1
|
Torres-Sangiao E, Happonen L, Heusel M, Palm F, Gueto-Tettay C, Malmström L, Shannon O, Malmström J. Quantification of Adaptive Immune Responses Against Protein-Binding Interfaces in the Streptococcal M1 Protein. Mol Cell Proteomics 2024; 23:100753. [PMID: 38527648 PMCID: PMC11059317 DOI: 10.1016/j.mcpro.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Escherichia coli Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Clinical Microbiology Lab, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Lotta Happonen
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Morizt Heusel
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Evosep ApS, Odense, Denmark
| | - Frida Palm
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Carlos Gueto-Tettay
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Onna Shannon
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden; Faculty of Odontology, Section for Oral Biology and Pathology, Malmö University, Malmö, Sweden
| | - Johan Malmström
- Faculty of Medicine, Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
CspZ FH-Binding Sites as Epitopes Promote Antibody-Mediated Lyme Borreliae Clearance. Infect Immun 2022; 90:e0006222. [PMID: 35861564 PMCID: PMC9302089 DOI: 10.1128/iai.00062-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transmitted by ticks, the bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD), the most common vector-borne disease in the Northern hemisphere. No effective vaccines are currently available. B. burgdorferi sensu lato produces the CspZ protein that binds to the complement inhibitor, factor H (FH), promoting evasion of the host complement system. We previously showed that while vaccination with CspZ did not protect mice from B. burgdorferi infection, mice can be protected after immunization with CspZ-Y207A/Y211A (CspZ-YA), a CspZ mutant protein without FH-binding activity. To further study the mechanism of this protection, herein we evaluated both poly- and monoclonal antibodies recognizing CspZ FH-binding or non-FH-binding sites. We found that the anti-CspZ antibodies that recognize the FH-binding sites (i.e., block FH-binding activity) eliminate B. burgdorferi sensu lato in vitro more efficiently than those that bind to the non-FH-binding sites, and passive inoculation with anti-FH-binding site antibodies eradicated B. burgdorferi sensu lato in vivo. Antibodies against non-FH-binding sites did not have the same effect. These results emphasize the importance of CspZ FH-binding sites in triggering a protective antibody response against B. burgdorferi sensu lato in future LD vaccines.
Collapse
|
4
|
Sands NA, Beernink PT. Two human antibodies to a meningococcal serogroup B vaccine antigen enhance binding of complement Factor H by stabilizing the Factor H binding site. PLoS Pathog 2021; 17:e1009655. [PMID: 34125873 PMCID: PMC8224966 DOI: 10.1371/journal.ppat.1009655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Microbial pathogens bind host complement regulatory proteins to evade the immune system. The bacterial pathogen Neisseria meningitidis, or meningococcus, binds several complement regulators, including human Factor H (FH). FH binding protein (FHbp) is a component of two licensed meningococcal vaccines and in mice FHbp elicits antibodies that inhibit binding of FH to FHbp, which defeat the bacterial evasion mechanism. However, humans vaccinated with FHbp develop antibodies that enhance binding of FH to the bacteria, which could limit the effectiveness of the vaccines. In the present study, we show that two vaccine-elicited antibody fragments (Fabs) isolated from different human subjects increase binding of complement FH to meningococcal FHbp by ELISA. The two Fabs have different effects on the kinetics of FH binding to immobilized FHbp as measured by surface plasmon resonance. The 1.7- and 2.0-Å resolution X-ray crystal structures of the Fabs in complexes with FHbp illustrate that the two Fabs bind to similar epitopes on the amino-terminal domain of FHbp, adjacent to the FH binding site. Superposition models of ternary complexes of each Fab with FHbp and FH show that there is likely minimal contact between the Fabs and FH. Collectively, the structures reveal that the Fabs enhance binding of FH to FHbp by altering the conformations and mobilities of two loops adjacent to the FH binding site of FHbp. In addition, the 1.5 Å-resolution structure of one of the isolated Fabs defines the structural rearrangements associated with binding to FHbp. The FH-enhancing human Fabs, which are mirrored in the human polyclonal antibody responses, have important implications for tuning the effectiveness of FHbp-based vaccines.
