09.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 11/21/2022]
Abstract
Background The World Health Organization recommends the development of affordable next-generation inactivated poliovirus vaccines (IPV) using attenuated poliovirus Sabin strains. Previously, we introduced a novel PER.C6® cell culture platform, which allows for high yield production of an affordable trivalent Sabin IPV vaccine. Methods Immunogenicity and safety of this novel PER.C6®-based Sabin-IPV (sIPV) was assessed in rats and non-human primates (NHPs). NHPs received one of four different dose dilutions vaccine according to current human schedule (three prime-immunizations and one boost immunization). For comparison, NHPs received commercially available reference Salk IPV or sIPV. Results Dose-dependent immunogenicity and good tolerability was observed for the PER.C6®-based sIPV formulations in rats and NHPs. In NHPs, the lowest tested dose that induced anti-Sabin virus-neutralizing antibody titers that were non-inferior to commercial sIPV after three immunizations was 5-7.5-25 D-antigen units for type 1, 2 and 3 respectively. Discussion PER.C6®-based sIPV induced comparable immunogenicity to commercial Salk IPV and sIPV vaccines in NHPs. Together with the absence of any preclinical safety signals, these data warrant further testing in clinical trials. sIPV produced on the PER.C6® cell platform could be one solution to the need for an affordable and immunogenic IPV to achieve and maintain global polio eradication.
Collapse
Affiliation(s)
- Viki Bockstal
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Machteld M Tiemessen
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Rogier Achterberg
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Carlo Van Wordragen
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Ad M Knaapen
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | | | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention BV, Archimedesweg 4-6, 2333CN Leiden, the Netherlands.
| |
Collapse
|
10
|
Okayasu H, Sein C, Hamidi A, Bakker WA, Sutter RW. Development of inactivated poliovirus vaccine from Sabin strains: A progress report. Biologicals 2016; 44:581-587. [DOI: 10.1016/j.biologicals.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
|
11
|
Sanders BP, de los Rios Oakes I, van Hoek V, Bockstal V, Kamphuis T, Uil TG, Song Y, Cooper G, Crawt LE, Martín J, Zahn R, Lewis J, Wimmer E, Custers JHHV, Schuitemaker H, Cello J, Edo-Matas D. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine. PLoS Pathog 2016; 12:e1005483. [PMID: 27032093 PMCID: PMC4816566 DOI: 10.1371/journal.ppat.1005483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/09/2016] [Indexed: 01/11/2023] Open
Abstract
The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.
Collapse
Affiliation(s)
- Barbara P. Sanders
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Isabel de los Rios Oakes
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Vladimir van Hoek
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Viki Bockstal
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Tobias Kamphuis
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Taco G. Uil
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Yutong Song
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Gillian Cooper
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Laura E. Crawt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Roland Zahn
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - John Lewis
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jerome H. H. V. Custers
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| | - Jeronimo Cello
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Diana Edo-Matas
- Janssen Infectious Diseases and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, the Netherlands
| |
Collapse
|
12
|
Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T. Impaired antiviral response of adenovirus-transformed cell lines supports virus replication. J Gen Virol 2016; 97:293-298. [PMID: 26647282 DOI: 10.1099/jgv.0.000361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Activation of the innate immune response represents one of the most important cellular mechanisms to limit virus replication and spread in cell culture. Here, we examined the effect of adenoviral gene expression on the antiviral response in adenovirus-transformed cell lines; HEK293, HEK293SF and AGE1.HN. We demonstrate that the expression of the early region protein 1A in these cell lines impairs their ability to activate antiviral genes by the IFN pathway. This property may help in the isolation of newly emerging viruses and the propagation of interferon-sensitive virus strains.
Collapse
Affiliation(s)
- Mandy Bachmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Theresa Breitwieser
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Christoph Lipps
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestrasse 54, 13086 Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|