Collapse
Affiliation(s)
- Nathaniel A. Sands
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter T. Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Principato S, Pizza M, Rappuoli R. Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Lett 2020; 594:2657-2669. [PMID: 32298465 DOI: 10.1002/1873-3468.13793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/15/2023]
Abstract
Factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis and a main component of the two licensed vaccines against serogroup B meningococcus (Bexsero and Trumenba). fHbp is a surface-exposed lipoprotein that enables the bacterium to survive in human blood by binding the human complement regulator factor H (fH). When used as vaccine, the protein induces antibodies with potent bactericidal activity. While the fHbp gene is present in the majority of N. meningitidis serogroup B isolates, the expression level varies up to 15 times between different strains and more than 700 different sequence variants have been described. Antigenically, the protein has been divided into three variants or two subfamilies. The 3D structure of fHbp alone, in combination with fH or in complex with bactericidal antibodies, has been key to understanding the molecular details of the protein. In this article, we will review the biochemical and immunological properties of fHbp, and its key role in meningococcal pathogenesis, complement regulation, and immune evasion.
Collapse
|
6
|
The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease. Infect Immun 2020; 88:IAI.00956-19. [PMID: 32122944 DOI: 10.1128/iai.00956-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.
Collapse
|
7
|
Beernink PT. Effect of complement Factor H on antibody repertoire and protection elicited by meningococcal capsular group B vaccines containing Factor H binding protein. Hum Vaccin Immunother 2020; 16:703-712. [PMID: 31526219 DOI: 10.1080/21645515.2019.1664241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Sharkey K, Beernink PT, Langley JM, Gantt S, Quach C, Dold C, Liu Q, Galvan M, Granoff DM. Anti-Factor H Antibody Reactivity in Young Adults Vaccinated with a Meningococcal Serogroup B Vaccine Containing Factor H Binding Protein. mSphere 2019; 4:e00393-19. [PMID: 31270173 PMCID: PMC6609231 DOI: 10.1128/msphere.00393-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
Meningococcal serogroup B (MenB) vaccines contain recombinant factor H binding protein (FHbp), which can complex with complement factor H (CFH) and thereby risk eliciting anti-FH autoantibodies. While anti-FH antibodies can be present in sera of healthy persons, the antibodies are implicated in autoimmune atypical hemolytic uremic syndrome and C3 glomerulopathies. We immunized 120 students with a MenB vaccine (Bexsero). By enzyme-linked immunosorbent assay (ELISA), there were small increases in serum anti-FH levels at 3 weeks postvaccination (geometric mean optical density at 405 nm [OD405], 0.54 versus 0.51 preimmunization, P ≤ 0.003 for each schedule tested). There was a similar small increase in anti-FH antibody levels in a second historical MenB study of 20 adults with stored paired preimmunization and postimmunization sera (P = 0.007) but not in three other studies of 57 adults immunized with other meningococcal vaccines that did not contain recombinant FHbp (P = 0.17, 0.84, and 0.60, respectively). Thus, humans vaccinated with MenB-4C develop small increases in serum anti-FH antibody reactivity. Although not likely to be clinically important, the data indicate a host response to FH. In the prospective MenB study, three subjects (2.5%) developed higher anti-FH titers postimmunization. The elevated titers returned to baseline within 3 to 4 months, and none of the subjects reported adverse events during the follow-up. Although anti-FH antibodies can decrease FH function, the postimmunization sera with high anti-FH antibody levels did not impair serum FH function as measured using a hemolytic assay. Thus, while additional studies are warranted, there is no evidence that the anti-FH antibodies elicited by MenB-4C are likely to cause anti-FH-mediated autoimmune disorders. (This study has been registered at ClinicalTrials.gov under registration no. NCT02583412.)IMPORTANCE Meningococci are bacteria that cause sepsis and meningitis. Meningococcal species are subdivided into serogroups on the basis of different sugar capsules. Vaccines that target serogroup A, C, Y, and W capsules are safe and highly effective. New serogroup B (MenB) vaccines target a bacterial protein that can bind to a blood protein called complement factor H (FH). While serogroup B vaccines appear to be safe and effective, there is a theoretical risk that immunization with a bacterial protein that binds host FH might elicit anti-FH autoantibodies. Autoantibodies to FH have been detected in healthy persons but in rare cases can cause certain autoimmune diseases. We found small and/or transient increases in serum antibody to FH after MenB immunization. While no serious adverse events were reported in the subjects with elevated anti-FH titers, since onset of autoimmune disease is a rare event and may occur months or years after vaccination, additional, larger studies are warranted.
Collapse
Affiliation(s)
- Kelsey Sharkey
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Joanne M Langley
- IWK Health Centre and the Nova Scotia Health Authority, Canadian Center for Vaccinology at Dalhousie University, Halifax, Nova Scotia, Canada
| | - Soren Gantt
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Caroline Quach
- McGill University Health Centre Research Institute and CHU Sainte Justine, Montreal, Quebec, Canada
| | | | - Qin Liu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Manuel Galvan
- National Jewish Health Complement Laboratory, Denver, Colorado, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| |
Collapse
|
10
|
Beernink PT, Vianzon V, Lewis LA, Moe GR, Granoff DM. A Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Mutant FHbp Elicits Higher Protective Antibody Responses in Infant Rhesus Macaques than a Licensed Serogroup B Vaccine. mBio 2019; 10:e01231-19. [PMID: 31213564 PMCID: PMC6581866 DOI: 10.1128/mbio.01231-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Vianca Vianzon
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Lisa A Lewis
- Division of Immunology and Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gregory R Moe
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
11
|
Marcinkiewicz AL, Lieknina I, Kotelovica S, Yang X, Kraiczy P, Pal U, Lin YP, Tars K. Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Front Immunol 2018; 9:181. [PMID: 29472926 PMCID: PMC5809437 DOI: 10.3389/fimmu.2018.00181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the most common tick-borne disease in the US and Europe. No potent human vaccine is currently available. The innate immune complement system is vital to host defense against pathogens, as complement activation on the surface of spirochetes results in bacterial killing. Complement system is inhibited by the complement regulator factor H (FH). To escape killing, B. burgdorferi produces an outer surface protein CspZ that binds FH to inhibit complement activation on the cell surface. Immunization with CspZ alone does not protect mice from infection, which we speculate is because FH-binding cloaks potentially protective epitopes. We modified CspZ by conjugating to virus-like particles (VLP-CspZ) and eliminating FH binding (modified VLP-CspZ) to increase immunogenicity. We observed greater bactericidal antibody titers in mice vaccinated with modified VLP-CspZ: A serum dilution of 1:395 (modified VLP-CspZ) vs 1:143 (VLP-CspZ) yielded 50% borreliacidal activity. Immunizing mice with modified VLP-CspZ cleared spirochete infection, as did passive transfer of elicited antibodies. This work developed a novel Lyme disease vaccine candidate by conjugating CspZ to VLP and eliminating FH-binding ability. Such a strategy of conjugating an antigen to a VLP and eliminating binding to the target ligand can serve as a general model for developing vaccines against other bacterial infectious agents.
Collapse
Affiliation(s)
- Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Xiuli Yang
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, United States
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
12
|
Price GA, Bash MC. Development of an FHbp-CTB holotoxin-like chimera and the elicitation of bactericidal antibodies against serogroup B Neisseria meningitidis. Vaccine 2018; 36:644-652. [PMID: 29287682 DOI: 10.1016/j.vaccine.2017.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/18/2022]
Abstract
The Neisseria meningitidis factor H binding protein (FHbp) is an important virulence factor and vaccine antigen contained in both USA licensed serogroup B meningococcal vaccines. Recent studies in human factor H (hFH) transgenic mice suggest that hFH-FHbp interactions lower FHbp-elicited immunogenicity. To provide tools with which to characterize and potentially improve FHbp immunogenicity, we developed an FHbp-cholera holotoxin-like chimera vaccine expression system in Escherichia coli that utilizes cholera toxin B (CTB) as both a scaffold and adjuvant for FHbp. We developed FHbp-CTB chimeras using a wild-type (WT) FHbp and a low hFH-binding FHbp mutant R41S. Both chimeras bound to GM1 ganglioside and were recognized by the FHbp-specific monoclonal antibody JAR4. The R41S mutant had greatly reduced hFH binding compared to the WT FHbp-CTB chimera. WT and R41S FHbp-CTB chimeric antigens were compared to equimolar amounts of FHbp admixed with CTB or FHbp alone in mouse immunogenicity studies. The chimeras were significantly more immunogenic than FHbp alone or mixed with CTB, and elicited bactericidal antibodies against a panel of MenB isolates. This study demonstrates a unique and simple method for studying FHbp immunogenicity. The chimeric approach may facilitate studies of other protein-based antigens targeting pathogenic Neisseria and lay groundwork for the development of new protein based vaccines against meningococcal and gonococcal disease.
Collapse
Affiliation(s)
- Gregory A Price
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Weyand NJ. Neisseria models of infection and persistence in the upper respiratory tract. Pathog Dis 2017; 75:3078547. [DOI: 10.1093/femspd/ftx031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
|
14
|
Granoff DM, Giuntini S, Gowans FA, Lujan E, Sharkey K, Beernink PT. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 2016; 1:e88907. [PMID: 27668287 DOI: 10.1172/jci.insight.88907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.
Collapse
|
15
|
Meningococcal Factor H Binding Protein Vaccine Antigens with Increased Thermal Stability and Decreased Binding of Human Factor H. Infect Immun 2016; 84:1735-1742. [PMID: 27021245 DOI: 10.1128/iai.01491-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis causes cases of bacterial meningitis and sepsis. Factor H binding protein (FHbp) is a component of two licensed meningococcal serogroup B vaccines. FHbp recruits the complement regulator factor H (FH) to the bacterial surface, which inhibits the complement alternative pathway and promotes immune evasion. Binding of human FH impairs the protective antibody responses to FHbp, and mutation of FHbp to decrease binding of FH can increase the protective responses. In a previous study, we identified two amino acid substitutions in FHbp variant group 2 that increased its thermal stability by 21°C and stabilized epitopes recognized by protective monoclonal antibodies (MAbs). Our hypothesis was that combining substitutions to increase stability and decrease FH binding would increase protective antibody responses in the presence of human FH. In the present study, we generated four new FHbp single mutants that decreased FH binding and retained binding of anti-FHbp MAbs and immunogenicity in wild-type mice. From these mutants, we selected two, K219N and G220S, to combine with the stabilized double-mutant FHbp antigen. The two triple mutants decreased FH binding >200-fold, increased the thermal stability of the N-terminal domain by 21°C, and bound better to an anti-FHbp MAb than the wild-type FHbp. In human-FH-transgenic mice, the FHbp triple mutants elicited 8- to 15-fold-higher protective antibody responses than the wild-type FHbp antigen. Collectively, the data suggest that mutations to eliminate binding of human FH and to promote conformational stability act synergistically to optimize FHbp immunogenicity.
Collapse
|
16
|
Pajon R, Lujan E, Granoff DM. A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine. Vaccine 2015; 34:643-649. [PMID: 26709637 DOI: 10.1016/j.vaccine.2015.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Meningococcal epidemics in Sub-Sahara caused by serogroup A strains are controlled by a group A polysaccharide conjugate vaccine. Strains with serogroups C, W and X continue to cause epidemics. Protein antigens in licensed serogroup B vaccines are shared among serogroup B and non-B strains. PURPOSE Compare serum bactericidal antibody responses elicited by an investigational native outer membrane vesicle vaccine with over-expressed Factor H binding protein (NOMV-FHbp) and a licensed serogroup B vaccine (MenB-4C) against African serogroup A, B, C, W and X strains. METHODS Human Factor H (FH) transgenic mice were immunized with NOMV-FHbp prepared from a mutant African meningococcal strain containing genetically attenuated endotoxin and a mutant sub-family B FHbp antigen with low FH binding, or with MenB-4C, which contains a recombinant sub-family B FHbp antigen that binds human FH, and three other antigens, NHba, NadA and PorA P1.4, capable of eliciting bactericidal antibody. RESULTS The NOMV-FHbp elicited serum bactericidal activity against 12 of 13 serogroup A, B, W or X strains from Africa, and four isogenic serogroup B mutants with sub-family B FHbp sequence variants. There was no activity against a serogroup B mutant with sub-family A FHbp, or two serogroup C isolates from a recent outbreak in Northern Nigeria, which were mismatched for both PorA and sub-family of the FHbp vaccine antigen. For MenB-4C, NHba was expressed by all 16 African isolates tested, FHbp sub-family B in 13, and NadA in five. However, MenB-4C elicited titers ≥ 1:10 against only one isolate, and against only two of four serogroup B mutant strains with sub-family B FHbp sequence variants. CONCLUSIONS NOMV-FHbp has greater potential to confer serogroup-independent protection in Africa than the licensed MenB-4C vaccine. However, the NOMV-FHbp vaccine will require inclusion of sub-family A FHbp for coverage against recent serogroup C strains causing outbreaks in Northern Nigeria.
Collapse
Affiliation(s)
- Rolando Pajon
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Eduardo Lujan
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| |
Collapse
|